In-process tool point FRF identification under operational conditions using inverse stability solution

Self-excited vibrations of machine tools during cutting result in process instability, poor surface finish and reduced material removal rate. In order to obtain stability lobe diagrams to avoid chatter vibrations, tool point frequency response function (FRF) must be determined. In classical machine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of machine tools & manufacture Ročník 89; s. 64 - 73
Hlavní autoři: Özşahin, O., Budak, E., Özgüven, H.N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2015
Témata:
ISSN:0890-6955, 1879-2170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Self-excited vibrations of machine tools during cutting result in process instability, poor surface finish and reduced material removal rate. In order to obtain stability lobe diagrams to avoid chatter vibrations, tool point frequency response function (FRF) must be determined. In classical machine tool studies, tool point FRF is obtained experimentally or analytically for the idle state of the machine. However, during cutting operations, discrepancies are frequently observed between the stability diagrams predicted by using the FRFs measured at the idle state and the actual stability of the process. These deviations can be attributed to the changes in machine tool dynamics under cutting conditions which are difficult to measure. In this study, a new identification method is proposed for the identification of in-process tool point FRFs. In this method, experimentally determined chatter frequency and corresponding axial depth of cut are used in order to identify tool point FRF. The proposed method is applied to a real machining center and by using chatter tests it is demonstrated that the tool point FRF can be accurately identified under operational conditions. •A new in-process tool point FRF identification method is presented.•The method does not require complicated measurement equipment; but it is simply based on chatter tests which is why it is named as “inverse stability solution”.•The method is used to identify variations in tool point FRF under different rotational speeds and feed rates.
AbstractList Self-excited vibrations of machine tools during cutting result in process instability, poor surface finish and reduced material removal rate. In order to obtain stability lobe diagrams to avoid chatter vibrations, tool point frequency response function (FRF) must be determined. In classical machine tool studies, tool point FRF is obtained experimentally or analytically for the idle state of the machine. However, during cutting operations, discrepancies are frequently observed between the stability diagrams predicted by using the FRFs measured at the idle state and the actual stability of the process. These deviations can be attributed to the changes in machine tool dynamics under cutting conditions which are difficult to measure. In this study, a new identification method is proposed for the identification of in-process tool point FRFs. In this method, experimentally determined chatter frequency and corresponding axial depth of cut are used in order to identify tool point FRF. The proposed method is applied to a real machining center and by using chatter tests it is demonstrated that the tool point FRF can be accurately identified under operational conditions.
Self-excited vibrations of machine tools during cutting result in process instability, poor surface finish and reduced material removal rate. In order to obtain stability lobe diagrams to avoid chatter vibrations, tool point frequency response function (FRF) must be determined. In classical machine tool studies, tool point FRF is obtained experimentally or analytically for the idle state of the machine. However, during cutting operations, discrepancies are frequently observed between the stability diagrams predicted by using the FRFs measured at the idle state and the actual stability of the process. These deviations can be attributed to the changes in machine tool dynamics under cutting conditions which are difficult to measure. In this study, a new identification method is proposed for the identification of in-process tool point FRFs. In this method, experimentally determined chatter frequency and corresponding axial depth of cut are used in order to identify tool point FRF. The proposed method is applied to a real machining center and by using chatter tests it is demonstrated that the tool point FRF can be accurately identified under operational conditions. •A new in-process tool point FRF identification method is presented.•The method does not require complicated measurement equipment; but it is simply based on chatter tests which is why it is named as “inverse stability solution”.•The method is used to identify variations in tool point FRF under different rotational speeds and feed rates.
Author Özgüven, H.N.
Özşahin, O.
Budak, E.
Author_xml – sequence: 1
  givenname: O.
  surname: Özşahin
  fullname: Özşahin, O.
  organization: Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey
– sequence: 2
  givenname: E.
  surname: Budak
  fullname: Budak, E.
  email: ebudak@sabanciuniv.edu
  organization: Manufacturing Research Laboratory, Sabanci University, İstanbul 81474, Turkey
– sequence: 3
  givenname: H.N.
  surname: Özgüven
  fullname: Özgüven, H.N.
  organization: Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey
BookMark eNqNkEGLFDEQhYOs4Ozqf4g3L90mk550chIZHF1YWFj0HNKVaq2hJxmT9ML-e7t3PIinPb0qeO-D967ZVUwRGXsvRSuF1B-PLR1PHn7VlKbSboXsWmHbRV6xjTS9bbayF1dsI4wVjba73Rt2XcpRCCGNkhs23sbmnBNgKXxl8HOiWPnh4cApYKw0EvhKKfI5Bsw8nTE__37ikGKg9S58LhR_coqPmAvyUv1AE9UnXtI0r4637PXop4Lv_uoN-3H48n3_rbm7_3q7_3zXQCd2tbE-KBuGTqFCAAUatnYnVTdqgYPBUffeBtMF66EbrTGgrcJO96gH1ZtBqRv24cJdOv2esVR3ogI4TT5imouTWluje2v6xfrpYoWcSsk4OqD6XK1mT5OTwq0Lu6P7Z2G3LuyEdYssBPsf4Zzp5PPTi7L7SxaXNR4JsytAGAEDZYTqQqIXUP4AO2Gjuw
CitedBy_id crossref_primary_10_1155_2020_1398957
crossref_primary_10_1038_s41598_025_01395_3
crossref_primary_10_1007_s10845_024_02364_9
crossref_primary_10_1016_j_ymssp_2019_106532
crossref_primary_10_1007_s40799_022_00590_5
crossref_primary_10_1016_j_cirpj_2022_04_009
crossref_primary_10_1007_s00170_020_06015_0
crossref_primary_10_1016_j_procir_2019_04_038
crossref_primary_10_1016_j_ymssp_2025_112705
crossref_primary_10_1016_j_ijmachtools_2017_09_004
crossref_primary_10_1016_j_ijmecsci_2020_105543
crossref_primary_10_1016_j_ijmecsci_2022_107887
crossref_primary_10_1016_j_procir_2016_04_114
crossref_primary_10_1177_0954405416629587
crossref_primary_10_1016_j_precisioneng_2022_09_008
crossref_primary_10_1016_j_jmapro_2025_05_037
crossref_primary_10_1016_j_ymssp_2024_111499
crossref_primary_10_1016_j_rcim_2024_102922
crossref_primary_10_1007_s00170_023_11390_5
crossref_primary_10_1016_j_ijmachtools_2019_103516
crossref_primary_10_1016_j_cirp_2022_05_005
crossref_primary_10_1109_ACCESS_2019_2949423
crossref_primary_10_1007_s10845_023_02291_1
crossref_primary_10_1016_j_ymssp_2019_106385
crossref_primary_10_1007_s00170_016_9831_6
crossref_primary_10_1016_j_ymssp_2022_108837
crossref_primary_10_1007_s00170_018_2304_3
crossref_primary_10_1016_j_ijmachtools_2018_04_007
crossref_primary_10_1007_s00170_021_07051_0
crossref_primary_10_1007_s10845_025_02661_x
crossref_primary_10_1016_j_cirpj_2022_06_006
crossref_primary_10_1016_j_procir_2017_04_004
crossref_primary_10_1016_j_procir_2021_03_026
crossref_primary_10_3390_mi16020161
crossref_primary_10_1016_j_ymssp_2025_112312
crossref_primary_10_1016_j_cirpj_2021_01_007
crossref_primary_10_1016_j_cie_2024_110409
crossref_primary_10_1016_j_cirpj_2020_06_001
crossref_primary_10_1016_j_ymssp_2025_112991
crossref_primary_10_1007_s00170_020_05322_w
crossref_primary_10_1007_s12541_022_00669_4
crossref_primary_10_1007_s00170_022_09142_y
crossref_primary_10_1016_j_ijmachtools_2018_03_004
crossref_primary_10_1016_j_ymssp_2022_109282
crossref_primary_10_1016_j_ymssp_2020_106840
crossref_primary_10_1007_s40436_018_0233_x
crossref_primary_10_1016_j_ymssp_2021_108469
crossref_primary_10_1016_j_ymssp_2021_108225
crossref_primary_10_1007_s00170_016_9809_4
crossref_primary_10_1016_j_precisioneng_2016_11_011
crossref_primary_10_1016_j_ymssp_2021_108620
crossref_primary_10_1007_s00170_021_07580_8
crossref_primary_10_1080_00207543_2023_2176698
crossref_primary_10_1016_j_ijmachtools_2022_103873
crossref_primary_10_1016_j_procir_2018_08_231
crossref_primary_10_1016_j_precisioneng_2015_03_010
crossref_primary_10_1007_s00170_019_03589_2
crossref_primary_10_1051_matecconf_201817503061
crossref_primary_10_1007_s00170_016_8938_0
crossref_primary_10_1016_j_cirp_2016_06_004
crossref_primary_10_1016_j_procir_2016_04_052
crossref_primary_10_1016_j_ymssp_2024_111353
crossref_primary_10_1007_s00521_016_2322_8
crossref_primary_10_1016_j_cirpj_2025_04_001
crossref_primary_10_1016_j_procir_2018_08_268
crossref_primary_10_1007_s00170_016_9832_5
crossref_primary_10_1016_j_procir_2018_08_269
crossref_primary_10_1016_j_procir_2021_01_097
crossref_primary_10_1016_j_procir_2023_06_036
crossref_primary_10_1016_j_ymssp_2023_110280
crossref_primary_10_1016_j_ymssp_2021_108559
crossref_primary_10_1007_s00170_017_1405_8
crossref_primary_10_1007_s10845_020_01569_y
crossref_primary_10_1007_s00170_021_07837_2
crossref_primary_10_1016_j_cirpj_2020_02_004
crossref_primary_10_1016_j_ijmachtools_2019_04_003
crossref_primary_10_1016_j_precisioneng_2025_03_022
crossref_primary_10_1007_s00170_016_9959_4
crossref_primary_10_1016_j_jmapro_2023_06_062
crossref_primary_10_1016_j_procir_2016_08_022
crossref_primary_10_1016_j_ijmachtools_2014_12_004
crossref_primary_10_1016_j_ijmachtools_2023_104016
crossref_primary_10_1080_00207543_2019_1636327
crossref_primary_10_1016_j_ijmachtools_2021_103767
crossref_primary_10_1016_j_cie_2022_108273
Cites_doi 10.1016/j.ijmachtools.2007.09.009
10.1006/jsvi.2000.3053
10.1016/j.ijmachtools.2006.03.001
10.1016/j.measurement.2003.04.001
10.1016/j.ijmachtools.2006.10.004
10.1016/S0007-8506(07)62342-7
10.1016/0022-460X(89)90705-0
10.1006/jsvi.2000.3134
10.1016/j.ymssp.2006.08.006
10.1016/j.ijmachtools.2009.06.010
10.1016/S0007-8506(07)61096-8
10.1016/B978-0-08-015661-3.50026-6
10.1016/j.cirp.2010.03.078
10.1117/12.248633
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7TB
8BQ
8FD
F28
FR3
JG9
DOI 10.1016/j.ijmachtools.2014.09.014
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2170
EndPage 73
ExternalDocumentID 10_1016_j_ijmachtools_2014_09_014
S0890695514001473
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8BQ
8FD
F28
FR3
JG9
ID FETCH-LOGICAL-c405t-9ad39db43e3ecc3c6c295134f60eb8ef67a9d84d9ac4f988c693e467e6b378b33
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000348627800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0890-6955
IngestDate Sun Sep 28 00:06:54 EDT 2025
Tue Nov 18 21:50:52 EST 2025
Sat Nov 29 02:33:05 EST 2025
Fri Feb 23 02:34:01 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machine tool dynamics
In process dynamics identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-9ad39db43e3ecc3c6c295134f60eb8ef67a9d84d9ac4f988c693e467e6b378b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hdl.handle.net/11511/41507
PQID 1669867987
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1669867987
crossref_citationtrail_10_1016_j_ijmachtools_2014_09_014
crossref_primary_10_1016_j_ijmachtools_2014_09_014
elsevier_sciencedirect_doi_10_1016_j_ijmachtools_2014_09_014
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle International journal of machine tools & manufacture
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bell, Rothberg (bib12) 2004; 35
Zaghbani, Songmene (bib15) 2009; 49
Ozsahin, Budak, Ozguven (bib18) 2011; 223
Minis, Magrab, Pandelidis (bib17) 1990; 112
Budak, Altintas (bib5) 1998; 120
Altintas (bib6) 2000
Budak, Tunç (bib19) 2010; 59
Tatara, Rantatalob, Grena (bib9) 2007; 21
Rivin (bib21) 1999
Bell, Rothberg (bib10) 2000; 237
Tlusty, Polacek (bib2) 1963
H. Opitz, M.C. Weck, Determination of the transfer function by means of spectral density measurements and its application to dynamic investigation of machine tools under machining conditions, in: Proceedings of 10th International MTDR Conference, 1969, pp. 349–378.
Minis, Yanushevsky, Tembo, Hocken (bib3) 1990; 39
Tobias, Fishwick (bib1) 1958; 80
Altintas, Budak (bib4) 1995; 44
Ertürk, Özgüven, Budak (bib22) 2007; 47
M. Denman, N.A. Halliwell, S.J. Rothberg, Speckle noise reduction in laser vibrometry: experimental and numerical optimization, in: Proceedings of the Second International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, 1996, p. 12–21.
Rothberg, Baker, Halliwell (bib7) 1989; 135
Ewins (bib20) 2000
Rantatalo, Aidanpaa, Göransson, Norman (bib14) 2007; 47
Tunç, Budak (bib23) 2013; 135
Tatar, Gren (bib13) 2007; 48
Bell, Rothberg (bib11) 2000; 238
Rothberg (10.1016/j.ijmachtools.2014.09.014_bib7) 1989; 135
Tatara (10.1016/j.ijmachtools.2014.09.014_bib9) 2007; 21
Tatar (10.1016/j.ijmachtools.2014.09.014_bib13) 2007; 48
Zaghbani (10.1016/j.ijmachtools.2014.09.014_bib15) 2009; 49
Ertürk (10.1016/j.ijmachtools.2014.09.014_bib22) 2007; 47
10.1016/j.ijmachtools.2014.09.014_bib16
Rivin (10.1016/j.ijmachtools.2014.09.014_bib21) 1999
Tlusty (10.1016/j.ijmachtools.2014.09.014_bib2) 1963
Ewins (10.1016/j.ijmachtools.2014.09.014_bib20) 2000
Budak (10.1016/j.ijmachtools.2014.09.014_bib5) 1998; 120
Minis (10.1016/j.ijmachtools.2014.09.014_bib3) 1990; 39
10.1016/j.ijmachtools.2014.09.014_bib8
Bell (10.1016/j.ijmachtools.2014.09.014_bib11) 2000; 238
Minis (10.1016/j.ijmachtools.2014.09.014_bib17) 1990; 112
Budak (10.1016/j.ijmachtools.2014.09.014_bib19) 2010; 59
Tobias (10.1016/j.ijmachtools.2014.09.014_bib1) 1958; 80
Bell (10.1016/j.ijmachtools.2014.09.014_bib12) 2004; 35
Tunç (10.1016/j.ijmachtools.2014.09.014_bib23) 2013; 135
Altintas (10.1016/j.ijmachtools.2014.09.014_bib6) 2000
Rantatalo (10.1016/j.ijmachtools.2014.09.014_bib14) 2007; 47
Ozsahin (10.1016/j.ijmachtools.2014.09.014_bib18) 2011; 223
Altintas (10.1016/j.ijmachtools.2014.09.014_bib4) 1995; 44
Bell (10.1016/j.ijmachtools.2014.09.014_bib10) 2000; 237
References_xml – volume: 238
  start-page: 673
  year: 2000
  end-page: 690
  ident: bib11
  article-title: Rotational vibration measuring using laser Doppler vibrometry: comprehensive theory and practical application
  publication-title: J. Sound Vib.
– year: 1999
  ident: bib21
  article-title: Stiffness and Damping in Mechanical Design
– volume: 47
  start-page: 23
  year: 2007
  end-page: 32
  ident: bib22
  article-title: Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle–tool assemblies
  publication-title: Int. J. Mach. Tools Manuf.
– reference: M. Denman, N.A. Halliwell, S.J. Rothberg, Speckle noise reduction in laser vibrometry: experimental and numerical optimization, in: Proceedings of the Second International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, 1996, p. 12–21.
– volume: 237
  start-page: 245
  year: 2000
  end-page: 261
  ident: bib10
  article-title: Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?
  publication-title: J. Sound Vib.
– reference: H. Opitz, M.C. Weck, Determination of the transfer function by means of spectral density measurements and its application to dynamic investigation of machine tools under machining conditions, in: Proceedings of 10th International MTDR Conference, 1969, pp. 349–378.
– year: 2000
  ident: bib6
  article-title: Manufacturing Automation
– start-page: 465
  year: 1963
  end-page: 474
  ident: bib2
  article-title: The stability of machine tools against self-excited vibrations in machining
  publication-title: Proc. ASME Int. Res. Prod. Eng.
– volume: 47
  start-page: 1034
  year: 2007
  end-page: 1045
  ident: bib14
  article-title: Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 80
  start-page: 1079
  year: 1958
  end-page: 1088
  ident: bib1
  article-title: The chatter of lathe tools under orthogonal cutting conditions
  publication-title: Trans. ASME
– volume: 59
  start-page: 403
  year: 2010
  end-page: 408
  ident: bib19
  article-title: Identification and modeling process damping in turning and milling using a new approach
  publication-title: Ann. CIRP
– volume: 135
  start-page: 516
  year: 1989
  end-page: 522
  ident: bib7
  article-title: Laser vibrometry: pseudo-vibration
  publication-title: J. Sound Vib.
– volume: 44
  start-page: 357
  year: 1995
  end-page: 362
  ident: bib4
  article-title: Analytical prediction of stability lobes in milling
  publication-title: Ann. CIRP
– volume: 135
  start-page: 021001
  year: 2013
  ident: bib23
  article-title: Identification and modeling of process damping in milling
  publication-title: Trans. ASME: J. Manuf. Sci. Eng.
– volume: 223
  start-page: 610
  year: 2011
  end-page: 621
  ident: bib18
  article-title: Investigating dynamics of machine tool spindles under operational conditions, Proceedings of the 13th CIRP conference on modeling of machining operations, 12–13 May 2011, Sintra, Portugal
  publication-title: Adv. Mater. Res.
– volume: 120
  start-page: 22
  year: 1998
  end-page: 36
  ident: bib5
  article-title: Analytical prediction of chatter stability in milling – Part I: general formulation; Part II: application to common milling systems,
  publication-title: Trans. ASME: J. Dyn. Syst. Measur. Control
– volume: 21
  start-page: 1739
  year: 2007
  end-page: 1745
  ident: bib9
  article-title: Laser vibrometry measurements of an optically smooth rotating spindle
  publication-title: Mech. Syst. Signal Process.
– volume: 49
  start-page: 947
  year: 2009
  end-page: 957
  ident: bib15
  article-title: Estimation of machine–tool dynamic parameters during machining operation through operational modal analysis
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 48
  start-page: 380
  year: 2007
  end-page: 387
  ident: bib13
  article-title: Measurement of milling tool vibrations during cutting using laser vibrometry
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 112
  start-page: 12
  year: 1990
  end-page: 20
  ident: bib17
  article-title: Improved methods for the prediction of chatter in turning, Part 1: determination of structural response parameters
  publication-title: Trans. ASME
– volume: 35
  start-page: 201
  year: 2004
  end-page: 210
  ident: bib12
  article-title: On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts
  publication-title: Measurement
– volume: 39
  start-page: 459
  year: 1990
  end-page: 462
  ident: bib3
  article-title: Analysis of linear and nonlinear chatter in milling
  publication-title: Ann. CIRP
– year: 2000
  ident: bib20
  article-title: Modal Testing: Theory, Practice and Application
– volume: 48
  start-page: 380
  year: 2007
  ident: 10.1016/j.ijmachtools.2014.09.014_bib13
  article-title: Measurement of milling tool vibrations during cutting using laser vibrometry
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2007.09.009
– volume: 112
  start-page: 12
  year: 1990
  ident: 10.1016/j.ijmachtools.2014.09.014_bib17
  article-title: Improved methods for the prediction of chatter in turning, Part 1: determination of structural response parameters
  publication-title: Trans. ASME
– year: 2000
  ident: 10.1016/j.ijmachtools.2014.09.014_bib20
– year: 2000
  ident: 10.1016/j.ijmachtools.2014.09.014_bib6
– volume: 237
  start-page: 245
  year: 2000
  ident: 10.1016/j.ijmachtools.2014.09.014_bib10
  article-title: Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2000.3053
– volume: 47
  start-page: 23
  year: 2007
  ident: 10.1016/j.ijmachtools.2014.09.014_bib22
  article-title: Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle–tool assemblies
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.03.001
– volume: 35
  start-page: 201
  year: 2004
  ident: 10.1016/j.ijmachtools.2014.09.014_bib12
  article-title: On the application of laser vibrometry to translational and rotational vibration measurements on rotating shafts
  publication-title: Measurement
  doi: 10.1016/j.measurement.2003.04.001
– volume: 47
  start-page: 1034
  year: 2007
  ident: 10.1016/j.ijmachtools.2014.09.014_bib14
  article-title: Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.10.004
– volume: 44
  start-page: 357
  year: 1995
  ident: 10.1016/j.ijmachtools.2014.09.014_bib4
  article-title: Analytical prediction of stability lobes in milling
  publication-title: Ann. CIRP
  doi: 10.1016/S0007-8506(07)62342-7
– volume: 135
  start-page: 516
  year: 1989
  ident: 10.1016/j.ijmachtools.2014.09.014_bib7
  article-title: Laser vibrometry: pseudo-vibration
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(89)90705-0
– volume: 238
  start-page: 673
  year: 2000
  ident: 10.1016/j.ijmachtools.2014.09.014_bib11
  article-title: Rotational vibration measuring using laser Doppler vibrometry: comprehensive theory and practical application
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2000.3134
– volume: 80
  start-page: 1079
  year: 1958
  ident: 10.1016/j.ijmachtools.2014.09.014_bib1
  article-title: The chatter of lathe tools under orthogonal cutting conditions
  publication-title: Trans. ASME
– volume: 223
  start-page: 610
  year: 2011
  ident: 10.1016/j.ijmachtools.2014.09.014_bib18
  article-title: Investigating dynamics of machine tool spindles under operational conditions, Proceedings of the 13th CIRP conference on modeling of machining operations, 12–13 May 2011, Sintra, Portugal
  publication-title: Adv. Mater. Res.
– start-page: 465
  year: 1963
  ident: 10.1016/j.ijmachtools.2014.09.014_bib2
  article-title: The stability of machine tools against self-excited vibrations in machining
  publication-title: Proc. ASME Int. Res. Prod. Eng.
– volume: 120
  start-page: 22
  year: 1998
  ident: 10.1016/j.ijmachtools.2014.09.014_bib5
  article-title: Analytical prediction of chatter stability in milling – Part I: general formulation; Part II: application to common milling systems,
  publication-title: Trans. ASME: J. Dyn. Syst. Measur. Control
– volume: 21
  start-page: 1739
  year: 2007
  ident: 10.1016/j.ijmachtools.2014.09.014_bib9
  article-title: Laser vibrometry measurements of an optically smooth rotating spindle
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.08.006
– volume: 49
  start-page: 947
  year: 2009
  ident: 10.1016/j.ijmachtools.2014.09.014_bib15
  article-title: Estimation of machine–tool dynamic parameters during machining operation through operational modal analysis
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2009.06.010
– volume: 39
  start-page: 459
  year: 1990
  ident: 10.1016/j.ijmachtools.2014.09.014_bib3
  article-title: Analysis of linear and nonlinear chatter in milling
  publication-title: Ann. CIRP
  doi: 10.1016/S0007-8506(07)61096-8
– year: 1999
  ident: 10.1016/j.ijmachtools.2014.09.014_bib21
– ident: 10.1016/j.ijmachtools.2014.09.014_bib16
  doi: 10.1016/B978-0-08-015661-3.50026-6
– volume: 135
  start-page: 021001
  year: 2013
  ident: 10.1016/j.ijmachtools.2014.09.014_bib23
  article-title: Identification and modeling of process damping in milling
  publication-title: Trans. ASME: J. Manuf. Sci. Eng.
– volume: 59
  start-page: 403
  year: 2010
  ident: 10.1016/j.ijmachtools.2014.09.014_bib19
  article-title: Identification and modeling process damping in turning and milling using a new approach
  publication-title: Ann. CIRP
  doi: 10.1016/j.cirp.2010.03.078
– ident: 10.1016/j.ijmachtools.2014.09.014_bib8
  doi: 10.1117/12.248633
SSID ssj0001831
Score 2.4649632
Snippet Self-excited vibrations of machine tools during cutting result in process instability, poor surface finish and reduced material removal rate. In order to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Chatter
Cutting tool materials
Deviation
In process dynamics identification
Instability
Machine tool dynamics
Machine tools
Machining centres
Stability
Vibration
Title In-process tool point FRF identification under operational conditions using inverse stability solution
URI https://dx.doi.org/10.1016/j.ijmachtools.2014.09.014
https://www.proquest.com/docview/1669867987
Volume 89
WOSCitedRecordID wos000348627800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001831
  issn: 0890-6955
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhA8ID7F-JInsacoqK3zYUu8TNBqQ9OKUCf1zXJsZ7R0aWibauyJP51zbDctaFJ54CWJojp1fL_cne273yH0Lu0wkeksDuO2VjBBkVlIRZSEEdVZouNcqjSvi02k5-d0NGJfWq1fPhdmNU2Lgl5fs_K_ihrugbBN6uw_iHv9ULgB1yB0OILY4biT4E-LsLTR_-BXzqZBORsXy6D_tR-MlQsNskI36WPzYFbquV8QhLmxsiFcQbWwyS4masOQ0Fo675-B7_umU7u9qrjBRXFVR2rquh-LGmRXoqhMLkXVxNwObhbim2UyGKwXByolvm_lSQxuLquVVZEnbvvIrVV0Yh_e3Kg0BpNVZol5vf61JYScArWU5s4U2yInfyl5u94weT-emNeoX8HE6FnC2k7UWDa_m38-4P2LszM-7I2GR6Rf_ghN1TGzO39EPlkE3EH73TRmoBf3j097o89raw4qr6666Ht-Dx02MYK39OA2H-cPa1-7MMNH6KGbe-Bji5nHqKWLJ-jBBiPlU5Q36MHmD3GNHgzowdvowTV68AZ6cIMeXKMHO_TgNXqwR88zdNHvDT-ehK4URyjBo1-GTCjCVBYRTeCbJzKRXXDNSZQnbZ1RnSepYIpGigkZ5YxSmTCiwQbrJCMpzQh5jvaKWaFfICxUm2W57AitSAQTaqYNX1ImBTxeJVF8gKgfPC4dT70plzLlPiBxwjfGnZtx523G4XSAuuumpSVr2aXRBy8h7rxO601ywNsuzQ-9VDloZrPdJgo9qxa8kyTM0FnS9OUOv3mF7jdfzGu0t5xX-g26K1fL8WL-1qHyNxdmuyo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-process+tool+point+FRF+identification+under+operational+conditions+using+inverse+stability+solution&rft.jtitle=International+journal+of+machine+tools+%26+manufacture&rft.au=Ozsahin%2C+O&rft.au=Budak%2C+E&rft.au=Ozguven%2C+H+N&rft.date=2015-02-01&rft.issn=0890-6955&rft.volume=89&rft.spage=64&rft.epage=73&rft_id=info:doi/10.1016%2Fj.ijmachtools.2014.09.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6955&client=summon