Lyapunov exponents computation for hybrid neurons
Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational m...
Saved in:
| Published in: | Journal of computational neuroscience Vol. 35; no. 2; pp. 201 - 212 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.10.2013
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0929-5313, 1573-6873, 1573-6873 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously. |
|---|---|
| AbstractList | Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously. Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously. Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.[PUBLICATION ABSTRACT] |
| Author | Bizzarri, Federico Brambilla, Angelo Storti Gajani, Giancarlo |
| Author_xml | – sequence: 1 givenname: Federico surname: Bizzarri fullname: Bizzarri, Federico email: federico.bizzarri@polimi.it organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano – sequence: 2 givenname: Angelo surname: Brambilla fullname: Brambilla, Angelo organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano – sequence: 3 givenname: Giancarlo surname: Storti Gajani fullname: Storti Gajani, Giancarlo organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23463130$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9LxDAQxYMouqt-AC9S8OKlOpNJm_Qo4j9Y8KLn0KapVnaTmrTifnu7VEEExdPA8HuPmffmbNt5Zxk7QjhDAHkeERSXKSClIIRK8y02w0xSmitJ22wGBS_SjJD22DzGFwBQEmGX7XES-biGGcPFuuwG598S-96N7q6PifGrbujLvvUuaXxIntdVaOvE2SF4Fw_YTlMuoz38nPvs8frq4fI2Xdzf3F1eLFIjIOvTQlXIrQXiqFRVCDA1NnlhaqrqrKrzuiqoygxlMjPQiBollhJAlDJXVllO--x08u2Cfx1s7PWqjcYul6WzfogahSCSXFL-D5SQF4pzGtGTH-iLH4IbH9lQBLkkUCN1_EkN1crWugvtqgxr_ZXbCMgJMMHHGGyjTTsl1oeyXWoEvWlITw3psSG9aUhvbsUfyi_zvzR80sSRdU82fDv6V9EHpdKf8A |
| CODEN | JCNEFR |
| CitedBy_id | crossref_primary_10_1137_140959031 crossref_primary_10_1016_j_chaos_2015_09_011 crossref_primary_10_1587_nolta_13_367 crossref_primary_10_1016_j_chaos_2023_113592 crossref_primary_10_1038_s41598_017_18783_z crossref_primary_10_1007_s11071_021_06581_2 crossref_primary_10_1587_nolta_14_215 crossref_primary_10_1137_15M1016588 crossref_primary_10_1109_JPROC_2024_3440211 crossref_primary_10_1007_s11071_021_06647_1 crossref_primary_10_1038_s41598_017_01511_y crossref_primary_10_1049_iet_cds_2013_0438 crossref_primary_10_1371_journal_pone_0138919 crossref_primary_10_1109_MCAS_2014_2360803 |
| Cites_doi | 10.1007/978-1-4612-3486-9 10.1016/0960-0779(94)00170-U 10.1017/CBO9780511815706 10.1007/s10827-009-0201-3 10.1145/1089014.1089020 10.1109/TCSI.2008.916443 10.1007/978-1-4757-3978-7 10.1016/S0021-8928(98)00087-2 10.1109/TCSII.2011.2111570 10.1109/TCSI.2012.2188953 10.1007/s10827-007-0038-6 10.1007/b137198 10.1063/1.2975967 10.1109/81.828574 10.1016/j.matcom.2010.10.012 10.1109/TCSI.2011.2167273 10.1016/j.physd.2011.05.012 10.1142/S0218127403008090 10.1016/0001-8708(70)90023-X 10.3938/jkps.57.1363 10.1162/089976606775093882 10.1016/0167-2789(85)90011-9 10.1152/jn.00240.2010 10.1109/TNN.2003.820440 10.1109/ECCTD.2011.6043387 10.1109/ECCTD.2011.6043647 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2013 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0S M1P M2M M7P P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
| DOI | 10.1007/s10827-013-0448-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database ProQuest Psychology Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Psychology ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Computer Science |
| EISSN | 1573-6873 |
| EndPage | 212 |
| ExternalDocumentID | 3073663201 23463130 10_1007_s10827_013_0448_6 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M1P M2M M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QO 7TK 7XB 8FD 8FK FR3 JQ2 K9. P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c405t-98b12ee032188b940cd1f69cd3bd5bd6db93b5c3575c0f4d171a7004a768e8e23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324249200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0929-5313 1573-6873 |
| IngestDate | Fri Sep 05 07:48:06 EDT 2025 Sun Nov 09 10:21:37 EST 2025 Tue Nov 04 19:53:36 EST 2025 Mon Jul 21 05:49:40 EDT 2025 Sat Nov 29 03:34:07 EST 2025 Tue Nov 18 22:38:15 EST 2025 Fri Feb 21 02:33:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Variational model Hybrid model Neuron networks Integrate and fire neuron Lyapunov exponent Saltation Matrix |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-98b12ee032188b940cd1f69cd3bd5bd6db93b5c3575c0f4d171a7004a768e8e23 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23463130 |
| PQID | 1433067308 |
| PQPubID | 44274 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1443372736 proquest_miscellaneous_1431298223 proquest_journals_1433067308 pubmed_primary_23463130 crossref_citationtrail_10_1007_s10827_013_0448_6 crossref_primary_10_1007_s10827_013_0448_6 springer_journals_10_1007_s10827_013_0448_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20131000 2013-10-00 2013-Oct 20131001 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 20131000 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: United States – name: New York |
| PublicationTitle | Journal of computational neuroscience |
| PublicationTitleAbbrev | J Comput Neurosci |
| PublicationTitleAlternate | J Comput Neurosci |
| PublicationYear | 2013 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hristu-Varsakelis, Levine, Alur, Arzen, Baillieul, Henzinger (CR18) 2005 Giaouris, Banerjee, Zahawi, Pickert (CR15) 2008; 55 Filippov (CR13) 1960; 51 Mueller (CR26) 1995; 5 Ivanov (CR19) 1998; 62 McKean (CR25) 1970; 4 Gerstner, Kistler (CR14) 2002 Izhikevich (CR21) 2006; 18 Bizzarri, Brambilla, Storti Gajani (CR7) 2012; 59 Peters, Parlitz (CR29) 2003; 13 Kuznetsov (CR24) 2004 Storace, Linaro, de Lange (CR30) 2008; 18 Hiskens, Pai (CR17) 2000; 47 Coombes, Thul, Wedgwood (CR9) 2012; 241 Zhou, Sun, Rangan, Cai (CR32) 2010; 28 Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, Woodward (CR16) 2005; 31 CR2 Parker, Chua (CR28) 1989 CR4 Di Bernardo, Budd, Champneys, Kowalczyk (CR11) 2008 Bizzarri, Brambilla, Storti Gajani (CR5) 2011; 58 Dayan, Abbott (CR10) 2005 CR27 Izhikevich (CR22) 2007 Kim (CR23) 2010; 57 Benda, Maler, Longtin (CR1) 2010; 104 Bizzarri, Linaro, Storace (CR3) 2008; 138 Brette, Rudolph, Carnevale, Hines, Beeman, Bower, Diesmann, Morrison, Goodman, Davison, Boustani, Destexhe (CR8) 2007; 23 Dieci, Lopez (CR12) 2011; 81 Izhikevich (CR20) 2003; 14 Wolf, Swift, Swinney, Vastano (CR31) 1985; 16 Bizzarri, Brambilla, Storti Gajani (CR6) 2012; 59 M Storace (448_CR30) 2008; 18 R Brette (448_CR8) 2007; 23 M Di Bernardo (448_CR11) 2008 W Gerstner (448_CR14) 2002 E Izhikevich (448_CR21) 2006; 18 F Bizzarri (448_CR7) 2012; 59 Y Kim (448_CR23) 2010; 57 HP McKean Jr (448_CR25) 1970; 4 J Benda (448_CR1) 2010; 104 E Izhikevich (448_CR20) 2003; 14 D Hristu-Varsakelis (448_CR18) 2005 A Hindmarsh (448_CR16) 2005; 31 I Hiskens (448_CR17) 2000; 47 PC Mueller (448_CR26) 1995; 5 448_CR2 448_CR4 E Izhikevich (448_CR22) 2007 D Zhou (448_CR32) 2010; 28 TS Parker (448_CR28) 1989 F Bizzarri (448_CR3) 2008; 138 F Bizzarri (448_CR5) 2011; 58 P Dayan (448_CR10) 2005 F Bizzarri (448_CR6) 2012; 59 YA Kuznetsov (448_CR24) 2004 D Giaouris (448_CR15) 2008; 55 448_CR27 A Filippov (448_CR13) 1960; 51 A Wolf (448_CR31) 1985; 16 S Coombes (448_CR9) 2012; 241 L Dieci (448_CR12) 2011; 81 K Peters (448_CR29) 2003; 13 A Ivanov (448_CR19) 1998; 62 20012178 - J Comput Neurosci. 2010 Apr;28(2):229-45 17629781 - J Comput Neurosci. 2007 Dec;23(3):349-98 16378515 - Neural Comput. 2006 Feb;18(2):245-82 21045213 - J Neurophysiol. 2010 Nov;104(5):2806-20 19045466 - Chaos. 2008 Sep;18(3):033128 18244602 - IEEE Trans Neural Netw. 2003;14(6):1569-72 |
| References_xml | – year: 1989 ident: CR28 publication-title: Practical numerical algorithms for chaotic systems doi: 10.1007/978-1-4612-3486-9 – ident: CR4 – ident: CR2 – volume: 5 start-page: 1671 issue: 9 year: 1995 end-page: 1681 ident: CR26 article-title: Calculation of Lyapunov exponents for dynamic systems with discontinuities publication-title: Chaos, Solitons & Fractals doi: 10.1016/0960-0779(94)00170-U – year: 2002 ident: CR14 publication-title: Spiking neuron models doi: 10.1017/CBO9780511815706 – volume: 28 start-page: 229 year: 2010 end-page: 245 ident: CR32 article-title: Spectrum of lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-009-0201-3 – volume: 31 start-page: 363 issue: 3 year: 2005 end-page: 396 ident: CR16 article-title: Sundials: suite of nonlinear and differential/algebraic equation solvers publication-title: ACM Transactions on Mathematical Software doi: 10.1145/1089014.1089020 – year: 2005 ident: CR10 publication-title: Theoretical neuroscience: Computational and mathematical modeling of neural systems – volume: 55 start-page: 1084 issue: 4 year: 2008 end-page: 1096 ident: CR15 article-title: Stability analysis of the continuous-conduction-mode buck converter via Filippov’s method publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2008.916443 – year: 2004 ident: CR24 publication-title: Elements of applied bifurcation theory doi: 10.1007/978-1-4757-3978-7 – ident: CR27 – volume: 62 start-page: 677 issue: 5 year: 1998 end-page: 685 ident: CR19 article-title: The stability of periodic solutions of discontinuous systems that intersect several surfaces of discontinuity publication-title: Journal of Applied Mathematics and Mechanics doi: 10.1016/S0021-8928(98)00087-2 – volume: 58 start-page: 154 issue: 3 year: 2011 end-page: 158 ident: CR5 article-title: Phase noise simulation in analog mixed signal circuits: an application to pulse energy oscillators publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs doi: 10.1109/TCSII.2011.2111570 – volume: 138 start-page: 1 year: 2008 end-page: 18 ident: CR3 article-title: Piecewise-linear approximation of the Hindmarsh–Rose neuron model publication-title: Journal of Physics: Conference Series – volume: 59 start-page: 2221 issue: 10 year: 2012 end-page: 2231 ident: CR6 article-title: Periodic small signal analysis of a wide class of type-ii phase locked loops through an exhaustive variational model publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2012.2188953 – volume: 23 start-page: 349 year: 2007 end-page: 398 ident: CR8 article-title: Simulation of networks of spiking neurons: a review of tools and strategies publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-007-0038-6 – year: 2008 ident: CR11 publication-title: Piecewise-smooth dynamical systems, theory and applications – year: 2005 ident: CR18 publication-title: Handbook of networked and embedded control systems (control engineering) doi: 10.1007/b137198 – year: 2007 ident: CR22 publication-title: Dynamical systems in neuroscience: the geometry of excitability and bursting – volume: 18 start-page: 033128 issue: 3 year: 2008 ident: CR30 article-title: The Hindmarsh–Rose neuron model: bifurcation analysis and piecewise-linear approximations publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.2975967 – volume: 47 start-page: 204 issue: 2 year: 2000 end-page: 220 ident: CR17 article-title: Trajectory sensitivity analysis of hybrid systems publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications doi: 10.1109/81.828574 – volume: 81 start-page: 932 issue: 5 year: 2011 end-page: 953 ident: CR12 article-title: Fundamental matrix solutions of piecewise smooth differential systems publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2010.10.012 – volume: 59 start-page: 541 issue: 3 year: 2012 end-page: 554 ident: CR7 article-title: Steady state computation and noise analysis of analog mixed signal circuits publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2011.2167273 – volume: 241 start-page: 2042 year: 2012 end-page: 2057 ident: CR9 article-title: Nonsmooth dynamics in spiking neuron models publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2011.05.012 – volume: 13 start-page: 2575 issue: 9 year: 2003 end-page: 2588 ident: CR29 article-title: Hybrid systems forming strange billiards publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering doi: 10.1142/S0218127403008090 – volume: 4 start-page: 209 issue: 3 year: 1970 end-page: 223 ident: CR25 article-title: Nagumo’s equation publication-title: Advances in Mathematics doi: 10.1016/0001-8708(70)90023-X – volume: 57 start-page: 1363 issue: 6 year: 2010 end-page: 1368 ident: CR23 article-title: Identification of dynamical states in stimulated Izhikevich neuron models by using a 0–1 test publication-title: Journal of the Korean Physical Society doi: 10.3938/jkps.57.1363 – volume: 18 start-page: 245 issue: 2 year: 2006 end-page: 282 ident: CR21 article-title: Polychronization: computation with spikes publication-title: Neural Computation doi: 10.1162/089976606775093882 – volume: 16 start-page: 285 year: 1985 end-page: 317 ident: CR31 article-title: Determining Lyapunov exponents from a time series publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(85)90011-9 – volume: 104 start-page: 2806 issue: 5 year: 2010 end-page: 2820 ident: CR1 article-title: Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds publication-title: Journal of Neurophysiology doi: 10.1152/jn.00240.2010 – volume: 51 start-page: 99 issue: 1 year: 1960 end-page: 128 ident: CR13 article-title: Differential equations with discontinuous right-hand side publication-title: Matematicheskii Sbornik (N.S.) – volume: 14 start-page: 1569 issue: 6 year: 2003 end-page: 1572 ident: CR20 article-title: Simple model of spiking neurons publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.820440 – volume: 5 start-page: 1671 issue: 9 year: 1995 ident: 448_CR26 publication-title: Chaos, Solitons & Fractals doi: 10.1016/0960-0779(94)00170-U – ident: 448_CR4 doi: 10.1109/ECCTD.2011.6043387 – volume: 58 start-page: 154 issue: 3 year: 2011 ident: 448_CR5 publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs doi: 10.1109/TCSII.2011.2111570 – volume-title: Piecewise-smooth dynamical systems, theory and applications year: 2008 ident: 448_CR11 – volume-title: Handbook of networked and embedded control systems (control engineering) year: 2005 ident: 448_CR18 doi: 10.1007/b137198 – volume: 241 start-page: 2042 year: 2012 ident: 448_CR9 publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2011.05.012 – ident: 448_CR27 – volume: 13 start-page: 2575 issue: 9 year: 2003 ident: 448_CR29 publication-title: International Journal of Bifurcation and Chaos in Applied Sciences and Engineering doi: 10.1142/S0218127403008090 – volume: 23 start-page: 349 year: 2007 ident: 448_CR8 publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-007-0038-6 – volume: 57 start-page: 1363 issue: 6 year: 2010 ident: 448_CR23 publication-title: Journal of the Korean Physical Society doi: 10.3938/jkps.57.1363 – volume-title: Practical numerical algorithms for chaotic systems year: 1989 ident: 448_CR28 doi: 10.1007/978-1-4612-3486-9 – volume-title: Elements of applied bifurcation theory year: 2004 ident: 448_CR24 doi: 10.1007/978-1-4757-3978-7 – volume: 51 start-page: 99 issue: 1 year: 1960 ident: 448_CR13 publication-title: Matematicheskii Sbornik (N.S.) – volume-title: Spiking neuron models year: 2002 ident: 448_CR14 doi: 10.1017/CBO9780511815706 – volume: 62 start-page: 677 issue: 5 year: 1998 ident: 448_CR19 publication-title: Journal of Applied Mathematics and Mechanics doi: 10.1016/S0021-8928(98)00087-2 – volume: 14 start-page: 1569 issue: 6 year: 2003 ident: 448_CR20 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.820440 – volume: 4 start-page: 209 issue: 3 year: 1970 ident: 448_CR25 publication-title: Advances in Mathematics doi: 10.1016/0001-8708(70)90023-X – volume: 55 start-page: 1084 issue: 4 year: 2008 ident: 448_CR15 publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2008.916443 – volume: 138 start-page: 1 year: 2008 ident: 448_CR3 publication-title: Journal of Physics: Conference Series – volume: 59 start-page: 2221 issue: 10 year: 2012 ident: 448_CR6 publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2012.2188953 – volume: 18 start-page: 033128 issue: 3 year: 2008 ident: 448_CR30 publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.2975967 – volume: 31 start-page: 363 issue: 3 year: 2005 ident: 448_CR16 publication-title: ACM Transactions on Mathematical Software doi: 10.1145/1089014.1089020 – volume: 81 start-page: 932 issue: 5 year: 2011 ident: 448_CR12 publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2010.10.012 – volume: 16 start-page: 285 year: 1985 ident: 448_CR31 publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(85)90011-9 – volume: 104 start-page: 2806 issue: 5 year: 2010 ident: 448_CR1 publication-title: Journal of Neurophysiology doi: 10.1152/jn.00240.2010 – volume-title: Dynamical systems in neuroscience: the geometry of excitability and bursting year: 2007 ident: 448_CR22 – volume: 47 start-page: 204 issue: 2 year: 2000 ident: 448_CR17 publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications doi: 10.1109/81.828574 – volume: 18 start-page: 245 issue: 2 year: 2006 ident: 448_CR21 publication-title: Neural Computation doi: 10.1162/089976606775093882 – volume-title: Theoretical neuroscience: Computational and mathematical modeling of neural systems year: 2005 ident: 448_CR10 – ident: 448_CR2 doi: 10.1109/ECCTD.2011.6043647 – volume: 59 start-page: 541 issue: 3 year: 2012 ident: 448_CR7 publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers doi: 10.1109/TCSI.2011.2167273 – volume: 28 start-page: 229 year: 2010 ident: 448_CR32 publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-009-0201-3 – reference: 20012178 - J Comput Neurosci. 2010 Apr;28(2):229-45 – reference: 17629781 - J Comput Neurosci. 2007 Dec;23(3):349-98 – reference: 18244602 - IEEE Trans Neural Netw. 2003;14(6):1569-72 – reference: 16378515 - Neural Comput. 2006 Feb;18(2):245-82 – reference: 19045466 - Chaos. 2008 Sep;18(3):033128 – reference: 21045213 - J Neurophysiol. 2010 Nov;104(5):2806-20 |
| SSID | ssj0008710 |
| Score | 2.139785 |
| Snippet | Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 201 |
| SubjectTerms | Algorithms Biomedical and Life Sciences Biomedicine Brain - physiology Computer Simulation Electrophysiological Phenomena - physiology Human Genetics Models, Neurological Nerve Net Neural Networks (Computer) Neurology Neurons - physiology Neurosciences Theory of Computation |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8RADA6-Dl58P9YXI4gHZXDaabszJxFRPIh4UBAvpfNYFLS77kPcf28y266KuBfPTdvQvL5M0gTgINWFRqdnyJAcT7xTXGEOxo30TntLIbwVlk00b27Uw4O-rQ7celVbZe0Tg6N2bUtn5CcY1wndSqFOO2-ctkZRdbVaoTENszQlgVY33KaPY0-MyUA4Y0EIwFHXZF3VHP06p2JqupRcYIbCs59x6RfY_FUoDfHncvG_nC_BQoU82dlIVZZhypcrsHpWYtb9OmSHLPSChkP2FVislz2wyvZXIboeFp1B2X5n_qPTLqn_gtlAFWTLEPyypyH9_8XCjMyytwb3lxd351e82rfALcK2PtfKRLH3QmLYV0YnwrqolWnrpHGpoc1TWprUSkR4VrQSFzWjgqbjF5iyeOVjuQ4zJTKwCcxqI12aJC2EOwjIjI4z1JbCZk0rCiWaDRD1185tNYycdmK85F9jlElAOQooJwHlWQOOxrd0RpM4JhHv1LLIK6Ps5V-CaMD--DKaE9VIitK3B4EGERCiJjmJBh9EuA9fszFSjzFHsUwy1DTRgONaX74x8Be7W5PZ3Yb5mDQ19BDuwEy_O_C7MGff-8-97l7Q-U9Z5QSF priority: 102 providerName: ProQuest |
| Title | Lyapunov exponents computation for hybrid neurons |
| URI | https://link.springer.com/article/10.1007/s10827-013-0448-6 https://www.ncbi.nlm.nih.gov/pubmed/23463130 https://www.proquest.com/docview/1433067308 https://www.proquest.com/docview/1431298223 https://www.proquest.com/docview/1443372736 |
| Volume | 35 |
| WOSCitedRecordID | wos000324249200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-6873 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: P5Z dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1573-6873 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: M7P dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-6873 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: K7- dateStart: 19990101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1573-6873 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: 7X7 dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-6873 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: BENPR dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1573-6873 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: M2M dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-6873 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008710 issn: 0929-5313 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZS_QwEB-8HnzxPtZjiSA-KIG0aZvkUUUR1GXxYvGlNGmW7wPtLu6uuP-9k2y7Kh6gL4HSaTokM5nfJJMZgN1YZQoXPe0UKaeRzSWV6INRzW2urHEmvO2LTYhGQ7Zaqlne4-5V0e7VkaRfqd9ddpOhC5PklKFPQZNJmEZrJ5woX13fjZdf9AD8xgrafYoCxqujzK-6-GiMPiHMT6ej3uiczv-J3QWYKzEmORwJxSJM2GIJlg8L9K8fh2SP-KhPv52-BPNVWQdSavkyBBfDrDsoOs_EvnQ7hYu0IMZT-VkkCHPJv6G76UV8NsyitwK3pyc3x2e0rKxADQK0PlVSB6G1jKOBl1pFzORBO1Em5zqPtasxpbiODUcsZ1g7ygMRZC4PfobOiZU25KswVSAD60CM0jyPo6iNwAahl1ZhgnKRmUQYlkkmasCqIU5NmXbcVb94SN8SJruRSnGkUjdSaVKD_fEn3VHOjZ-It6p5S0v166E_w50rxJmswc74NSqOOw3JCtsZeBrEOoiP-E802JFDePibtZFMjDkKeZSgeLEaHFQC8I6B79jd-BX1JsyGToJ88OAWTPWfBnYbZsxz_3_vqQ6ToiV8K-swfXTSaF7h07mg2F6Gl64VTWyb8X3d68gr0YcBEQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB4hWqlcSsuraWlZpMIBtGLtdZzdQ1WhFgQiiXoAiZvxPqJWau2UJLT5U_2NnVnboRUiNw6cvbbH3m9mvt2ZnQF439a5RqNnSJEcT7xTXOEajBvpnfaWXPggNJvo9Pvq8lJ_WYA_zVkYSqtsbGIw1K60tEd-gH6d2K0U6uPwJ6euURRdbVpoVLA489NfuGQbfTj9jPO7E8fHR-efTnjdVYBbJCdjrpWJYu-FROemjE6EddEg1dZJ49qG-itpadpWIo-xYpC4qBPlVAM-R2LuladCB2jynyToCSmFrBf3ZpYfFx9hTwcpB0dsyyaKWh3VUzEleUoucEXE0__94B1yeycwG_zd8fJj-1Mv4HnNrNlhpQovYcEXK7B6WOTj8seU7bKQ6xqCCCuw3DSzYLVtW4WoO82Hk6K8Yf73sCwov4TZMCpglyG5Z1-ndL6NhRqgxWgNLh7ke9ZhsUABXgGz2kjXTpIB0jkknEbHKWpDbtOOFbkSnRaIZnYzWxdbp54f37PbMtEEiAwBkREgsrQFe7NbhlWlkXmDN5u5z2qjM8puJ74F27PLaC4oBpQXvpyEMcjwkBXKeWPwQcRr8TUbFRxnEsUySRHZogX7DT7_EeA-cV_PF3cLnp2c97pZ97R_9gaWYtKSkC-5CYvj64l_C0_tzfjb6Ppd0DcGVw8N27-u5mD2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4QNMQXEVA8RVwS9EGzYdvttbsPxhDxIoFc7kET3mr3R6OJtid3h96_xl_HzLY9MMR748Hnbttp95uZb3dmZwD2-7rQaPQMKZLjiXeKK1yDcSO9096SCy9Ds4lsOFRnZ3q0ApfdWRhKq-xsYjDUrra0R36Afp3YrRTqoGzTIkZHg_fjX5w6SFGktWun0UDkxM9_4_Jt8u74COf6VRwPPn7-8Im3HQa4RaIy5VqZKPZeSHR0yuhEWBeVqbZOGtc31GtJS9O3EjmNFWXioiwqqB58gSTdK09FD9D838uSVKiQNjhaeAFciIT9HaQfHHEuu4hqc2xPxZTwKbnA1RFP__aJt4jurSBt8H2D9f_5rz2Chy3jZoeNimzAiq82YeuwKqb1zzl7zUIObAgubMJ61-SCtTZvC6LTeTGeVfUF83_GdUV5J8yGUQHTDEk_-zanc28s1AatJo_hy518zxNYrVCAp8CsNtL1k6REmodE1Og4RS0pbJpZUSiR9UB0M53btgg79QL5kV-XjyZw5AiOnMCRpz14s7hl3FQgWTZ4p8NB3hqjSX4Ngh7sLS6jGaHYUFH5ehbGIPNDtiiXjcEHEd_F12w30FxIFMskRZSLHrztsHpDgH-J-2y5uC9hDdGanx4PT57Dg5gUJqRR7sDq9HzmX8B9ezH9PjnfDarH4Otdo_YK4mhpxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lyapunov+exponents+computation+for+hybrid+neurons&rft.jtitle=Journal+of+computational+neuroscience&rft.au=Bizzarri%2C+Federico&rft.au=Brambilla%2C+Angelo&rft.au=Storti+Gajani%2C+Giancarlo&rft.date=2013-10-01&rft.pub=Springer+US&rft.issn=0929-5313&rft.eissn=1573-6873&rft.volume=35&rft.issue=2&rft.spage=201&rft.epage=212&rft_id=info:doi/10.1007%2Fs10827-013-0448-6&rft.externalDocID=10_1007_s10827_013_0448_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5313&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5313&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5313&client=summon |