Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery

The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 112; s. 469 - 480
Hlavní autoři: Deng, Zhongwei, Yang, Lin, Cai, Yishan, Deng, Hao, Sun, Liu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2016
Témata:
ISSN:0360-5442
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy. •A dual adaptive extended Kalman filter is used to estimate parameters and states.•A correction term is introduced to consider the effect of current rates.•The least square support vector machine is used to predict the available capacity.•The experiment results verify the proposed state and capacity prediction methods.
AbstractList The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy. •A dual adaptive extended Kalman filter is used to estimate parameters and states.•A correction term is introduced to consider the effect of current rates.•The least square support vector machine is used to predict the available capacity.•The experiment results verify the proposed state and capacity prediction methods.
The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy.
Author Deng, Hao
Cai, Yishan
Sun, Liu
Deng, Zhongwei
Yang, Lin
Author_xml – sequence: 1
  givenname: Zhongwei
  surname: Deng
  fullname: Deng, Zhongwei
– sequence: 2
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
  email: yanglin@sjtu.edu.cn
– sequence: 3
  givenname: Yishan
  surname: Cai
  fullname: Cai, Yishan
– sequence: 4
  givenname: Hao
  surname: Deng
  fullname: Deng, Hao
– sequence: 5
  givenname: Liu
  surname: Sun
  fullname: Sun, Liu
BookMark eNqFkMFO3DAQhn2gUoH2DTj4yCWp7TjZhAMSQrQgIXHhbk3s8a5XWTvY3pX2KXhlHLYnDq0P9njm_39pvgty5oNHQq44qznj3a9tjR7j-liL8qtZV_OGnZFz1nSsaqUU38lFSlvGWNsPwzl5f_GT80jhAG6CcUKqYQbt8pHOEY3T2QVPwRuaMmSkwVK9gbhGiim7HXyOR0ho6KIzB_C61AYyVCa6A5bmtA7R5c0uURsinUrp9jvqYjHMm5DmzRI8Qs4Yjz_INwtTwp9_30vy-vvh9f6xen7583R_91xpydpc9aO00OMgORtWo-z7wTSWdWOPrWiFbiS0vOu1GftGinEFXbmYta3gwgi7ai7J9Sl2juFtX1ZRO5c0ThN4DPukxAKID-UUqTxJdQwpRbRqjmXxeFScqQW52qoTcrUgV6xTBXmx3XyxFaifuHIsqP9nvj2ZsSA4OIwqaYcLWRdRZ2WC-3fAB0JDpvk
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_117346
crossref_primary_10_3390_en14020324
crossref_primary_10_1016_j_jpowsour_2017_05_121
crossref_primary_10_1016_j_energy_2017_11_079
crossref_primary_10_1109_TIE_2017_2787586
crossref_primary_10_3389_fenrg_2021_690266
crossref_primary_10_1007_s11581_016_1850_7
crossref_primary_10_1016_j_jpowsour_2022_231027
crossref_primary_10_1016_j_energy_2023_127675
crossref_primary_10_1016_j_energy_2020_119025
crossref_primary_10_1016_j_est_2022_104664
crossref_primary_10_1016_j_ress_2024_110097
crossref_primary_10_1088_1361_6501_ad1cc6
crossref_primary_10_1109_TTE_2024_3497993
crossref_primary_10_1016_j_rser_2025_115706
crossref_primary_10_1109_JSEN_2021_3066785
crossref_primary_10_1016_j_apenergy_2019_113758
crossref_primary_10_1016_j_energy_2016_08_109
crossref_primary_10_1016_j_energy_2018_11_008
crossref_primary_10_1016_j_jclepro_2019_05_144
crossref_primary_10_3390_en17071643
crossref_primary_10_1109_TPEL_2020_2984248
crossref_primary_10_1088_1361_6501_ad69b3
crossref_primary_10_1016_j_energy_2017_06_109
crossref_primary_10_1016_j_xcrp_2025_102550
crossref_primary_10_1016_j_measurement_2023_114082
crossref_primary_10_1016_j_est_2021_103158
crossref_primary_10_1016_j_energy_2021_122815
crossref_primary_10_1016_j_energy_2022_123404
crossref_primary_10_1016_j_est_2021_102622
crossref_primary_10_3390_wevj14090247
crossref_primary_10_4316_AECE_2019_03001
crossref_primary_10_1016_j_apenergy_2017_05_176
crossref_primary_10_3390_batteries11010032
crossref_primary_10_1109_JIOT_2024_3511961
crossref_primary_10_1109_TTE_2023_3336618
crossref_primary_10_1016_j_rser_2020_110015
crossref_primary_10_1007_s11465_018_0516_8
crossref_primary_10_1016_j_energy_2018_03_023
crossref_primary_10_3390_batteries10110394
crossref_primary_10_3390_su14127048
crossref_primary_10_1016_j_ijepes_2018_02_005
crossref_primary_10_1016_j_energy_2018_06_113
crossref_primary_10_1109_ACCESS_2020_3019477
crossref_primary_10_1002_est2_70146
crossref_primary_10_1109_ACCESS_2022_3209205
crossref_primary_10_1016_j_jpowsour_2017_11_094
crossref_primary_10_1016_j_egypro_2016_12_131
crossref_primary_10_1109_TVT_2020_3045213
crossref_primary_10_1002_ente_202100235
crossref_primary_10_1016_j_energy_2019_03_177
crossref_primary_10_1016_j_jpowsour_2019_227108
crossref_primary_10_1016_j_energy_2018_04_070
crossref_primary_10_1016_j_est_2023_108587
crossref_primary_10_3390_batteries8090112
crossref_primary_10_3390_en14175482
crossref_primary_10_1016_j_apenergy_2023_120954
crossref_primary_10_1016_j_energy_2017_06_094
crossref_primary_10_1016_j_est_2022_106357
crossref_primary_10_1007_s10800_024_02217_6
crossref_primary_10_1080_15567036_2023_2172479
crossref_primary_10_3390_wevj12040224
crossref_primary_10_1016_j_est_2022_105141
crossref_primary_10_1039_D1EE01812D
crossref_primary_10_1016_j_egyr_2022_01_056
crossref_primary_10_3390_wevj12040187
crossref_primary_10_1016_j_jpowsour_2017_01_031
crossref_primary_10_1109_TMECH_2020_3040010
crossref_primary_10_23919_PCMP_2023_000234
crossref_primary_10_1016_j_est_2021_103768
crossref_primary_10_1016_j_est_2020_101343
crossref_primary_10_1109_TTE_2025_3555659
crossref_primary_10_1016_j_energy_2017_07_069
crossref_primary_10_1016_j_ijhydene_2021_07_130
crossref_primary_10_1016_j_egyr_2022_12_094
crossref_primary_10_3390_su131810042
crossref_primary_10_1109_TTE_2020_3026962
crossref_primary_10_1016_j_est_2024_110582
crossref_primary_10_1016_j_est_2020_101999
crossref_primary_10_1016_j_psep_2023_05_057
crossref_primary_10_1016_j_etran_2025_100432
crossref_primary_10_1016_j_etran_2023_100270
crossref_primary_10_3390_batteries8120260
crossref_primary_10_1016_j_apenergy_2019_114006
crossref_primary_10_1016_j_energy_2023_129801
crossref_primary_10_1016_j_energy_2020_118140
crossref_primary_10_1016_j_energy_2020_118262
crossref_primary_10_1371_journal_pone_0200169
crossref_primary_10_1016_j_energy_2017_06_141
crossref_primary_10_3390_en15239088
crossref_primary_10_1016_j_energy_2025_135922
crossref_primary_10_1016_j_est_2024_113908
crossref_primary_10_3390_batteries8020019
crossref_primary_10_1016_j_energy_2017_10_097
crossref_primary_10_1109_TTE_2021_3050987
crossref_primary_10_1016_j_jpowsour_2020_228677
crossref_primary_10_1016_j_jpowsour_2024_235374
crossref_primary_10_1016_j_est_2024_112655
crossref_primary_10_1016_j_energy_2024_130913
crossref_primary_10_1016_j_apenergy_2020_114817
crossref_primary_10_1109_ACCESS_2020_2967563
crossref_primary_10_1177_01445987231211943
crossref_primary_10_1016_j_energy_2023_127734
crossref_primary_10_1155_2017_6342170
crossref_primary_10_1109_ACCESS_2020_3030750
crossref_primary_10_1109_TIM_2025_3551580
crossref_primary_10_1016_j_isci_2022_104260
crossref_primary_10_1109_ACCESS_2025_3545380
crossref_primary_10_1016_j_est_2023_108707
crossref_primary_10_1016_j_segan_2018_100183
crossref_primary_10_1016_j_energy_2019_07_127
crossref_primary_10_1016_j_est_2022_105495
crossref_primary_10_1109_ACCESS_2020_3033451
crossref_primary_10_3390_en16093815
crossref_primary_10_1016_j_energy_2023_126880
crossref_primary_10_1080_15567036_2025_2490193
crossref_primary_10_1016_j_est_2025_115427
crossref_primary_10_1016_j_est_2024_114325
crossref_primary_10_1007_s43236_020_00213_5
crossref_primary_10_1016_j_energy_2022_125123
crossref_primary_10_1109_TPEL_2021_3134701
crossref_primary_10_1016_j_energy_2020_118000
crossref_primary_10_1016_j_apenergy_2020_115074
Cites_doi 10.1016/j.energy.2014.11.077
10.1016/j.enconman.2005.06.013
10.1016/j.energy.2013.10.027
10.1016/j.jpowsour.2015.01.129
10.1016/j.apenergy.2008.11.021
10.1016/j.jpowsour.2015.01.154
10.1016/j.jpowsour.2012.10.060
10.1016/j.jpowsour.2014.02.064
10.1016/j.energy.2011.03.059
10.1016/j.energy.2012.01.009
10.1016/j.energy.2014.02.009
10.1016/j.jpowsour.2005.04.030
10.1016/j.jpowsour.2004.02.033
10.1016/j.energy.2015.06.095
10.1016/j.jpowsour.2013.01.174
10.1016/j.apenergy.2015.10.092
10.1016/j.jpowsour.2012.10.057
10.1016/j.jpowsour.2012.11.146
10.1016/j.jpowsour.2014.07.016
10.1016/j.jpowsour.2013.05.040
10.1016/j.jpowsour.2011.10.013
10.1016/j.electacta.2005.02.143
10.1016/j.energy.2015.03.019
10.1016/j.jpowsour.2004.02.032
10.1016/j.jpowsour.2008.11.143
10.1016/j.enconman.2009.12.015
10.1109/TSMCC.2010.2089979
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2016.06.130
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 480
ExternalDocumentID 10_1016_j_energy_2016_06_130
S0360544216309045
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c405t-8b4fa8e941097b4889d3f06b8e5252c34a5168cdb8342b7a62b70ff5212d2f73
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385318700042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Mon Sep 29 06:21:14 EDT 2025
Sat Nov 29 02:05:15 EST 2025
Tue Nov 18 21:23:32 EST 2025
Fri Feb 23 02:32:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Battery management system
State of charge estimation
Available capacity prediction
Least squares support vector machine
Online parameter identification
Dual adaptive extended Kalman filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-8b4fa8e941097b4889d3f06b8e5252c34a5168cdb8342b7a62b70ff5212d2f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000519999
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000519999
crossref_primary_10_1016_j_energy_2016_06_130
crossref_citationtrail_10_1016_j_energy_2016_06_130
elsevier_sciencedirect_doi_10_1016_j_energy_2016_06_130
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Plett (bib15) 2004; 134
Sun, Hu, Zou, Li (bib2) 2011; 3
Han, Kim, Sunwoo (bib27) 2009; 188
Pattipati, Sankavaram, Pattipati (bib30) 2011; 41
Barré, Deguilhem, Grolleau, Gérard, Suard, Riu (bib21) 2013; 241
Vapnik (bib29) 1995
Eddahech, Briat, Vinassa (bib22) 2015; 84
Xia, Chen, Tian, Wang, Sun, Xu (bib3) 2015; 90
Junping, Quanshi, Binggang (bib8) 2006; 47
Hu, Li, Peng (bib20) 2012; 198
Hu, Hu, Lin, Li, Jiang, Qiu (bib9) 2014; 269
Dai, Guo, Wei, Sun, Wang (bib7) 2015; 80
Pei, Zhu, Wang, Lu, Chan (bib10) 2014; 66
He, Zhang, Xiong, Xu, Guo (bib11) 2012; 39
Singh, Vinjamuri, Wang, Reisner (bib5) 2006; 51
Ng, Moo, Chen, Hsieh (bib4) 2009; 86
Zheng, Lu, Han, Li, Ouyang (bib19) 2013; 226
Nuhic, Terzimehic, Soczka-Guth, Buchholz, Dietmayer (bib31) 2013; 239
Mohamed, Schwarz (bib28) 1999; 73
Dong, Wei, Zhang, Chen (bib25) 2016; 162
Plett (bib13) 2004; 134
Notten, Bergveld, Kruijt (bib23) 2002
Baronti, Zamboni, Femia, Roncella, Saletti (bib26) 2013
Shen (bib6) 2010; 51
Hausmann, Depcik (bib18) 2013; 235
Waag, Fleischer, Sauer (bib1) 2014; 258
Doerffel, Sharkh (bib16) 2006; 155
Feng, Yang, Zhao, Zhang, Qiang (bib12) 2015; 281
Farmann, Waag, Marongiu, Sauer (bib17) 2015; 281
Xiong, Sun, He, Nguyen (bib14) 2013; 63
Lu, Han, Li, Hua, Ouyang (bib24) 2013; 226
Hu (10.1016/j.energy.2016.06.130_bib20) 2012; 198
Plett (10.1016/j.energy.2016.06.130_bib13) 2004; 134
Eddahech (10.1016/j.energy.2016.06.130_bib22) 2015; 84
Ng (10.1016/j.energy.2016.06.130_bib4) 2009; 86
Hu (10.1016/j.energy.2016.06.130_bib9) 2014; 269
Waag (10.1016/j.energy.2016.06.130_bib1) 2014; 258
Singh (10.1016/j.energy.2016.06.130_bib5) 2006; 51
Junping (10.1016/j.energy.2016.06.130_bib8) 2006; 47
Zheng (10.1016/j.energy.2016.06.130_bib19) 2013; 226
Xia (10.1016/j.energy.2016.06.130_bib3) 2015; 90
Sun (10.1016/j.energy.2016.06.130_bib2) 2011; 3
Pattipati (10.1016/j.energy.2016.06.130_bib30) 2011; 41
Pei (10.1016/j.energy.2016.06.130_bib10) 2014; 66
Hausmann (10.1016/j.energy.2016.06.130_bib18) 2013; 235
Nuhic (10.1016/j.energy.2016.06.130_bib31) 2013; 239
He (10.1016/j.energy.2016.06.130_bib11) 2012; 39
Barré (10.1016/j.energy.2016.06.130_bib21) 2013; 241
Lu (10.1016/j.energy.2016.06.130_bib24) 2013; 226
Mohamed (10.1016/j.energy.2016.06.130_bib28) 1999; 73
Baronti (10.1016/j.energy.2016.06.130_bib26) 2013
Farmann (10.1016/j.energy.2016.06.130_bib17) 2015; 281
Doerffel (10.1016/j.energy.2016.06.130_bib16) 2006; 155
Notten (10.1016/j.energy.2016.06.130_bib23) 2002
Plett (10.1016/j.energy.2016.06.130_bib15) 2004; 134
Shen (10.1016/j.energy.2016.06.130_bib6) 2010; 51
Feng (10.1016/j.energy.2016.06.130_bib12) 2015; 281
Xiong (10.1016/j.energy.2016.06.130_bib14) 2013; 63
Dai (10.1016/j.energy.2016.06.130_bib7) 2015; 80
Vapnik (10.1016/j.energy.2016.06.130_bib29) 1995
Dong (10.1016/j.energy.2016.06.130_bib25) 2016; 162
Han (10.1016/j.energy.2016.06.130_bib27) 2009; 188
References_xml – volume: 84
  start-page: 542
  year: 2015
  end-page: 550
  ident: bib22
  article-title: Performance comparison of four lithium–ion battery technologies under calendar aging
  publication-title: Energy
– start-page: 6728
  year: 2013
  end-page: 6733
  ident: bib26
  article-title: Experimental analysis of open-circuit voltage hysteresis in lithium-iron-phosphate batteries
  publication-title: Industrial electronics society, IECON 2013-39th annual conference of the IEEE
– volume: 73
  start-page: 193
  year: 1999
  end-page: 203
  ident: bib28
  article-title: Adaptive Kalman filtering for INS/GPS
  publication-title: J Geod
– volume: 281
  start-page: 192
  year: 2015
  end-page: 203
  ident: bib12
  article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
  publication-title: J Power Sources
– volume: 66
  start-page: 766
  year: 2014
  end-page: 778
  ident: bib10
  article-title: Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles
  publication-title: Energy
– volume: 198
  start-page: 359
  year: 2012
  end-page: 367
  ident: bib20
  article-title: A comparative study of equivalent circuit models for Li-ion batteries
  publication-title: J Power Sources
– year: 1995
  ident: bib29
  article-title: The nature of statistical learning theory
– volume: 47
  start-page: 858
  year: 2006
  end-page: 864
  ident: bib8
  article-title: Support vector machine based battery model for electric vehicles
  publication-title: Energy Convers Manage
– volume: 269
  start-page: 682
  year: 2014
  end-page: 693
  ident: bib9
  article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression
  publication-title: J Power Sources
– volume: 51
  start-page: 1093
  year: 2010
  end-page: 1098
  ident: bib6
  article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network
  publication-title: Energy Convers Manage
– volume: 3
  start-page: 3531
  year: 2011
  end-page: 3540
  ident: bib2
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
– volume: 258
  start-page: 321
  year: 2014
  end-page: 339
  ident: bib1
  article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
  publication-title: J Power Sources
– volume: 51
  start-page: 1673
  year: 2006
  end-page: 1679
  ident: bib5
  article-title: Fuzzy logic modeling of EIS measurements on lithium-ion batteries
  publication-title: Electrochim Acta
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: bib15
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power Sources
– volume: 80
  start-page: 350
  year: 2015
  end-page: 360
  ident: bib7
  article-title: ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries
  publication-title: Energy
– volume: 155
  start-page: 395
  year: 2006
  end-page: 400
  ident: bib16
  article-title: A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries
  publication-title: J Power Sources
– volume: 63
  start-page: 295
  year: 2013
  end-page: 308
  ident: bib14
  article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Energy
– volume: 226
  start-page: 33
  year: 2013
  end-page: 41
  ident: bib19
  article-title: LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation
  publication-title: J Power Sources
– volume: 281
  start-page: 114
  year: 2015
  end-page: 130
  ident: bib17
  article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles
  publication-title: J Power Sources
– year: 2002
  ident: bib23
  article-title: Battery management systems: design by modeling
– volume: 39
  start-page: 310
  year: 2012
  end-page: 318
  ident: bib11
  article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
  publication-title: Energy
– volume: 239
  start-page: 680
  year: 2013
  end-page: 688
  ident: bib31
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sources
– volume: 86
  start-page: 1506
  year: 2009
  end-page: 1511
  ident: bib4
  article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
  publication-title: Appl Energy
– volume: 235
  start-page: 148
  year: 2013
  end-page: 158
  ident: bib18
  article-title: Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency
  publication-title: J Power Sources
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: bib13
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
  publication-title: J Power Sources
– volume: 41
  start-page: 869
  year: 2011
  end-page: 884
  ident: bib30
  article-title: System identification and estimation framework for pivotal automotive battery management system characteristics
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
– volume: 162
  start-page: 163
  year: 2016
  end-page: 171
  ident: bib25
  article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method
  publication-title: Appl Energy
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib24
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J Power Sources
– volume: 90
  start-page: 1426
  year: 2015
  end-page: 1434
  ident: bib3
  article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method
  publication-title: Energy
– volume: 188
  start-page: 606
  year: 2009
  end-page: 612
  ident: bib27
  article-title: State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter
  publication-title: J Power Sources
– volume: 241
  start-page: 680
  year: 2013
  end-page: 689
  ident: bib21
  article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications
  publication-title: J Power Sources
– volume: 80
  start-page: 350
  year: 2015
  ident: 10.1016/j.energy.2016.06.130_bib7
  article-title: ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.077
– volume: 47
  start-page: 858
  year: 2006
  ident: 10.1016/j.energy.2016.06.130_bib8
  article-title: Support vector machine based battery model for electric vehicles
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2005.06.013
– volume: 63
  start-page: 295
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib14
  article-title: A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.027
– volume: 281
  start-page: 114
  year: 2015
  ident: 10.1016/j.energy.2016.06.130_bib17
  article-title: Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.129
– volume: 86
  start-page: 1506
  year: 2009
  ident: 10.1016/j.energy.2016.06.130_bib4
  article-title: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.021
– volume: 281
  start-page: 192
  year: 2015
  ident: 10.1016/j.energy.2016.06.130_bib12
  article-title: Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.01.154
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib24
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.060
– volume: 258
  start-page: 321
  year: 2014
  ident: 10.1016/j.energy.2016.06.130_bib1
  article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.02.064
– volume: 3
  start-page: 3531
  year: 2011
  ident: 10.1016/j.energy.2016.06.130_bib2
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– volume: 39
  start-page: 310
  year: 2012
  ident: 10.1016/j.energy.2016.06.130_bib11
  article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.009
– year: 2002
  ident: 10.1016/j.energy.2016.06.130_bib23
– year: 1995
  ident: 10.1016/j.energy.2016.06.130_bib29
– volume: 66
  start-page: 766
  year: 2014
  ident: 10.1016/j.energy.2016.06.130_bib10
  article-title: Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.009
– volume: 155
  start-page: 395
  year: 2006
  ident: 10.1016/j.energy.2016.06.130_bib16
  article-title: A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2005.04.030
– volume: 134
  start-page: 277
  year: 2004
  ident: 10.1016/j.energy.2016.06.130_bib15
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 73
  start-page: 193
  year: 1999
  ident: 10.1016/j.energy.2016.06.130_bib28
  article-title: Adaptive Kalman filtering for INS/GPS
  publication-title: J Geod
– volume: 90
  start-page: 1426
  year: 2015
  ident: 10.1016/j.energy.2016.06.130_bib3
  article-title: State of charge estimation of lithium-ion batteries based on an improved parameter identification method
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.095
– volume: 235
  start-page: 148
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib18
  article-title: Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.01.174
– volume: 162
  start-page: 163
  year: 2016
  ident: 10.1016/j.energy.2016.06.130_bib25
  article-title: Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.092
– volume: 226
  start-page: 33
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib19
  article-title: LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.057
– volume: 239
  start-page: 680
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib31
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.11.146
– volume: 269
  start-page: 682
  year: 2014
  ident: 10.1016/j.energy.2016.06.130_bib9
  article-title: State-of-charge estimation for battery management system using optimized support vector machine for regression
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.016
– volume: 241
  start-page: 680
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib21
  article-title: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.05.040
– volume: 198
  start-page: 359
  year: 2012
  ident: 10.1016/j.energy.2016.06.130_bib20
  article-title: A comparative study of equivalent circuit models for Li-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.10.013
– volume: 51
  start-page: 1673
  year: 2006
  ident: 10.1016/j.energy.2016.06.130_bib5
  article-title: Fuzzy logic modeling of EIS measurements on lithium-ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2005.02.143
– volume: 84
  start-page: 542
  year: 2015
  ident: 10.1016/j.energy.2016.06.130_bib22
  article-title: Performance comparison of four lithium–ion battery technologies under calendar aging
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.019
– volume: 134
  start-page: 262
  year: 2004
  ident: 10.1016/j.energy.2016.06.130_bib13
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.032
– volume: 188
  start-page: 606
  year: 2009
  ident: 10.1016/j.energy.2016.06.130_bib27
  article-title: State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.11.143
– volume: 51
  start-page: 1093
  year: 2010
  ident: 10.1016/j.energy.2016.06.130_bib6
  article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.12.015
– start-page: 6728
  year: 2013
  ident: 10.1016/j.energy.2016.06.130_bib26
  article-title: Experimental analysis of open-circuit voltage hysteresis in lithium-iron-phosphate batteries
– volume: 41
  start-page: 869
  year: 2011
  ident: 10.1016/j.energy.2016.06.130_bib30
  article-title: System identification and estimation framework for pivotal automotive battery management system characteristics
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2010.2089979
SSID ssj0005899
Score 2.5449696
Snippet The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms Available capacity prediction
batteries
Battery management system
Dual adaptive extended Kalman filter
hysteresis
iron phosphates
least squares
Least squares support vector machine
lithium
Online parameter identification
prediction
State of charge estimation
support vector machines
temperature
Title Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery
URI https://dx.doi.org/10.1016/j.energy.2016.06.130
https://www.proquest.com/docview/2000519999
Volume 112
WOSCitedRecordID wos000385318700042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdKhwQvCAbTxj8ZCfESeUoTJ7Efp9FpoKrwUKTCS-Q4zpqpJKH_6LfgM_BN8cVOsm5CGw_0IapSO01zv96dffe7Q-itx0KZcpkSkSlKaCpdIlIvIx7LVDTQs3go62YT0XjMplP-udf73XBhNvOoKNh2y6v_Kmp9TgsbqLP_IO72ovqEfq-Fro9a7Pp4J8Gb4qGO2Ih8XvOipLaHEpztagFRmVWTgFxzieq0cqiWpByot2GIjA7YthTiCG2KAGSSknQButER84tyka9mppYDsJhn-fq7A4Q5p5qVy2oGF07qyp07UeOhIRpChdOtSapvtyHeK6N0vs3K4uKnylttZPezR3mL4lPTQfsr9I0urs8_F-XVjYxB2KbEdQQulwSU7irngedUx3oNT6jp-GQVLTUNXqzNtp_dMAdmZ-LyWNU_DxL5QqjWOrChoJ3q2-NP8dmX0SieDKeTd9UPAo3JIIBvu7TcQ3teFHDWR3snH4bTj10eEaublLZ33_Az6yTCm1_8N__nmidQuzeTx-iRXZfgE4OnJ6inin30oKGtL_fRwbCjROqB1iYsn6JfBnC4BRxuAIc7wGENOFwDDpcZNoDDHeBwDTgM4yzg8BXA4Q5wWMMGW8BhuB3cAg5bwD1Dk7Ph5PSc2DYfROrVwoqwhGaCKU4hGSLRBoWnfuaGCVOBF3jSpyIYhEymCfOpl0Qi1Ac3y4B0rrVK5B-gflEW6hDhgHo0ChP9lAWnPKXcS3zJM-pyNwmYyo6Q3zz7WNoS-NCJZR43uY6XsZFYDBKL3RCivUeItLMqUwLmlvFRI9bYurHGPY01LG-Z-aZBQay1PITuRKHK9RKaxcJaS7-e32HMC_Sw-4O9RP3VYq1eoftys8qXi9cWwH8AJrPQNw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+available+capacity+prediction+and+state+of+charge+estimation+based+on+advanced+data-driven+algorithms+for+lithium+iron+phosphate+battery&rft.jtitle=Energy+%28Oxford%29&rft.au=Deng%2C+Zhongwei&rft.au=Yang%2C+Lin&rft.au=Cai%2C+Yishan&rft.au=Deng%2C+Hao&rft.date=2016-10-01&rft.issn=0360-5442&rft.volume=112+p.469-480&rft.spage=469&rft.epage=480&rft_id=info:doi/10.1016%2Fj.energy.2016.06.130&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon