Lyapunov exponents computation for hybrid neurons

Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational neuroscience Vol. 35; no. 2; pp. 201 - 212
Main Authors: Bizzarri, Federico, Brambilla, Angelo, Storti Gajani, Giancarlo
Format: Journal Article
Language:English
Published: Boston Springer US 01.10.2013
Springer Nature B.V
Subjects:
ISSN:0929-5313, 1573-6873, 1573-6873
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
AbstractList Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.[PUBLICATION ABSTRACT]
Author Bizzarri, Federico
Brambilla, Angelo
Storti Gajani, Giancarlo
Author_xml – sequence: 1
  givenname: Federico
  surname: Bizzarri
  fullname: Bizzarri, Federico
  email: federico.bizzarri@polimi.it
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
– sequence: 2
  givenname: Angelo
  surname: Brambilla
  fullname: Brambilla, Angelo
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
– sequence: 3
  givenname: Giancarlo
  surname: Storti Gajani
  fullname: Storti Gajani, Giancarlo
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23463130$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9LxDAQxYMouqt-AC9S8OKlOpNJm_Qo4j9Y8KLn0KapVnaTmrTifnu7VEEExdPA8HuPmffmbNt5Zxk7QjhDAHkeERSXKSClIIRK8y02w0xSmitJ22wGBS_SjJD22DzGFwBQEmGX7XES-biGGcPFuuwG598S-96N7q6PifGrbujLvvUuaXxIntdVaOvE2SF4Fw_YTlMuoz38nPvs8frq4fI2Xdzf3F1eLFIjIOvTQlXIrQXiqFRVCDA1NnlhaqrqrKrzuiqoygxlMjPQiBollhJAlDJXVllO--x08u2Cfx1s7PWqjcYul6WzfogahSCSXFL-D5SQF4pzGtGTH-iLH4IbH9lQBLkkUCN1_EkN1crWugvtqgxr_ZXbCMgJMMHHGGyjTTsl1oeyXWoEvWlITw3psSG9aUhvbsUfyi_zvzR80sSRdU82fDv6V9EHpdKf8A
CODEN JCNEFR
CitedBy_id crossref_primary_10_1137_140959031
crossref_primary_10_1016_j_chaos_2015_09_011
crossref_primary_10_1587_nolta_13_367
crossref_primary_10_1016_j_chaos_2023_113592
crossref_primary_10_1038_s41598_017_18783_z
crossref_primary_10_1007_s11071_021_06581_2
crossref_primary_10_1587_nolta_14_215
crossref_primary_10_1137_15M1016588
crossref_primary_10_1109_JPROC_2024_3440211
crossref_primary_10_1007_s11071_021_06647_1
crossref_primary_10_1038_s41598_017_01511_y
crossref_primary_10_1049_iet_cds_2013_0438
crossref_primary_10_1371_journal_pone_0138919
crossref_primary_10_1109_MCAS_2014_2360803
Cites_doi 10.1007/978-1-4612-3486-9
10.1016/0960-0779(94)00170-U
10.1017/CBO9780511815706
10.1007/s10827-009-0201-3
10.1145/1089014.1089020
10.1109/TCSI.2008.916443
10.1007/978-1-4757-3978-7
10.1016/S0021-8928(98)00087-2
10.1109/TCSII.2011.2111570
10.1109/TCSI.2012.2188953
10.1007/s10827-007-0038-6
10.1007/b137198
10.1063/1.2975967
10.1109/81.828574
10.1016/j.matcom.2010.10.012
10.1109/TCSI.2011.2167273
10.1016/j.physd.2011.05.012
10.1142/S0218127403008090
10.1016/0001-8708(70)90023-X
10.3938/jkps.57.1363
10.1162/089976606775093882
10.1016/0167-2789(85)90011-9
10.1152/jn.00240.2010
10.1109/TNN.2003.820440
10.1109/ECCTD.2011.6043387
10.1109/ECCTD.2011.6043647
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M1P
M2M
M7P
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s10827-013-0448-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database ProQuest
Psychology Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest One Psychology
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1573-6873
EndPage 212
ExternalDocumentID 3073663201
23463130
10_1007_s10827_013_0448_6
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M1P
M2M
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7XB
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c405t-98b12ee032188b940cd1f69cd3bd5bd6db93b5c3575c0f4d171a7004a768e8e23
IEDL.DBID RSV
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324249200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-5313
1573-6873
IngestDate Fri Sep 05 07:48:06 EDT 2025
Sun Nov 09 10:21:37 EST 2025
Tue Nov 04 19:53:36 EST 2025
Mon Jul 21 05:49:40 EDT 2025
Sat Nov 29 03:34:07 EST 2025
Tue Nov 18 22:38:15 EST 2025
Fri Feb 21 02:33:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Variational model
Hybrid model
Neuron networks
Integrate and fire neuron
Lyapunov exponent
Saltation Matrix
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-98b12ee032188b940cd1f69cd3bd5bd6db93b5c3575c0f4d171a7004a768e8e23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23463130
PQID 1433067308
PQPubID 44274
PageCount 12
ParticipantIDs proquest_miscellaneous_1443372736
proquest_miscellaneous_1431298223
proquest_journals_1433067308
pubmed_primary_23463130
crossref_citationtrail_10_1007_s10827_013_0448_6
crossref_primary_10_1007_s10827_013_0448_6
springer_journals_10_1007_s10827_013_0448_6
PublicationCentury 2000
PublicationDate 20131000
2013-10-00
2013-Oct
20131001
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 20131000
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationTitle Journal of computational neuroscience
PublicationTitleAbbrev J Comput Neurosci
PublicationTitleAlternate J Comput Neurosci
PublicationYear 2013
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hristu-Varsakelis, Levine, Alur, Arzen, Baillieul, Henzinger (CR18) 2005
Giaouris, Banerjee, Zahawi, Pickert (CR15) 2008; 55
Filippov (CR13) 1960; 51
Mueller (CR26) 1995; 5
Ivanov (CR19) 1998; 62
McKean (CR25) 1970; 4
Gerstner, Kistler (CR14) 2002
Izhikevich (CR21) 2006; 18
Bizzarri, Brambilla, Storti Gajani (CR7) 2012; 59
Peters, Parlitz (CR29) 2003; 13
Kuznetsov (CR24) 2004
Storace, Linaro, de Lange (CR30) 2008; 18
Hiskens, Pai (CR17) 2000; 47
Coombes, Thul, Wedgwood (CR9) 2012; 241
Zhou, Sun, Rangan, Cai (CR32) 2010; 28
Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, Woodward (CR16) 2005; 31
CR2
Parker, Chua (CR28) 1989
CR4
Di Bernardo, Budd, Champneys, Kowalczyk (CR11) 2008
Bizzarri, Brambilla, Storti Gajani (CR5) 2011; 58
Dayan, Abbott (CR10) 2005
CR27
Izhikevich (CR22) 2007
Kim (CR23) 2010; 57
Benda, Maler, Longtin (CR1) 2010; 104
Bizzarri, Linaro, Storace (CR3) 2008; 138
Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Morrison, Goodman, Davison, Boustani, Destexhe (CR8) 2007; 23
Dieci, Lopez (CR12) 2011; 81
Izhikevich (CR20) 2003; 14
Wolf, Swift, Swinney, Vastano (CR31) 1985; 16
Bizzarri, Brambilla, Storti Gajani (CR6) 2012; 59
M Storace (448_CR30) 2008; 18
R Brette (448_CR8) 2007; 23
M Di Bernardo (448_CR11) 2008
W Gerstner (448_CR14) 2002
E Izhikevich (448_CR21) 2006; 18
F Bizzarri (448_CR7) 2012; 59
Y Kim (448_CR23) 2010; 57
HP McKean Jr (448_CR25) 1970; 4
J Benda (448_CR1) 2010; 104
E Izhikevich (448_CR20) 2003; 14
D Hristu-Varsakelis (448_CR18) 2005
A Hindmarsh (448_CR16) 2005; 31
I Hiskens (448_CR17) 2000; 47
PC Mueller (448_CR26) 1995; 5
448_CR2
448_CR4
E Izhikevich (448_CR22) 2007
D Zhou (448_CR32) 2010; 28
TS Parker (448_CR28) 1989
F Bizzarri (448_CR3) 2008; 138
F Bizzarri (448_CR5) 2011; 58
P Dayan (448_CR10) 2005
F Bizzarri (448_CR6) 2012; 59
YA Kuznetsov (448_CR24) 2004
D Giaouris (448_CR15) 2008; 55
448_CR27
A Filippov (448_CR13) 1960; 51
A Wolf (448_CR31) 1985; 16
S Coombes (448_CR9) 2012; 241
L Dieci (448_CR12) 2011; 81
K Peters (448_CR29) 2003; 13
A Ivanov (448_CR19) 1998; 62
20012178 - J Comput Neurosci. 2010 Apr;28(2):229-45
17629781 - J Comput Neurosci. 2007 Dec;23(3):349-98
16378515 - Neural Comput. 2006 Feb;18(2):245-82
21045213 - J Neurophysiol. 2010 Nov;104(5):2806-20
19045466 - Chaos. 2008 Sep;18(3):033128
18244602 - IEEE Trans Neural Netw. 2003;14(6):1569-72
References_xml – year: 1989
  ident: CR28
  publication-title: Practical numerical algorithms for chaotic systems
  doi: 10.1007/978-1-4612-3486-9
– ident: CR4
– ident: CR2
– volume: 5
  start-page: 1671
  issue: 9
  year: 1995
  end-page: 1681
  ident: CR26
  article-title: Calculation of Lyapunov exponents for dynamic systems with discontinuities
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/0960-0779(94)00170-U
– year: 2002
  ident: CR14
  publication-title: Spiking neuron models
  doi: 10.1017/CBO9780511815706
– volume: 28
  start-page: 229
  year: 2010
  end-page: 245
  ident: CR32
  article-title: Spectrum of lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-009-0201-3
– volume: 31
  start-page: 363
  issue: 3
  year: 2005
  end-page: 396
  ident: CR16
  article-title: Sundials: suite of nonlinear and differential/algebraic equation solvers
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/1089014.1089020
– year: 2005
  ident: CR10
  publication-title: Theoretical neuroscience: Computational and mathematical modeling of neural systems
– volume: 55
  start-page: 1084
  issue: 4
  year: 2008
  end-page: 1096
  ident: CR15
  article-title: Stability analysis of the continuous-conduction-mode buck converter via Filippov’s method
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2008.916443
– year: 2004
  ident: CR24
  publication-title: Elements of applied bifurcation theory
  doi: 10.1007/978-1-4757-3978-7
– ident: CR27
– volume: 62
  start-page: 677
  issue: 5
  year: 1998
  end-page: 685
  ident: CR19
  article-title: The stability of periodic solutions of discontinuous systems that intersect several surfaces of discontinuity
  publication-title: Journal of Applied Mathematics and Mechanics
  doi: 10.1016/S0021-8928(98)00087-2
– volume: 58
  start-page: 154
  issue: 3
  year: 2011
  end-page: 158
  ident: CR5
  article-title: Phase noise simulation in analog mixed signal circuits: an application to pulse energy oscillators
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
  doi: 10.1109/TCSII.2011.2111570
– volume: 138
  start-page: 1
  year: 2008
  end-page: 18
  ident: CR3
  article-title: Piecewise-linear approximation of the Hindmarsh–Rose neuron model
  publication-title: Journal of Physics: Conference Series
– volume: 59
  start-page: 2221
  issue: 10
  year: 2012
  end-page: 2231
  ident: CR6
  article-title: Periodic small signal analysis of a wide class of type-ii phase locked loops through an exhaustive variational model
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2012.2188953
– volume: 23
  start-page: 349
  year: 2007
  end-page: 398
  ident: CR8
  article-title: Simulation of networks of spiking neurons: a review of tools and strategies
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-007-0038-6
– year: 2008
  ident: CR11
  publication-title: Piecewise-smooth dynamical systems, theory and applications
– year: 2005
  ident: CR18
  publication-title: Handbook of networked and embedded control systems (control engineering)
  doi: 10.1007/b137198
– year: 2007
  ident: CR22
  publication-title: Dynamical systems in neuroscience: the geometry of excitability and bursting
– volume: 18
  start-page: 033128
  issue: 3
  year: 2008
  ident: CR30
  article-title: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.2975967
– volume: 47
  start-page: 204
  issue: 2
  year: 2000
  end-page: 220
  ident: CR17
  article-title: Trajectory sensitivity analysis of hybrid systems
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
  doi: 10.1109/81.828574
– volume: 81
  start-page: 932
  issue: 5
  year: 2011
  end-page: 953
  ident: CR12
  article-title: Fundamental matrix solutions of piecewise smooth differential systems
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2010.10.012
– volume: 59
  start-page: 541
  issue: 3
  year: 2012
  end-page: 554
  ident: CR7
  article-title: Steady state computation and noise analysis of analog mixed signal circuits
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2011.2167273
– volume: 241
  start-page: 2042
  year: 2012
  end-page: 2057
  ident: CR9
  article-title: Nonsmooth dynamics in spiking neuron models
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2011.05.012
– volume: 13
  start-page: 2575
  issue: 9
  year: 2003
  end-page: 2588
  ident: CR29
  article-title: Hybrid systems forming strange billiards
  publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
  doi: 10.1142/S0218127403008090
– volume: 4
  start-page: 209
  issue: 3
  year: 1970
  end-page: 223
  ident: CR25
  article-title: Nagumo’s equation
  publication-title: Advances in Mathematics
  doi: 10.1016/0001-8708(70)90023-X
– volume: 57
  start-page: 1363
  issue: 6
  year: 2010
  end-page: 1368
  ident: CR23
  article-title: Identification of dynamical states in stimulated Izhikevich neuron models by using a 0–1 test
  publication-title: Journal of the Korean Physical Society
  doi: 10.3938/jkps.57.1363
– volume: 18
  start-page: 245
  issue: 2
  year: 2006
  end-page: 282
  ident: CR21
  article-title: Polychronization: computation with spikes
  publication-title: Neural Computation
  doi: 10.1162/089976606775093882
– volume: 16
  start-page: 285
  year: 1985
  end-page: 317
  ident: CR31
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(85)90011-9
– volume: 104
  start-page: 2806
  issue: 5
  year: 2010
  end-page: 2820
  ident: CR1
  article-title: Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00240.2010
– volume: 51
  start-page: 99
  issue: 1
  year: 1960
  end-page: 128
  ident: CR13
  article-title: Differential equations with discontinuous right-hand side
  publication-title: Matematicheskii Sbornik (N.S.)
– volume: 14
  start-page: 1569
  issue: 6
  year: 2003
  end-page: 1572
  ident: CR20
  article-title: Simple model of spiking neurons
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.820440
– volume: 5
  start-page: 1671
  issue: 9
  year: 1995
  ident: 448_CR26
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/0960-0779(94)00170-U
– ident: 448_CR4
  doi: 10.1109/ECCTD.2011.6043387
– volume: 58
  start-page: 154
  issue: 3
  year: 2011
  ident: 448_CR5
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
  doi: 10.1109/TCSII.2011.2111570
– volume-title: Piecewise-smooth dynamical systems, theory and applications
  year: 2008
  ident: 448_CR11
– volume-title: Handbook of networked and embedded control systems (control engineering)
  year: 2005
  ident: 448_CR18
  doi: 10.1007/b137198
– volume: 241
  start-page: 2042
  year: 2012
  ident: 448_CR9
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/j.physd.2011.05.012
– ident: 448_CR27
– volume: 13
  start-page: 2575
  issue: 9
  year: 2003
  ident: 448_CR29
  publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
  doi: 10.1142/S0218127403008090
– volume: 23
  start-page: 349
  year: 2007
  ident: 448_CR8
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-007-0038-6
– volume: 57
  start-page: 1363
  issue: 6
  year: 2010
  ident: 448_CR23
  publication-title: Journal of the Korean Physical Society
  doi: 10.3938/jkps.57.1363
– volume-title: Practical numerical algorithms for chaotic systems
  year: 1989
  ident: 448_CR28
  doi: 10.1007/978-1-4612-3486-9
– volume-title: Elements of applied bifurcation theory
  year: 2004
  ident: 448_CR24
  doi: 10.1007/978-1-4757-3978-7
– volume: 51
  start-page: 99
  issue: 1
  year: 1960
  ident: 448_CR13
  publication-title: Matematicheskii Sbornik (N.S.)
– volume-title: Spiking neuron models
  year: 2002
  ident: 448_CR14
  doi: 10.1017/CBO9780511815706
– volume: 62
  start-page: 677
  issue: 5
  year: 1998
  ident: 448_CR19
  publication-title: Journal of Applied Mathematics and Mechanics
  doi: 10.1016/S0021-8928(98)00087-2
– volume: 14
  start-page: 1569
  issue: 6
  year: 2003
  ident: 448_CR20
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.820440
– volume: 4
  start-page: 209
  issue: 3
  year: 1970
  ident: 448_CR25
  publication-title: Advances in Mathematics
  doi: 10.1016/0001-8708(70)90023-X
– volume: 55
  start-page: 1084
  issue: 4
  year: 2008
  ident: 448_CR15
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2008.916443
– volume: 138
  start-page: 1
  year: 2008
  ident: 448_CR3
  publication-title: Journal of Physics: Conference Series
– volume: 59
  start-page: 2221
  issue: 10
  year: 2012
  ident: 448_CR6
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2012.2188953
– volume: 18
  start-page: 033128
  issue: 3
  year: 2008
  ident: 448_CR30
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.2975967
– volume: 31
  start-page: 363
  issue: 3
  year: 2005
  ident: 448_CR16
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/1089014.1089020
– volume: 81
  start-page: 932
  issue: 5
  year: 2011
  ident: 448_CR12
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2010.10.012
– volume: 16
  start-page: 285
  year: 1985
  ident: 448_CR31
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(85)90011-9
– volume: 104
  start-page: 2806
  issue: 5
  year: 2010
  ident: 448_CR1
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00240.2010
– volume-title: Dynamical systems in neuroscience: the geometry of excitability and bursting
  year: 2007
  ident: 448_CR22
– volume: 47
  start-page: 204
  issue: 2
  year: 2000
  ident: 448_CR17
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
  doi: 10.1109/81.828574
– volume: 18
  start-page: 245
  issue: 2
  year: 2006
  ident: 448_CR21
  publication-title: Neural Computation
  doi: 10.1162/089976606775093882
– volume-title: Theoretical neuroscience: Computational and mathematical modeling of neural systems
  year: 2005
  ident: 448_CR10
– ident: 448_CR2
  doi: 10.1109/ECCTD.2011.6043647
– volume: 59
  start-page: 541
  issue: 3
  year: 2012
  ident: 448_CR7
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
  doi: 10.1109/TCSI.2011.2167273
– volume: 28
  start-page: 229
  year: 2010
  ident: 448_CR32
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-009-0201-3
– reference: 20012178 - J Comput Neurosci. 2010 Apr;28(2):229-45
– reference: 17629781 - J Comput Neurosci. 2007 Dec;23(3):349-98
– reference: 18244602 - IEEE Trans Neural Netw. 2003;14(6):1569-72
– reference: 16378515 - Neural Comput. 2006 Feb;18(2):245-82
– reference: 19045466 - Chaos. 2008 Sep;18(3):033128
– reference: 21045213 - J Neurophysiol. 2010 Nov;104(5):2806-20
SSID ssj0008710
Score 2.139785
Snippet Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Computer Simulation
Electrophysiological Phenomena - physiology
Human Genetics
Models, Neurological
Nerve Net
Neural Networks (Computer)
Neurology
Neurons - physiology
Neurosciences
Theory of Computation
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8RADA6-Dl58P9YXI4gHZXDaabszJxFRPIh4UBAvpfNYFLS77kPcf28y266KuBfPTdvQvL5M0gTgINWFRqdnyJAcT7xTXGEOxo30TntLIbwVlk00b27Uw4O-rQ7celVbZe0Tg6N2bUtn5CcY1wndSqFOO2-ctkZRdbVaoTENszQlgVY33KaPY0-MyUA4Y0EIwFHXZF3VHP06p2JqupRcYIbCs59x6RfY_FUoDfHncvG_nC_BQoU82dlIVZZhypcrsHpWYtb9OmSHLPSChkP2FVislz2wyvZXIboeFp1B2X5n_qPTLqn_gtlAFWTLEPyypyH9_8XCjMyytwb3lxd351e82rfALcK2PtfKRLH3QmLYV0YnwrqolWnrpHGpoc1TWprUSkR4VrQSFzWjgqbjF5iyeOVjuQ4zJTKwCcxqI12aJC2EOwjIjI4z1JbCZk0rCiWaDRD1185tNYycdmK85F9jlElAOQooJwHlWQOOxrd0RpM4JhHv1LLIK6Ps5V-CaMD--DKaE9VIitK3B4EGERCiJjmJBh9EuA9fszFSjzFHsUwy1DTRgONaX74x8Be7W5PZ3Yb5mDQ19BDuwEy_O_C7MGff-8-97l7Q-U9Z5QSF
  priority: 102
  providerName: ProQuest
Title Lyapunov exponents computation for hybrid neurons
URI https://link.springer.com/article/10.1007/s10827-013-0448-6
https://www.ncbi.nlm.nih.gov/pubmed/23463130
https://www.proquest.com/docview/1433067308
https://www.proquest.com/docview/1431298223
https://www.proquest.com/docview/1443372736
Volume 35
WOSCitedRecordID wos000324249200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: M7P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: 7X7
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: M2M
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-6873
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008710
  issn: 0929-5313
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZS_QwEB-8HnzxPtZjiSA-KIG0aZvkUUUR1GXxYvGlNGmW7wPtLu6uuP-9k2y7Kh6gL4HSaTokM5nfJJMZgN1YZQoXPe0UKaeRzSWV6INRzW2urHEmvO2LTYhGQ7Zaqlne4-5V0e7VkaRfqd9ddpOhC5PklKFPQZNJmEZrJ5woX13fjZdf9AD8xgrafYoCxqujzK-6-GiMPiHMT6ej3uiczv-J3QWYKzEmORwJxSJM2GIJlg8L9K8fh2SP-KhPv52-BPNVWQdSavkyBBfDrDsoOs_EvnQ7hYu0IMZT-VkkCHPJv6G76UV8NsyitwK3pyc3x2e0rKxADQK0PlVSB6G1jKOBl1pFzORBO1Em5zqPtasxpbiODUcsZ1g7ygMRZC4PfobOiZU25KswVSAD60CM0jyPo6iNwAahl1ZhgnKRmUQYlkkmasCqIU5NmXbcVb94SN8SJruRSnGkUjdSaVKD_fEn3VHOjZ-It6p5S0v166E_w50rxJmswc74NSqOOw3JCtsZeBrEOoiP-E802JFDePibtZFMjDkKeZSgeLEaHFQC8I6B79jd-BX1JsyGToJ88OAWTPWfBnYbZsxz_3_vqQ6ToiV8K-swfXTSaF7h07mg2F6Gl64VTWyb8X3d68gr0YcBEQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4hWqlcSsuraWlZpMIBtGLtdZzdQ1WhFgQiiXoAiZvxPqJWau2UJLT5U_2NnVnboRUiNw6cvbbH3m9mvt2ZnQF439a5RqNnSJEcT7xTXOEajBvpnfaWXPggNJvo9Pvq8lJ_WYA_zVkYSqtsbGIw1K60tEd-gH6d2K0U6uPwJ6euURRdbVpoVLA489NfuGQbfTj9jPO7E8fHR-efTnjdVYBbJCdjrpWJYu-FROemjE6EddEg1dZJ49qG-itpadpWIo-xYpC4qBPlVAM-R2LuladCB2jynyToCSmFrBf3ZpYfFx9hTwcpB0dsyyaKWh3VUzEleUoucEXE0__94B1yeycwG_zd8fJj-1Mv4HnNrNlhpQovYcEXK7B6WOTj8seU7bKQ6xqCCCuw3DSzYLVtW4WoO82Hk6K8Yf73sCwov4TZMCpglyG5Z1-ndL6NhRqgxWgNLh7ke9ZhsUABXgGz2kjXTpIB0jkknEbHKWpDbtOOFbkSnRaIZnYzWxdbp54f37PbMtEEiAwBkREgsrQFe7NbhlWlkXmDN5u5z2qjM8puJ74F27PLaC4oBpQXvpyEMcjwkBXKeWPwQcRr8TUbFRxnEsUySRHZogX7DT7_EeA-cV_PF3cLnp2c97pZ97R_9gaWYtKSkC-5CYvj64l_C0_tzfjb6Ppd0DcGVw8N27-u5mD2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4QNMQXEVA8RVwS9EGzYdvttbsPxhDxIoFc7kET3mr3R6OJtid3h96_xl_HzLY9MMR748Hnbttp95uZb3dmZwD2-7rQaPQMKZLjiXeKK1yDcSO9096SCy9Ds4lsOFRnZ3q0ApfdWRhKq-xsYjDUrra0R36Afp3YrRTqoGzTIkZHg_fjX5w6SFGktWun0UDkxM9_4_Jt8u74COf6VRwPPn7-8Im3HQa4RaIy5VqZKPZeSHR0yuhEWBeVqbZOGtc31GtJS9O3EjmNFWXioiwqqB58gSTdK09FD9D838uSVKiQNjhaeAFciIT9HaQfHHEuu4hqc2xPxZTwKbnA1RFP__aJt4jurSBt8H2D9f_5rz2Chy3jZoeNimzAiq82YeuwKqb1zzl7zUIObAgubMJ61-SCtTZvC6LTeTGeVfUF83_GdUV5J8yGUQHTDEk_-zanc28s1AatJo_hy518zxNYrVCAp8CsNtL1k6REmodE1Og4RS0pbJpZUSiR9UB0M53btgg79QL5kV-XjyZw5AiOnMCRpz14s7hl3FQgWTZ4p8NB3hqjSX4Ngh7sLS6jGaHYUFH5ehbGIPNDtiiXjcEHEd_F12w30FxIFMskRZSLHrztsHpDgH-J-2y5uC9hDdGanx4PT57Dg5gUJqRR7sDq9HzmX8B9ezH9PjnfDarH4Otdo_YK4mhpxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lyapunov+exponents+computation+for+hybrid+neurons&rft.jtitle=Journal+of+computational+neuroscience&rft.au=Bizzarri%2C+Federico&rft.au=Brambilla%2C+Angelo&rft.au=Storti+Gajani%2C+Giancarlo&rft.date=2013-10-01&rft.pub=Springer+US&rft.issn=0929-5313&rft.eissn=1573-6873&rft.volume=35&rft.issue=2&rft.spage=201&rft.epage=212&rft_id=info:doi/10.1007%2Fs10827-013-0448-6&rft.externalDocID=10_1007_s10827_013_0448_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5313&client=summon