Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery
The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorit...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 112; s. 469 - 480 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2016
|
| Témata: | |
| ISSN: | 0360-5442 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy.
•A dual adaptive extended Kalman filter is used to estimate parameters and states.•A correction term is introduced to consider the effect of current rates.•The least square support vector machine is used to predict the available capacity.•The experiment results verify the proposed state and capacity prediction methods. |
|---|---|
| AbstractList | The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy.
•A dual adaptive extended Kalman filter is used to estimate parameters and states.•A correction term is introduced to consider the effect of current rates.•The least square support vector machine is used to predict the available capacity.•The experiment results verify the proposed state and capacity prediction methods. The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy. |
| Author | Deng, Hao Cai, Yishan Sun, Liu Deng, Zhongwei Yang, Lin |
| Author_xml | – sequence: 1 givenname: Zhongwei surname: Deng fullname: Deng, Zhongwei – sequence: 2 givenname: Lin surname: Yang fullname: Yang, Lin email: yanglin@sjtu.edu.cn – sequence: 3 givenname: Yishan surname: Cai fullname: Cai, Yishan – sequence: 4 givenname: Hao surname: Deng fullname: Deng, Hao – sequence: 5 givenname: Liu surname: Sun fullname: Sun, Liu |
| BookMark | eNqFkMFO3DAQhn2gUoH2DTj4yCWp7TjZhAMSQrQgIXHhbk3s8a5XWTvY3pX2KXhlHLYnDq0P9njm_39pvgty5oNHQq44qznj3a9tjR7j-liL8qtZV_OGnZFz1nSsaqUU38lFSlvGWNsPwzl5f_GT80jhAG6CcUKqYQbt8pHOEY3T2QVPwRuaMmSkwVK9gbhGiim7HXyOR0ho6KIzB_C61AYyVCa6A5bmtA7R5c0uURsinUrp9jvqYjHMm5DmzRI8Qs4Yjz_INwtTwp9_30vy-vvh9f6xen7583R_91xpydpc9aO00OMgORtWo-z7wTSWdWOPrWiFbiS0vOu1GftGinEFXbmYta3gwgi7ai7J9Sl2juFtX1ZRO5c0ThN4DPukxAKID-UUqTxJdQwpRbRqjmXxeFScqQW52qoTcrUgV6xTBXmx3XyxFaifuHIsqP9nvj2ZsSA4OIwqaYcLWRdRZ2WC-3fAB0JDpvk |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_117346 crossref_primary_10_3390_en14020324 crossref_primary_10_1016_j_jpowsour_2017_05_121 crossref_primary_10_1016_j_energy_2017_11_079 crossref_primary_10_1109_TIE_2017_2787586 crossref_primary_10_3389_fenrg_2021_690266 crossref_primary_10_1007_s11581_016_1850_7 crossref_primary_10_1016_j_jpowsour_2022_231027 crossref_primary_10_1016_j_energy_2023_127675 crossref_primary_10_1016_j_energy_2020_119025 crossref_primary_10_1016_j_est_2022_104664 crossref_primary_10_1016_j_ress_2024_110097 crossref_primary_10_1088_1361_6501_ad1cc6 crossref_primary_10_1109_TTE_2024_3497993 crossref_primary_10_1016_j_rser_2025_115706 crossref_primary_10_1109_JSEN_2021_3066785 crossref_primary_10_1016_j_apenergy_2019_113758 crossref_primary_10_1016_j_energy_2016_08_109 crossref_primary_10_1016_j_energy_2018_11_008 crossref_primary_10_1016_j_jclepro_2019_05_144 crossref_primary_10_3390_en17071643 crossref_primary_10_1109_TPEL_2020_2984248 crossref_primary_10_1088_1361_6501_ad69b3 crossref_primary_10_1016_j_energy_2017_06_109 crossref_primary_10_1016_j_xcrp_2025_102550 crossref_primary_10_1016_j_measurement_2023_114082 crossref_primary_10_1016_j_est_2021_103158 crossref_primary_10_1016_j_energy_2021_122815 crossref_primary_10_1016_j_energy_2022_123404 crossref_primary_10_1016_j_est_2021_102622 crossref_primary_10_3390_wevj14090247 crossref_primary_10_4316_AECE_2019_03001 crossref_primary_10_1016_j_apenergy_2017_05_176 crossref_primary_10_3390_batteries11010032 crossref_primary_10_1109_JIOT_2024_3511961 crossref_primary_10_1109_TTE_2023_3336618 crossref_primary_10_1016_j_rser_2020_110015 crossref_primary_10_1007_s11465_018_0516_8 crossref_primary_10_1016_j_energy_2018_03_023 crossref_primary_10_3390_batteries10110394 crossref_primary_10_3390_su14127048 crossref_primary_10_1016_j_ijepes_2018_02_005 crossref_primary_10_1016_j_energy_2018_06_113 crossref_primary_10_1109_ACCESS_2020_3019477 crossref_primary_10_1002_est2_70146 crossref_primary_10_1109_ACCESS_2022_3209205 crossref_primary_10_1016_j_jpowsour_2017_11_094 crossref_primary_10_1016_j_egypro_2016_12_131 crossref_primary_10_1109_TVT_2020_3045213 crossref_primary_10_1002_ente_202100235 crossref_primary_10_1016_j_energy_2019_03_177 crossref_primary_10_1016_j_jpowsour_2019_227108 crossref_primary_10_1016_j_energy_2018_04_070 crossref_primary_10_1016_j_est_2023_108587 crossref_primary_10_3390_batteries8090112 crossref_primary_10_3390_en14175482 crossref_primary_10_1016_j_apenergy_2023_120954 crossref_primary_10_1016_j_energy_2017_06_094 crossref_primary_10_1016_j_est_2022_106357 crossref_primary_10_1007_s10800_024_02217_6 crossref_primary_10_1080_15567036_2023_2172479 crossref_primary_10_3390_wevj12040224 crossref_primary_10_1016_j_est_2022_105141 crossref_primary_10_1039_D1EE01812D crossref_primary_10_1016_j_egyr_2022_01_056 crossref_primary_10_3390_wevj12040187 crossref_primary_10_1016_j_jpowsour_2017_01_031 crossref_primary_10_1109_TMECH_2020_3040010 crossref_primary_10_23919_PCMP_2023_000234 crossref_primary_10_1016_j_est_2021_103768 crossref_primary_10_1016_j_est_2020_101343 crossref_primary_10_1109_TTE_2025_3555659 crossref_primary_10_1016_j_energy_2017_07_069 crossref_primary_10_1016_j_ijhydene_2021_07_130 crossref_primary_10_1016_j_egyr_2022_12_094 crossref_primary_10_3390_su131810042 crossref_primary_10_1109_TTE_2020_3026962 crossref_primary_10_1016_j_est_2024_110582 crossref_primary_10_1016_j_est_2020_101999 crossref_primary_10_1016_j_psep_2023_05_057 crossref_primary_10_1016_j_etran_2025_100432 crossref_primary_10_1016_j_etran_2023_100270 crossref_primary_10_3390_batteries8120260 crossref_primary_10_1016_j_apenergy_2019_114006 crossref_primary_10_1016_j_energy_2023_129801 crossref_primary_10_1016_j_energy_2020_118140 crossref_primary_10_1016_j_energy_2020_118262 crossref_primary_10_1371_journal_pone_0200169 crossref_primary_10_1016_j_energy_2017_06_141 crossref_primary_10_3390_en15239088 crossref_primary_10_1016_j_energy_2025_135922 crossref_primary_10_1016_j_est_2024_113908 crossref_primary_10_3390_batteries8020019 crossref_primary_10_1016_j_energy_2017_10_097 crossref_primary_10_1109_TTE_2021_3050987 crossref_primary_10_1016_j_jpowsour_2020_228677 crossref_primary_10_1016_j_jpowsour_2024_235374 crossref_primary_10_1016_j_est_2024_112655 crossref_primary_10_1016_j_energy_2024_130913 crossref_primary_10_1016_j_apenergy_2020_114817 crossref_primary_10_1109_ACCESS_2020_2967563 crossref_primary_10_1177_01445987231211943 crossref_primary_10_1016_j_energy_2023_127734 crossref_primary_10_1155_2017_6342170 crossref_primary_10_1109_ACCESS_2020_3030750 crossref_primary_10_1109_TIM_2025_3551580 crossref_primary_10_1016_j_isci_2022_104260 crossref_primary_10_1109_ACCESS_2025_3545380 crossref_primary_10_1016_j_est_2023_108707 crossref_primary_10_1016_j_segan_2018_100183 crossref_primary_10_1016_j_energy_2019_07_127 crossref_primary_10_1016_j_est_2022_105495 crossref_primary_10_1109_ACCESS_2020_3033451 crossref_primary_10_3390_en16093815 crossref_primary_10_1016_j_energy_2023_126880 crossref_primary_10_1080_15567036_2025_2490193 crossref_primary_10_1016_j_est_2025_115427 crossref_primary_10_1016_j_est_2024_114325 crossref_primary_10_1007_s43236_020_00213_5 crossref_primary_10_1016_j_energy_2022_125123 crossref_primary_10_1109_TPEL_2021_3134701 crossref_primary_10_1016_j_energy_2020_118000 crossref_primary_10_1016_j_apenergy_2020_115074 |
| Cites_doi | 10.1016/j.energy.2014.11.077 10.1016/j.enconman.2005.06.013 10.1016/j.energy.2013.10.027 10.1016/j.jpowsour.2015.01.129 10.1016/j.apenergy.2008.11.021 10.1016/j.jpowsour.2015.01.154 10.1016/j.jpowsour.2012.10.060 10.1016/j.jpowsour.2014.02.064 10.1016/j.energy.2011.03.059 10.1016/j.energy.2012.01.009 10.1016/j.energy.2014.02.009 10.1016/j.jpowsour.2005.04.030 10.1016/j.jpowsour.2004.02.033 10.1016/j.energy.2015.06.095 10.1016/j.jpowsour.2013.01.174 10.1016/j.apenergy.2015.10.092 10.1016/j.jpowsour.2012.10.057 10.1016/j.jpowsour.2012.11.146 10.1016/j.jpowsour.2014.07.016 10.1016/j.jpowsour.2013.05.040 10.1016/j.jpowsour.2011.10.013 10.1016/j.electacta.2005.02.143 10.1016/j.energy.2015.03.019 10.1016/j.jpowsour.2004.02.032 10.1016/j.jpowsour.2008.11.143 10.1016/j.enconman.2009.12.015 10.1109/TSMCC.2010.2089979 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2016.06.130 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EndPage | 480 |
| ExternalDocumentID | 10_1016_j_energy_2016_06_130 S0360544216309045 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c405t-8b4fa8e941097b4889d3f06b8e5252c34a5168cdb8342b7a62b70ff5212d2f73 |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385318700042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Mon Sep 29 06:21:14 EDT 2025 Sat Nov 29 02:05:15 EST 2025 Tue Nov 18 21:23:32 EST 2025 Fri Feb 23 02:32:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Battery management system State of charge estimation Available capacity prediction Least squares support vector machine Online parameter identification Dual adaptive extended Kalman filter |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c405t-8b4fa8e941097b4889d3f06b8e5252c34a5168cdb8342b7a62b70ff5212d2f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000519999 |
| PQPubID | 24069 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2000519999 crossref_primary_10_1016_j_energy_2016_06_130 crossref_citationtrail_10_1016_j_energy_2016_06_130 elsevier_sciencedirect_doi_10_1016_j_energy_2016_06_130 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Plett (bib15) 2004; 134 Sun, Hu, Zou, Li (bib2) 2011; 3 Han, Kim, Sunwoo (bib27) 2009; 188 Pattipati, Sankavaram, Pattipati (bib30) 2011; 41 Barré, Deguilhem, Grolleau, Gérard, Suard, Riu (bib21) 2013; 241 Vapnik (bib29) 1995 Eddahech, Briat, Vinassa (bib22) 2015; 84 Xia, Chen, Tian, Wang, Sun, Xu (bib3) 2015; 90 Junping, Quanshi, Binggang (bib8) 2006; 47 Hu, Li, Peng (bib20) 2012; 198 Hu, Hu, Lin, Li, Jiang, Qiu (bib9) 2014; 269 Dai, Guo, Wei, Sun, Wang (bib7) 2015; 80 Pei, Zhu, Wang, Lu, Chan (bib10) 2014; 66 He, Zhang, Xiong, Xu, Guo (bib11) 2012; 39 Singh, Vinjamuri, Wang, Reisner (bib5) 2006; 51 Ng, Moo, Chen, Hsieh (bib4) 2009; 86 Zheng, Lu, Han, Li, Ouyang (bib19) 2013; 226 Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (bib31) 2013; 239 Mohamed, Schwarz (bib28) 1999; 73 Dong, Wei, Zhang, Chen (bib25) 2016; 162 Plett (bib13) 2004; 134 Notten, Bergveld, Kruijt (bib23) 2002 Baronti, Zamboni, Femia, Roncella, Saletti (bib26) 2013 Shen (bib6) 2010; 51 Hausmann, Depcik (bib18) 2013; 235 Waag, Fleischer, Sauer (bib1) 2014; 258 Doerffel, Sharkh (bib16) 2006; 155 Feng, Yang, Zhao, Zhang, Qiang (bib12) 2015; 281 Farmann, Waag, Marongiu, Sauer (bib17) 2015; 281 Xiong, Sun, He, Nguyen (bib14) 2013; 63 Lu, Han, Li, Hua, Ouyang (bib24) 2013; 226 Hu (10.1016/j.energy.2016.06.130_bib20) 2012; 198 Plett (10.1016/j.energy.2016.06.130_bib13) 2004; 134 Eddahech (10.1016/j.energy.2016.06.130_bib22) 2015; 84 Ng (10.1016/j.energy.2016.06.130_bib4) 2009; 86 Hu (10.1016/j.energy.2016.06.130_bib9) 2014; 269 Waag (10.1016/j.energy.2016.06.130_bib1) 2014; 258 Singh (10.1016/j.energy.2016.06.130_bib5) 2006; 51 Junping (10.1016/j.energy.2016.06.130_bib8) 2006; 47 Zheng (10.1016/j.energy.2016.06.130_bib19) 2013; 226 Xia (10.1016/j.energy.2016.06.130_bib3) 2015; 90 Sun (10.1016/j.energy.2016.06.130_bib2) 2011; 3 Pattipati (10.1016/j.energy.2016.06.130_bib30) 2011; 41 Pei (10.1016/j.energy.2016.06.130_bib10) 2014; 66 Hausmann (10.1016/j.energy.2016.06.130_bib18) 2013; 235 Nuhic (10.1016/j.energy.2016.06.130_bib31) 2013; 239 He (10.1016/j.energy.2016.06.130_bib11) 2012; 39 Barré (10.1016/j.energy.2016.06.130_bib21) 2013; 241 Lu (10.1016/j.energy.2016.06.130_bib24) 2013; 226 Mohamed (10.1016/j.energy.2016.06.130_bib28) 1999; 73 Baronti (10.1016/j.energy.2016.06.130_bib26) 2013 Farmann (10.1016/j.energy.2016.06.130_bib17) 2015; 281 Doerffel (10.1016/j.energy.2016.06.130_bib16) 2006; 155 Notten (10.1016/j.energy.2016.06.130_bib23) 2002 Plett (10.1016/j.energy.2016.06.130_bib15) 2004; 134 Shen (10.1016/j.energy.2016.06.130_bib6) 2010; 51 Feng (10.1016/j.energy.2016.06.130_bib12) 2015; 281 Xiong (10.1016/j.energy.2016.06.130_bib14) 2013; 63 Dai (10.1016/j.energy.2016.06.130_bib7) 2015; 80 Vapnik (10.1016/j.energy.2016.06.130_bib29) 1995 Dong (10.1016/j.energy.2016.06.130_bib25) 2016; 162 Han (10.1016/j.energy.2016.06.130_bib27) 2009; 188 |
| References_xml | – volume: 84 start-page: 542 year: 2015 end-page: 550 ident: bib22 article-title: Performance comparison of four lithium–ion battery technologies under calendar aging publication-title: Energy – start-page: 6728 year: 2013 end-page: 6733 ident: bib26 article-title: Experimental analysis of open-circuit voltage hysteresis in lithium-iron-phosphate batteries publication-title: Industrial electronics society, IECON 2013-39th annual conference of the IEEE – volume: 73 start-page: 193 year: 1999 end-page: 203 ident: bib28 article-title: Adaptive Kalman filtering for INS/GPS publication-title: J Geod – volume: 281 start-page: 192 year: 2015 end-page: 203 ident: bib12 article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction publication-title: J Power Sources – volume: 66 start-page: 766 year: 2014 end-page: 778 ident: bib10 article-title: Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles publication-title: Energy – volume: 198 start-page: 359 year: 2012 end-page: 367 ident: bib20 article-title: A comparative study of equivalent circuit models for Li-ion batteries publication-title: J Power Sources – year: 1995 ident: bib29 article-title: The nature of statistical learning theory – volume: 47 start-page: 858 year: 2006 end-page: 864 ident: bib8 article-title: Support vector machine based battery model for electric vehicles publication-title: Energy Convers Manage – volume: 269 start-page: 682 year: 2014 end-page: 693 ident: bib9 article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression publication-title: J Power Sources – volume: 51 start-page: 1093 year: 2010 end-page: 1098 ident: bib6 article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network publication-title: Energy Convers Manage – volume: 3 start-page: 3531 year: 2011 end-page: 3540 ident: bib2 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy – volume: 258 start-page: 321 year: 2014 end-page: 339 ident: bib1 article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles publication-title: J Power Sources – volume: 51 start-page: 1673 year: 2006 end-page: 1679 ident: bib5 article-title: Fuzzy logic modeling of EIS measurements on lithium-ion batteries publication-title: Electrochim Acta – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: bib15 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power Sources – volume: 80 start-page: 350 year: 2015 end-page: 360 ident: bib7 article-title: ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries publication-title: Energy – volume: 155 start-page: 395 year: 2006 end-page: 400 ident: bib16 article-title: A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries publication-title: J Power Sources – volume: 63 start-page: 295 year: 2013 end-page: 308 ident: bib14 article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles publication-title: Energy – volume: 226 start-page: 33 year: 2013 end-page: 41 ident: bib19 article-title: LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation publication-title: J Power Sources – volume: 281 start-page: 114 year: 2015 end-page: 130 ident: bib17 article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles publication-title: J Power Sources – year: 2002 ident: bib23 article-title: Battery management systems: design by modeling – volume: 39 start-page: 310 year: 2012 end-page: 318 ident: bib11 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy – volume: 239 start-page: 680 year: 2013 end-page: 688 ident: bib31 article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods publication-title: J Power Sources – volume: 86 start-page: 1506 year: 2009 end-page: 1511 ident: bib4 article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries publication-title: Appl Energy – volume: 235 start-page: 148 year: 2013 end-page: 158 ident: bib18 article-title: Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency publication-title: J Power Sources – volume: 134 start-page: 262 year: 2004 end-page: 276 ident: bib13 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification publication-title: J Power Sources – volume: 41 start-page: 869 year: 2011 end-page: 884 ident: bib30 article-title: System identification and estimation framework for pivotal automotive battery management system characteristics publication-title: IEEE Trans Syst Man Cybern C Appl Rev – volume: 162 start-page: 163 year: 2016 end-page: 171 ident: bib25 article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method publication-title: Appl Energy – volume: 226 start-page: 272 year: 2013 end-page: 288 ident: bib24 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources – volume: 90 start-page: 1426 year: 2015 end-page: 1434 ident: bib3 article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method publication-title: Energy – volume: 188 start-page: 606 year: 2009 end-page: 612 ident: bib27 article-title: State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter publication-title: J Power Sources – volume: 241 start-page: 680 year: 2013 end-page: 689 ident: bib21 article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications publication-title: J Power Sources – volume: 80 start-page: 350 year: 2015 ident: 10.1016/j.energy.2016.06.130_bib7 article-title: ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries publication-title: Energy doi: 10.1016/j.energy.2014.11.077 – volume: 47 start-page: 858 year: 2006 ident: 10.1016/j.energy.2016.06.130_bib8 article-title: Support vector machine based battery model for electric vehicles publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2005.06.013 – volume: 63 start-page: 295 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib14 article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2013.10.027 – volume: 281 start-page: 114 year: 2015 ident: 10.1016/j.energy.2016.06.130_bib17 article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.129 – volume: 86 start-page: 1506 year: 2009 ident: 10.1016/j.energy.2016.06.130_bib4 article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.021 – volume: 281 start-page: 192 year: 2015 ident: 10.1016/j.energy.2016.06.130_bib12 article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.01.154 – volume: 226 start-page: 272 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib24 article-title: A review on the key issues for lithium-ion battery management in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.060 – volume: 258 start-page: 321 year: 2014 ident: 10.1016/j.energy.2016.06.130_bib1 article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.064 – volume: 3 start-page: 3531 year: 2011 ident: 10.1016/j.energy.2016.06.130_bib2 article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles publication-title: Energy doi: 10.1016/j.energy.2011.03.059 – volume: 39 start-page: 310 year: 2012 ident: 10.1016/j.energy.2016.06.130_bib11 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2012.01.009 – year: 2002 ident: 10.1016/j.energy.2016.06.130_bib23 – year: 1995 ident: 10.1016/j.energy.2016.06.130_bib29 – volume: 66 start-page: 766 year: 2014 ident: 10.1016/j.energy.2016.06.130_bib10 article-title: Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2014.02.009 – volume: 155 start-page: 395 year: 2006 ident: 10.1016/j.energy.2016.06.130_bib16 article-title: A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.04.030 – volume: 134 start-page: 277 year: 2004 ident: 10.1016/j.energy.2016.06.130_bib15 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.033 – volume: 73 start-page: 193 year: 1999 ident: 10.1016/j.energy.2016.06.130_bib28 article-title: Adaptive Kalman filtering for INS/GPS publication-title: J Geod – volume: 90 start-page: 1426 year: 2015 ident: 10.1016/j.energy.2016.06.130_bib3 article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method publication-title: Energy doi: 10.1016/j.energy.2015.06.095 – volume: 235 start-page: 148 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib18 article-title: Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.01.174 – volume: 162 start-page: 163 year: 2016 ident: 10.1016/j.energy.2016.06.130_bib25 article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.092 – volume: 226 start-page: 33 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib19 article-title: LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.057 – volume: 239 start-page: 680 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib31 article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.11.146 – volume: 269 start-page: 682 year: 2014 ident: 10.1016/j.energy.2016.06.130_bib9 article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.016 – volume: 241 start-page: 680 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib21 article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.05.040 – volume: 198 start-page: 359 year: 2012 ident: 10.1016/j.energy.2016.06.130_bib20 article-title: A comparative study of equivalent circuit models for Li-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.10.013 – volume: 51 start-page: 1673 year: 2006 ident: 10.1016/j.energy.2016.06.130_bib5 article-title: Fuzzy logic modeling of EIS measurements on lithium-ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2005.02.143 – volume: 84 start-page: 542 year: 2015 ident: 10.1016/j.energy.2016.06.130_bib22 article-title: Performance comparison of four lithium–ion battery technologies under calendar aging publication-title: Energy doi: 10.1016/j.energy.2015.03.019 – volume: 134 start-page: 262 year: 2004 ident: 10.1016/j.energy.2016.06.130_bib13 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.032 – volume: 188 start-page: 606 year: 2009 ident: 10.1016/j.energy.2016.06.130_bib27 article-title: State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.11.143 – volume: 51 start-page: 1093 year: 2010 ident: 10.1016/j.energy.2016.06.130_bib6 article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2009.12.015 – start-page: 6728 year: 2013 ident: 10.1016/j.energy.2016.06.130_bib26 article-title: Experimental analysis of open-circuit voltage hysteresis in lithium-iron-phosphate batteries – volume: 41 start-page: 869 year: 2011 ident: 10.1016/j.energy.2016.06.130_bib30 article-title: System identification and estimation framework for pivotal automotive battery management system characteristics publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2010.2089979 |
| SSID | ssj0005899 |
| Score | 2.5449696 |
| Snippet | The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 469 |
| SubjectTerms | Available capacity prediction batteries Battery management system Dual adaptive extended Kalman filter hysteresis iron phosphates least squares Least squares support vector machine lithium Online parameter identification prediction State of charge estimation support vector machines temperature |
| Title | Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery |
| URI | https://dx.doi.org/10.1016/j.energy.2016.06.130 https://www.proquest.com/docview/2000519999 |
| Volume | 112 |
| WOSCitedRecordID | wos000385318700042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdKhwQvCAbTxj8ZCfESeUoTJ7Efp9FpoKrwUKTCS-Q4zpqpJKH_6LfgM_BN8cVOsm5CGw_0IapSO01zv96dffe7Q-itx0KZcpkSkSlKaCpdIlIvIx7LVDTQs3go62YT0XjMplP-udf73XBhNvOoKNh2y6v_Kmp9TgsbqLP_IO72ovqEfq-Fro9a7Pp4J8Gb4qGO2Ih8XvOipLaHEpztagFRmVWTgFxzieq0cqiWpByot2GIjA7YthTiCG2KAGSSknQButER84tyka9mppYDsJhn-fq7A4Q5p5qVy2oGF07qyp07UeOhIRpChdOtSapvtyHeK6N0vs3K4uKnylttZPezR3mL4lPTQfsr9I0urs8_F-XVjYxB2KbEdQQulwSU7irngedUx3oNT6jp-GQVLTUNXqzNtp_dMAdmZ-LyWNU_DxL5QqjWOrChoJ3q2-NP8dmX0SieDKeTd9UPAo3JIIBvu7TcQ3teFHDWR3snH4bTj10eEaublLZ33_Az6yTCm1_8N__nmidQuzeTx-iRXZfgE4OnJ6inin30oKGtL_fRwbCjROqB1iYsn6JfBnC4BRxuAIc7wGENOFwDDpcZNoDDHeBwDTgM4yzg8BXA4Q5wWMMGW8BhuB3cAg5bwD1Dk7Ph5PSc2DYfROrVwoqwhGaCKU4hGSLRBoWnfuaGCVOBF3jSpyIYhEymCfOpl0Qi1Ac3y4B0rrVK5B-gflEW6hDhgHo0ChP9lAWnPKXcS3zJM-pyNwmYyo6Q3zz7WNoS-NCJZR43uY6XsZFYDBKL3RCivUeItLMqUwLmlvFRI9bYurHGPY01LG-Z-aZBQay1PITuRKHK9RKaxcJaS7-e32HMC_Sw-4O9RP3VYq1eoftys8qXi9cWwH8AJrPQNw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+available+capacity+prediction+and+state+of+charge+estimation+based+on+advanced+data-driven+algorithms+for+lithium+iron+phosphate+battery&rft.jtitle=Energy+%28Oxford%29&rft.au=Deng%2C+Zhongwei&rft.au=Yang%2C+Lin&rft.au=Cai%2C+Yishan&rft.au=Deng%2C+Hao&rft.date=2016-10-01&rft.issn=0360-5442&rft.volume=112+p.469-480&rft.spage=469&rft.epage=480&rft_id=info:doi/10.1016%2Fj.energy.2016.06.130&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |