Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces

Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science robotics Ročník 5; číslo 41
Hlavní autoři: Yu, You, Nassar, Joanna, Xu, Changhao, Min, Jihong, Yang, Yiran, Dai, Adam, Doshi, Rohan, Huang, Adrian, Song, Yu, Gehlhar, Rachel, Ames, Aaron D, Gao, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 22.04.2020
Témata:
ISSN:2470-9476, 2470-9476
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH , glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.
AbstractList Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH , glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.
Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.
Author Yang, Yiran
Yu, You
Nassar, Joanna
Gao, Wei
Ames, Aaron D
Dai, Adam
Xu, Changhao
Gehlhar, Rachel
Min, Jihong
Huang, Adrian
Doshi, Rohan
Song, Yu
Author_xml – sequence: 1
  givenname: You
  surname: Yu
  fullname: Yu, You
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 2
  givenname: Joanna
  surname: Nassar
  fullname: Nassar, Joanna
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Changhao
  surname: Xu
  fullname: Xu, Changhao
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 4
  givenname: Jihong
  surname: Min
  fullname: Min, Jihong
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 5
  givenname: Yiran
  surname: Yang
  fullname: Yang, Yiran
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 6
  givenname: Adam
  surname: Dai
  fullname: Dai, Adam
  organization: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 7
  givenname: Rohan
  surname: Doshi
  fullname: Doshi, Rohan
  organization: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 8
  givenname: Adrian
  surname: Huang
  fullname: Huang, Adrian
  organization: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 9
  givenname: Yu
  surname: Song
  fullname: Song, Yu
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 10
  givenname: Rachel
  surname: Gehlhar
  fullname: Gehlhar, Rachel
  organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 11
  givenname: Aaron D
  surname: Ames
  fullname: Ames, Aaron D
  organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 12
  givenname: Wei
  surname: Gao
  fullname: Gao, Wei
  organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32607455$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAYhIOsuOu6v0CQHL1UkzQf7VEXv2DBi55Lmr7ZjbZJTVpW_fUWXMHTDDMPc5hTNPPBA0LnlFxRyuR1Mi6GOgzOpCutv1XJ5RFaMK5IVnIlZ__8HK1SeiOEUCVzydkJmudMEsWFWKDtrQt2hDbrwx4iNDgFO2BowQwxeGdwence792ww93YDq5v4XOitG-mME5cSjiBT85vsQ0R78ZO-6zTZuc8YOcHiFYbSGfo2Oo2weqgS_R6f_eyfsw2zw9P65tNZjgRQ1ZoW5dNCVYTU5TQ1IyKphCCiQaI5UoXJSGac6uoLnIiZCmnpoa6oA0TKmdLdPm728fwMUIaqs4lA22rPYQxVYzTktO8YGxCLw7oWHfQVH10nY5f1d857Ae0em5m
CitedBy_id crossref_primary_10_1016_j_compscitech_2021_109041
crossref_primary_10_1109_JSEN_2024_3411570
crossref_primary_10_1039_D1NR02529E
crossref_primary_10_1007_s11664_024_11598_5
crossref_primary_10_1016_j_cis_2021_102380
crossref_primary_10_1039_D3RA06947H
crossref_primary_10_1002_adhm_202100199
crossref_primary_10_1039_D2NR04551F
crossref_primary_10_1002_adfm_202415933
crossref_primary_10_3390_bios15020124
crossref_primary_10_1109_ACCESS_2024_3515859
crossref_primary_10_1021_acscentsci_4c01541
crossref_primary_10_1126_sciadv_adr4797
crossref_primary_10_1002_adhm_202303921
crossref_primary_10_1002_adma_202200481
crossref_primary_10_1126_sciadv_adw3725
crossref_primary_10_1002_adhm_202100194
crossref_primary_10_1109_JSEN_2022_3155733
crossref_primary_10_1088_2632_959X_abf3d4
crossref_primary_10_1002_aisy_202100263
crossref_primary_10_1016_j_nanoen_2020_105155
crossref_primary_10_1016_j_nanoen_2024_109753
crossref_primary_10_1002_adem_202200785
crossref_primary_10_1063_5_0082863
crossref_primary_10_1038_s41467_023_42149_x
crossref_primary_10_1016_j_nanoen_2023_108293
crossref_primary_10_1088_1748_605X_ad1f78
crossref_primary_10_1002_adfm_202509085
crossref_primary_10_1002_admt_202200270
crossref_primary_10_1016_j_bios_2022_115019
crossref_primary_10_1016_j_talanta_2024_126844
crossref_primary_10_1002_admt_202201234
crossref_primary_10_1002_adfm_202410140
crossref_primary_10_1038_s41528_022_00211_6
crossref_primary_10_1002_adma_202100899
crossref_primary_10_1016_j_nantod_2023_101765
crossref_primary_10_1080_10447318_2024_2316376
crossref_primary_10_1002_admt_202201352
crossref_primary_10_1016_j_nantod_2023_101764
crossref_primary_10_1007_s10965_024_04004_5
crossref_primary_10_3390_jcs6050141
crossref_primary_10_1002_adma_202304465
crossref_primary_10_1039_D4EE03646H
crossref_primary_10_3390_bios14120574
crossref_primary_10_1002_aelm_202200512
crossref_primary_10_1002_adma_202308836
crossref_primary_10_3390_mi15040475
crossref_primary_10_1016_j_snr_2025_100383
crossref_primary_10_1038_s41378_023_00543_x
crossref_primary_10_1016_j_pmatsci_2025_101579
crossref_primary_10_1038_s44222_024_00194_1
crossref_primary_10_1016_j_cja_2022_04_005
crossref_primary_10_1002_adfm_202310963
crossref_primary_10_1021_acssensors_5c00029
crossref_primary_10_1007_s40820_024_01352_1
crossref_primary_10_3390_ma13122733
crossref_primary_10_1016_j_mtphys_2022_100647
crossref_primary_10_1016_j_scib_2024_05_012
crossref_primary_10_3389_fmed_2024_1390634
crossref_primary_10_1002_adfm_202103976
crossref_primary_10_1016_j_bios_2020_112750
crossref_primary_10_1038_s41378_024_00693_6
crossref_primary_10_1038_s42256_023_00760_z
crossref_primary_10_1088_2515_7655_abebcb
crossref_primary_10_1016_j_matt_2022_06_021
crossref_primary_10_1021_acs_nanolett_4c06485
crossref_primary_10_1109_JSEN_2024_3357655
crossref_primary_10_1038_s41528_022_00144_0
crossref_primary_10_1007_s00396_025_05489_2
crossref_primary_10_1002_smll_202206868
crossref_primary_10_1007_s40820_021_00664_w
crossref_primary_10_1109_JSEN_2025_3577581
crossref_primary_10_3390_electronics14061083
crossref_primary_10_1109_JSEN_2020_3044447
crossref_primary_10_1016_j_nanoen_2022_108092
crossref_primary_10_1016_j_esr_2023_101124
crossref_primary_10_1002_dro2_133
crossref_primary_10_1002_ange_202310245
crossref_primary_10_1021_acssensors_5c01284
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_1016_j_mtchem_2025_102727
crossref_primary_10_1016_j_nanoen_2023_109232
crossref_primary_10_1002_adma_202406424
crossref_primary_10_1007_s40820_025_01843_9
crossref_primary_10_1038_s41528_021_00125_9
crossref_primary_10_1109_JSEN_2022_3174134
crossref_primary_10_1002_aenm_202203418
crossref_primary_10_1016_j_cej_2024_156173
crossref_primary_10_1016_j_pmatsci_2025_101491
crossref_primary_10_1002_admi_202101998
crossref_primary_10_1007_s44258_024_00041_3
crossref_primary_10_1002_adfm_202111022
crossref_primary_10_1002_smsc_202300148
crossref_primary_10_1063_5_0152744
crossref_primary_10_1002_admt_202201042
crossref_primary_10_1002_smll_202107879
crossref_primary_10_3389_fbioe_2021_765987
crossref_primary_10_1016_j_bios_2020_112782
crossref_primary_10_1016_j_snb_2024_136187
crossref_primary_10_1016_j_joule_2022_06_011
crossref_primary_10_1186_s40580_021_00289_0
crossref_primary_10_1007_s44174_024_00226_9
crossref_primary_10_1002_admt_202301262
crossref_primary_10_1016_j_sna_2023_114909
crossref_primary_10_1002_admi_202200492
crossref_primary_10_1002_adma_202303197
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_1109_ACCESS_2020_3029130
crossref_primary_10_1002_admt_202201535
crossref_primary_10_1002_smll_202205061
crossref_primary_10_1002_adsr_202200093
crossref_primary_10_1016_j_nanoen_2023_109098
crossref_primary_10_3390_mi14101940
crossref_primary_10_1002_adma_202309868
crossref_primary_10_3390_nano12244390
crossref_primary_10_1016_j_bios_2023_115845
crossref_primary_10_1038_s41928_020_0443_7
crossref_primary_10_1038_s41928_024_01236_7
crossref_primary_10_1002_adma_202212161
crossref_primary_10_1364_PRJ_545013
crossref_primary_10_3390_s22197670
crossref_primary_10_3390_fluids9100223
crossref_primary_10_1016_j_bios_2023_115930
crossref_primary_10_3390_bioengineering10050514
crossref_primary_10_1016_j_talanta_2022_123892
crossref_primary_10_3390_s22155670
crossref_primary_10_1007_s00604_022_05228_2
crossref_primary_10_1109_JSAC_2024_3399255
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1038_s41928_024_01247_4
crossref_primary_10_1002_bmm2_12124
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_1038_s41378_022_00443_6
crossref_primary_10_1016_j_sna_2024_116144
crossref_primary_10_1002_adsr_202400100
crossref_primary_10_3390_nano13040645
crossref_primary_10_1109_JSEN_2025_3541823
crossref_primary_10_1111_nbu_12581
crossref_primary_10_1007_s12274_022_4440_1
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1002_adhm_202202846
crossref_primary_10_1007_s42242_021_00156_1
crossref_primary_10_1016_j_jpowsour_2024_234224
crossref_primary_10_1002_smll_202207134
crossref_primary_10_1038_s44287_025_00206_1
crossref_primary_10_1039_D4CC06078D
crossref_primary_10_1002_adma_202310505
crossref_primary_10_1016_j_bios_2021_113054
crossref_primary_10_3390_mi12091091
crossref_primary_10_1002_aelm_202300334
crossref_primary_10_1016_j_matt_2022_05_013
crossref_primary_10_1002_advs_202104426
crossref_primary_10_1002_cjoc_202200631
crossref_primary_10_1109_THMS_2025_3552662
crossref_primary_10_1002_smll_202108091
crossref_primary_10_1038_s41528_025_00431_6
crossref_primary_10_1002_aesr_202000045
crossref_primary_10_1002_inf2_12412
crossref_primary_10_1063_5_0107318
crossref_primary_10_1002_adfm_202309447
crossref_primary_10_1016_j_jpowsour_2020_229271
crossref_primary_10_1002_adma_202001903
crossref_primary_10_1016_j_snr_2024_100260
crossref_primary_10_1002_adma_202400181
crossref_primary_10_1007_s42765_024_00484_8
crossref_primary_10_1063_5_0086935
crossref_primary_10_1007_s42765_021_00129_0
crossref_primary_10_1002_smll_202407614
crossref_primary_10_1126_science_adk5556
crossref_primary_10_1002_smm2_1325
crossref_primary_10_1002_anbr_202200040
crossref_primary_10_1038_s41551_023_01059_5
crossref_primary_10_1007_s40820_022_00911_8
crossref_primary_10_1016_j_ijhydene_2021_02_150
crossref_primary_10_3390_s24082549
crossref_primary_10_1126_sciadv_adw5991
crossref_primary_10_1007_s00542_025_05868_3
crossref_primary_10_1002_admt_202001023
crossref_primary_10_1016_j_nanoen_2024_110252
crossref_primary_10_1016_j_nanoen_2022_107608
crossref_primary_10_1038_s41467_024_50494_8
crossref_primary_10_3390_chemosensors10110484
crossref_primary_10_1002_adfm_202107042
crossref_primary_10_1007_s40820_024_01597_w
crossref_primary_10_1016_j_joule_2021_06_004
crossref_primary_10_1016_j_sna_2022_113715
crossref_primary_10_3390_biomimetics9050278
crossref_primary_10_1002_admt_202200106
crossref_primary_10_1002_advs_202104635
crossref_primary_10_3390_polym15183692
crossref_primary_10_1002_admt_202401983
crossref_primary_10_1016_j_bios_2020_112946
crossref_primary_10_1039_D3SD00284E
crossref_primary_10_1002_adhm_202302460
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1016_j_nanoen_2021_106569
crossref_primary_10_1002_aisy_202300359
crossref_primary_10_1038_s41578_022_00441_0
crossref_primary_10_1021_acsmaterialsau_5c00039
crossref_primary_10_1016_j_nanoen_2021_106682
crossref_primary_10_1038_s41467_021_21701_7
crossref_primary_10_1002_adma_202413112
crossref_primary_10_1002_sus2_14
crossref_primary_10_1038_s41378_021_00248_z
crossref_primary_10_1039_D0NH00594K
crossref_primary_10_1002_admt_202200477
crossref_primary_10_1007_s42765_024_00398_5
crossref_primary_10_1038_s44222_025_00328_z
crossref_primary_10_1016_j_cej_2022_136270
crossref_primary_10_1039_D1EE03113A
crossref_primary_10_1016_j_snb_2021_129447
crossref_primary_10_1146_annurev_bioeng_103122_032652
crossref_primary_10_1016_j_bios_2021_113007
crossref_primary_10_1016_j_bios_2021_113249
crossref_primary_10_1016_j_snb_2022_131806
crossref_primary_10_1002_admt_202201936
crossref_primary_10_1007_s42114_022_00472_9
crossref_primary_10_1038_s41578_022_00477_2
crossref_primary_10_1016_j_crmeth_2023_100579
crossref_primary_10_1002_smll_202408745
crossref_primary_10_1002_adma_202205249
crossref_primary_10_1002_adma_202203193
crossref_primary_10_1007_s12221_022_4839_z
crossref_primary_10_1002_adma_202313837
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_1088_1361_6463_ac14ef
crossref_primary_10_1002_advs_202205343
crossref_primary_10_1002_adfm_202505046
crossref_primary_10_1126_scirobotics_abd6107
crossref_primary_10_1021_acs_nanolett_5c02380
crossref_primary_10_1038_s41551_022_00916_z
crossref_primary_10_1109_JIOT_2024_3383472
crossref_primary_10_1016_j_scib_2021_04_035
crossref_primary_10_1063_5_0094289
crossref_primary_10_1109_JSEN_2021_3074311
crossref_primary_10_1002_advs_202307693
crossref_primary_10_3390_bios14070316
crossref_primary_10_1016_j_addr_2020_09_011
crossref_primary_10_1016_j_jhazmat_2021_127014
crossref_primary_10_1016_j_surfin_2024_104247
crossref_primary_10_1016_j_est_2024_110604
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_1007_s00419_024_02689_0
crossref_primary_10_1002_adfm_202109430
crossref_primary_10_1016_j_cej_2022_140443
crossref_primary_10_1016_j_ijmecsci_2023_108564
crossref_primary_10_1002_adfm_202110535
crossref_primary_10_1038_s41467_023_36017_x
crossref_primary_10_1021_acs_nanolett_5c01155
crossref_primary_10_1016_j_snb_2024_136859
crossref_primary_10_1088_1361_665X_ac8c0b
crossref_primary_10_1002_adfm_202404329
crossref_primary_10_1002_admt_202301583
crossref_primary_10_1039_D4NR04645E
crossref_primary_10_1002_advs_202409178
crossref_primary_10_3390_chemosensors9050099
crossref_primary_10_1016_j_electacta_2021_139179
crossref_primary_10_1002_adma_202400333
crossref_primary_10_1038_s41467_024_51102_5
crossref_primary_10_1557_s43577_024_00809_3
crossref_primary_10_1002_adma_202107902
crossref_primary_10_1038_s41467_025_60341_z
crossref_primary_10_1109_JSSC_2020_3035491
crossref_primary_10_3390_nano11051220
crossref_primary_10_3390_jcm13175284
crossref_primary_10_1016_j_electacta_2022_140440
crossref_primary_10_1016_j_jcis_2021_06_054
crossref_primary_10_1039_D2NR04283E
crossref_primary_10_3390_mi16040394
crossref_primary_10_1002_adhm_202202629
crossref_primary_10_1016_j_nanoen_2022_107774
crossref_primary_10_1002_adfm_202312443
crossref_primary_10_1002_admt_202500937
crossref_primary_10_1002_mame_202400116
crossref_primary_10_1002_adfm_202200694
crossref_primary_10_1038_s41378_022_00419_6
crossref_primary_10_1002_adma_202304701
crossref_primary_10_1016_j_mtener_2021_100900
crossref_primary_10_1016_j_surfin_2024_104312
crossref_primary_10_1016_j_cej_2023_142055
crossref_primary_10_1002_adma_202101262
crossref_primary_10_1002_sus2_204
crossref_primary_10_3390_s22062244
crossref_primary_10_1038_s41565_023_01513_0
crossref_primary_10_1002_adma_202305917
crossref_primary_10_1002_adfm_202105380
crossref_primary_10_1016_j_jelechem_2023_117330
crossref_primary_10_1002_adfm_202310254
crossref_primary_10_1038_s41928_023_00996_y
crossref_primary_10_1126_scirobotics_abn0495
crossref_primary_10_1002_adma_202311472
crossref_primary_10_1039_D0EE04013D
crossref_primary_10_1016_j_biosx_2025_100678
crossref_primary_10_1002_admt_202200513
crossref_primary_10_1016_j_applthermaleng_2021_117937
crossref_primary_10_1016_j_inffus_2025_103409
crossref_primary_10_1016_j_scib_2023_10_011
crossref_primary_10_1007_s12274_021_3831_z
crossref_primary_10_1038_s41467_025_57112_1
crossref_primary_10_1039_D2EE01590K
crossref_primary_10_1002_advs_202204875
crossref_primary_10_1038_s41528_022_00192_6
crossref_primary_10_1016_j_sna_2025_117053
crossref_primary_10_1038_s41427_020_00280_x
crossref_primary_10_1002_EXP_20210112
crossref_primary_10_3390_mi15070884
crossref_primary_10_1016_j_nanoen_2023_108436
crossref_primary_10_1016_j_bios_2021_113761
crossref_primary_10_1021_acsanm_5c03520
crossref_primary_10_1016_j_cej_2023_141970
crossref_primary_10_1016_j_device_2024_100503
crossref_primary_10_1002_aelm_202201343
crossref_primary_10_1002_anie_202310245
crossref_primary_10_3390_s21010161
crossref_primary_10_1038_s41378_024_00739_9
crossref_primary_10_1002_cmt2_33
crossref_primary_10_1002_aesr_202100031
crossref_primary_10_1016_j_snb_2023_134401
crossref_primary_10_1002_adhm_202100577
crossref_primary_10_3390_mi12080869
crossref_primary_10_1038_s44222_025_00285_7
crossref_primary_10_1002_adfm_202008087
crossref_primary_10_1016_j_mser_2025_100934
crossref_primary_10_3390_bios11080245
crossref_primary_10_1007_s40820_024_01602_2
crossref_primary_10_3390_polym16101304
crossref_primary_10_1002_adsr_202300013
crossref_primary_10_1038_s41528_022_00215_2
crossref_primary_10_1002_adfm_202009289
crossref_primary_10_1002_aenm_202203692
crossref_primary_10_1016_j_fmre_2021_05_002
crossref_primary_10_1109_TIE_2023_3326095
crossref_primary_10_3390_s23239453
crossref_primary_10_1002_adrr_202500047
crossref_primary_10_1002_smtd_202200142
crossref_primary_10_1002_adma_202204091
crossref_primary_10_1002_smll_202304004
crossref_primary_10_1080_10408363_2025_2453152
crossref_primary_10_1016_j_trac_2020_116024
crossref_primary_10_59717_j_xinn_mater_2025_100143
crossref_primary_10_1002_adma_202209300
crossref_primary_10_3389_fmats_2023_1146045
crossref_primary_10_1016_j_nanoen_2025_111157
crossref_primary_10_1002_adfm_202303361
crossref_primary_10_1007_s40436_024_00510_3
crossref_primary_10_1016_j_bios_2021_113855
crossref_primary_10_1007_s42242_021_00171_2
crossref_primary_10_1089_soro_2022_0211
crossref_primary_10_1002_smll_202306655
crossref_primary_10_1002_admt_202000407
crossref_primary_10_1016_j_mtener_2021_100786
crossref_primary_10_1016_j_nanoen_2023_108344
crossref_primary_10_1038_s43246_024_00680_4
crossref_primary_10_1007_s11708_025_0992_6
crossref_primary_10_1109_JIOT_2024_3456244
crossref_primary_10_1080_09205063_2024_2334974
crossref_primary_10_3390_chemosensors10010022
crossref_primary_10_1016_j_coelec_2021_100755
crossref_primary_10_1016_j_actbio_2024_12_037
crossref_primary_10_1016_j_bios_2022_114825
crossref_primary_10_1016_j_cej_2024_157336
crossref_primary_10_1038_s41570_022_00439_w
crossref_primary_10_1039_D4MH00757C
crossref_primary_10_1038_s41928_024_01194_0
crossref_primary_10_1016_j_matt_2025_102048
crossref_primary_10_1002_admt_202000759
crossref_primary_10_1002_adfm_202102378
crossref_primary_10_1039_D5MH00528K
crossref_primary_10_1002_aelm_202400884
crossref_primary_10_1007_s44258_023_00001_3
crossref_primary_10_1016_j_cjac_2021_11_004
crossref_primary_10_1002_adhm_202402891
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1109_JIOT_2022_3142781
crossref_primary_10_1016_j_trac_2021_116476
crossref_primary_10_1002_admt_202100020
crossref_primary_10_1016_j_device_2023_100216
crossref_primary_10_3390_polym15030764
crossref_primary_10_1088_1674_4926_44_2_021601
crossref_primary_10_1002_adsu_202400884
crossref_primary_10_1002_advs_202408384
crossref_primary_10_1016_j_apmt_2021_101257
crossref_primary_10_1002_chem_202202002
crossref_primary_10_1016_j_nanoen_2020_105627
crossref_primary_10_1016_j_nanoen_2023_108535
crossref_primary_10_1016_j_trac_2025_118169
crossref_primary_10_1002_rpm_20240018
crossref_primary_10_1063_5_0077667
crossref_primary_10_1109_JSEN_2023_3281426
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1016_j_device_2024_100401
crossref_primary_10_1002_adfm_202209697
crossref_primary_10_1002_apxr_202400182
crossref_primary_10_1097_PRS_0000000000010270
crossref_primary_10_1016_j_device_2024_100640
crossref_primary_10_1016_j_snb_2023_133451
crossref_primary_10_1017_S026357472200131X
crossref_primary_10_1002_adfm_202208362
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1016_j_copbio_2021_08_005
crossref_primary_10_1016_j_pmatsci_2023_101172
crossref_primary_10_1016_j_jcis_2022_12_166
crossref_primary_10_1002_adma_202503413
crossref_primary_10_1016_j_apmt_2022_101423
crossref_primary_10_1002_advs_202100827
crossref_primary_10_1088_1674_1056_ac7a15
crossref_primary_10_1002_adfm_202302345
crossref_primary_10_1039_D3NR06521A
crossref_primary_10_1016_j_mtnano_2023_100439
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/scirobotics.aaz7946
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2470-9476
ExternalDocumentID 32607455
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINR NIH HHS
  grantid: R21 NR018271
GroupedDBID 0R~
ABJNI
ACGFS
AFQFN
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BKF
CGR
CUY
CVF
EBS
ECM
EIF
NPM
O9-
SJN
7X8
ID FETCH-LOGICAL-c405t-8afb9d9efa0c89edb215d85525de0f47a8900a44f71a83056965debeb81d25732
IEDL.DBID 7X8
ISICitedReferencesCount 556
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000550012800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-9476
IngestDate Thu Oct 02 12:07:17 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-8afb9d9efa0c89edb215d85525de0f47a8900a44f71a83056965debeb81d25732
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7326328
PMID 32607455
PQID 2419413822
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2419413822
pubmed_primary_32607455
PublicationCentury 2000
PublicationDate 2020-04-22
PublicationDateYYYYMMDD 2020-04-22
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science robotics
PublicationTitleAlternate Sci Robot
PublicationYear 2020
SSID ssj0001763642
Score 2.619728
Snippet Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Bioelectric Energy Sources
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Humans
Muscle Contraction
Nanoparticles
Robotics - instrumentation
Robotics - methods
Skin Temperature
Sweat
Wearable Electronic Devices
Wireless Technology
Title Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/32607455
https://www.proquest.com/docview/2419413822
Volume 5
WOSCitedRecordID wos000550012800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWAMsDA-1FeMhKrIThOYk8IEBUDVB0AdYscP6qKkpSmRYiv5940VVmQkFiyJJYi-_r6-Pr4HELOIry8KDLFwlijhRmPmPZcMg_DLUwc-KSqQ748JO227HZVpy64lTWtcpYTq0RtC4M18gtYaZRAwTx-NXxn6BqFp6u1hcYiaYQAZZDSlXTlvMYCkyeu_HO4SAKmRBLXwkP1vZlRkRWohnyu9Rcqrf8OM6vlprX-3x_dIGs10KTX08jYJAsu3yKrP-QHt0nvpl_4iRuwIVqlOUtLyMl0boxDy9d-TrFSS2e8w0_4SueWosLxAJIkLZEAn_coYF9a-f2xt4qe6SgKUYw8Mr52yHPr7un2ntXGC8wAfhszqX2mrHJeB0YqZzPABVZGEY-sC7xItFRBoIXwyaWWuAdRMbzJXAbgF1JAyHfJUl7kbp9QyBnGBKGVyjrhtMhEIk0obWwMaqfFTXI668UUAhtPK3TuikmZzvuxSfamQ5EOpwocKWBOgD5RdPCH1odkheMeORCM8yPS8DCt3TFZNh_jfjk6qSIGnu3O4zfiVM3P
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofuel-powered+soft+electronic+skin+with+multiplexed+and+wireless+sensing+for+human-machine+interfaces&rft.jtitle=Science+robotics&rft.au=Yu%2C+You&rft.au=Nassar%2C+Joanna&rft.au=Xu%2C+Changhao&rft.au=Min%2C+Jihong&rft.date=2020-04-22&rft.eissn=2470-9476&rft.volume=5&rft.issue=41&rft_id=info:doi/10.1126%2Fscirobotics.aaz7946&rft_id=info%3Apmid%2F32607455&rft_id=info%3Apmid%2F32607455&rft.externalDocID=32607455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-9476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-9476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-9476&client=summon