Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces
Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite...
Uložené v:
| Vydané v: | Science robotics Ročník 5; číslo 41 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
22.04.2020
|
| Predmet: | |
| ISSN: | 2470-9476, 2470-9476 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter
for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH
, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking. |
|---|---|
| AbstractList | Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter
for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH
, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking. Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking. |
| Author | Yang, Yiran Yu, You Nassar, Joanna Gao, Wei Ames, Aaron D Dai, Adam Xu, Changhao Gehlhar, Rachel Min, Jihong Huang, Adrian Doshi, Rohan Song, Yu |
| Author_xml | – sequence: 1 givenname: You surname: Yu fullname: Yu, You organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 2 givenname: Joanna surname: Nassar fullname: Nassar, Joanna organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 3 givenname: Changhao surname: Xu fullname: Xu, Changhao organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 4 givenname: Jihong surname: Min fullname: Min, Jihong organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 5 givenname: Yiran surname: Yang fullname: Yang, Yiran organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 6 givenname: Adam surname: Dai fullname: Dai, Adam organization: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 7 givenname: Rohan surname: Doshi fullname: Doshi, Rohan organization: Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 8 givenname: Adrian surname: Huang fullname: Huang, Adrian organization: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 9 givenname: Yu surname: Song fullname: Song, Yu organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 10 givenname: Rachel surname: Gehlhar fullname: Gehlhar, Rachel organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 11 givenname: Aaron D surname: Ames fullname: Ames, Aaron D organization: Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 12 givenname: Wei surname: Gao fullname: Gao, Wei organization: Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32607455$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAYhIOsuOu6v0CQHL1UkzQf7VEXv2DBi55Lmr7ZjbZJTVpW_fUWXMHTDDMPc5hTNPPBA0LnlFxRyuR1Mi6GOgzOpCutv1XJ5RFaMK5IVnIlZ__8HK1SeiOEUCVzydkJmudMEsWFWKDtrQt2hDbrwx4iNDgFO2BowQwxeGdwence792ww93YDq5v4XOitG-mME5cSjiBT85vsQ0R78ZO-6zTZuc8YOcHiFYbSGfo2Oo2weqgS_R6f_eyfsw2zw9P65tNZjgRQ1ZoW5dNCVYTU5TQ1IyKphCCiQaI5UoXJSGac6uoLnIiZCmnpoa6oA0TKmdLdPm728fwMUIaqs4lA22rPYQxVYzTktO8YGxCLw7oWHfQVH10nY5f1d857Ae0em5m |
| CitedBy_id | crossref_primary_10_1016_j_compscitech_2021_109041 crossref_primary_10_1109_JSEN_2024_3411570 crossref_primary_10_1039_D1NR02529E crossref_primary_10_1007_s11664_024_11598_5 crossref_primary_10_1016_j_cis_2021_102380 crossref_primary_10_1039_D3RA06947H crossref_primary_10_1002_adhm_202100199 crossref_primary_10_1039_D2NR04551F crossref_primary_10_1002_adfm_202415933 crossref_primary_10_3390_bios15020124 crossref_primary_10_1109_ACCESS_2024_3515859 crossref_primary_10_1021_acscentsci_4c01541 crossref_primary_10_1126_sciadv_adr4797 crossref_primary_10_1002_adhm_202303921 crossref_primary_10_1002_adma_202200481 crossref_primary_10_1126_sciadv_adw3725 crossref_primary_10_1002_adhm_202100194 crossref_primary_10_1109_JSEN_2022_3155733 crossref_primary_10_1088_2632_959X_abf3d4 crossref_primary_10_1002_aisy_202100263 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_1016_j_nanoen_2024_109753 crossref_primary_10_1002_adem_202200785 crossref_primary_10_1063_5_0082863 crossref_primary_10_1038_s41467_023_42149_x crossref_primary_10_1016_j_nanoen_2023_108293 crossref_primary_10_1088_1748_605X_ad1f78 crossref_primary_10_1002_adfm_202509085 crossref_primary_10_1002_admt_202200270 crossref_primary_10_1016_j_bios_2022_115019 crossref_primary_10_1016_j_talanta_2024_126844 crossref_primary_10_1002_admt_202201234 crossref_primary_10_1002_adfm_202410140 crossref_primary_10_1038_s41528_022_00211_6 crossref_primary_10_1002_adma_202100899 crossref_primary_10_1016_j_nantod_2023_101765 crossref_primary_10_1080_10447318_2024_2316376 crossref_primary_10_1002_admt_202201352 crossref_primary_10_1016_j_nantod_2023_101764 crossref_primary_10_1007_s10965_024_04004_5 crossref_primary_10_3390_jcs6050141 crossref_primary_10_1002_adma_202304465 crossref_primary_10_1039_D4EE03646H crossref_primary_10_3390_bios14120574 crossref_primary_10_1002_aelm_202200512 crossref_primary_10_1002_adma_202308836 crossref_primary_10_3390_mi15040475 crossref_primary_10_1016_j_snr_2025_100383 crossref_primary_10_1038_s41378_023_00543_x crossref_primary_10_1016_j_pmatsci_2025_101579 crossref_primary_10_1038_s44222_024_00194_1 crossref_primary_10_1016_j_cja_2022_04_005 crossref_primary_10_1002_adfm_202310963 crossref_primary_10_1021_acssensors_5c00029 crossref_primary_10_1007_s40820_024_01352_1 crossref_primary_10_3390_ma13122733 crossref_primary_10_1016_j_mtphys_2022_100647 crossref_primary_10_1016_j_scib_2024_05_012 crossref_primary_10_3389_fmed_2024_1390634 crossref_primary_10_1002_adfm_202103976 crossref_primary_10_1016_j_bios_2020_112750 crossref_primary_10_1038_s41378_024_00693_6 crossref_primary_10_1038_s42256_023_00760_z crossref_primary_10_1088_2515_7655_abebcb crossref_primary_10_1016_j_matt_2022_06_021 crossref_primary_10_1021_acs_nanolett_4c06485 crossref_primary_10_1109_JSEN_2024_3357655 crossref_primary_10_1038_s41528_022_00144_0 crossref_primary_10_1007_s00396_025_05489_2 crossref_primary_10_1002_smll_202206868 crossref_primary_10_1007_s40820_021_00664_w crossref_primary_10_1109_JSEN_2025_3577581 crossref_primary_10_3390_electronics14061083 crossref_primary_10_1109_JSEN_2020_3044447 crossref_primary_10_1016_j_nanoen_2022_108092 crossref_primary_10_1016_j_esr_2023_101124 crossref_primary_10_1002_dro2_133 crossref_primary_10_1002_ange_202310245 crossref_primary_10_1021_acssensors_5c01284 crossref_primary_10_1016_j_nanoen_2025_110805 crossref_primary_10_1016_j_mtchem_2025_102727 crossref_primary_10_1016_j_nanoen_2023_109232 crossref_primary_10_1002_adma_202406424 crossref_primary_10_1007_s40820_025_01843_9 crossref_primary_10_1038_s41528_021_00125_9 crossref_primary_10_1109_JSEN_2022_3174134 crossref_primary_10_1002_aenm_202203418 crossref_primary_10_1016_j_cej_2024_156173 crossref_primary_10_1016_j_pmatsci_2025_101491 crossref_primary_10_1002_admi_202101998 crossref_primary_10_1007_s44258_024_00041_3 crossref_primary_10_1002_adfm_202111022 crossref_primary_10_1002_smsc_202300148 crossref_primary_10_1063_5_0152744 crossref_primary_10_1002_admt_202201042 crossref_primary_10_1002_smll_202107879 crossref_primary_10_3389_fbioe_2021_765987 crossref_primary_10_1016_j_bios_2020_112782 crossref_primary_10_1016_j_snb_2024_136187 crossref_primary_10_1016_j_joule_2022_06_011 crossref_primary_10_1186_s40580_021_00289_0 crossref_primary_10_1007_s44174_024_00226_9 crossref_primary_10_1002_admt_202301262 crossref_primary_10_1016_j_sna_2023_114909 crossref_primary_10_1002_admi_202200492 crossref_primary_10_1002_adma_202303197 crossref_primary_10_1002_adfm_202200260 crossref_primary_10_1109_ACCESS_2020_3029130 crossref_primary_10_1002_admt_202201535 crossref_primary_10_1002_smll_202205061 crossref_primary_10_1002_adsr_202200093 crossref_primary_10_1016_j_nanoen_2023_109098 crossref_primary_10_3390_mi14101940 crossref_primary_10_1002_adma_202309868 crossref_primary_10_3390_nano12244390 crossref_primary_10_1016_j_bios_2023_115845 crossref_primary_10_1038_s41928_020_0443_7 crossref_primary_10_1038_s41928_024_01236_7 crossref_primary_10_1002_adma_202212161 crossref_primary_10_1364_PRJ_545013 crossref_primary_10_3390_s22197670 crossref_primary_10_3390_fluids9100223 crossref_primary_10_1016_j_bios_2023_115930 crossref_primary_10_3390_bioengineering10050514 crossref_primary_10_1016_j_talanta_2022_123892 crossref_primary_10_3390_s22155670 crossref_primary_10_1007_s00604_022_05228_2 crossref_primary_10_1109_JSAC_2024_3399255 crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1038_s41928_024_01247_4 crossref_primary_10_1002_bmm2_12124 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_1038_s41378_022_00443_6 crossref_primary_10_1016_j_sna_2024_116144 crossref_primary_10_1002_adsr_202400100 crossref_primary_10_3390_nano13040645 crossref_primary_10_1109_JSEN_2025_3541823 crossref_primary_10_1111_nbu_12581 crossref_primary_10_1007_s12274_022_4440_1 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1002_adhm_202202846 crossref_primary_10_1007_s42242_021_00156_1 crossref_primary_10_1016_j_jpowsour_2024_234224 crossref_primary_10_1002_smll_202207134 crossref_primary_10_1038_s44287_025_00206_1 crossref_primary_10_1039_D4CC06078D crossref_primary_10_1002_adma_202310505 crossref_primary_10_1016_j_bios_2021_113054 crossref_primary_10_3390_mi12091091 crossref_primary_10_1002_aelm_202300334 crossref_primary_10_1016_j_matt_2022_05_013 crossref_primary_10_1002_advs_202104426 crossref_primary_10_1002_cjoc_202200631 crossref_primary_10_1109_THMS_2025_3552662 crossref_primary_10_1002_smll_202108091 crossref_primary_10_1038_s41528_025_00431_6 crossref_primary_10_1002_aesr_202000045 crossref_primary_10_1002_inf2_12412 crossref_primary_10_1063_5_0107318 crossref_primary_10_1002_adfm_202309447 crossref_primary_10_1016_j_jpowsour_2020_229271 crossref_primary_10_1002_adma_202001903 crossref_primary_10_1016_j_snr_2024_100260 crossref_primary_10_1002_adma_202400181 crossref_primary_10_1007_s42765_024_00484_8 crossref_primary_10_1063_5_0086935 crossref_primary_10_1007_s42765_021_00129_0 crossref_primary_10_1002_smll_202407614 crossref_primary_10_1126_science_adk5556 crossref_primary_10_1002_smm2_1325 crossref_primary_10_1002_anbr_202200040 crossref_primary_10_1038_s41551_023_01059_5 crossref_primary_10_1007_s40820_022_00911_8 crossref_primary_10_1016_j_ijhydene_2021_02_150 crossref_primary_10_3390_s24082549 crossref_primary_10_1126_sciadv_adw5991 crossref_primary_10_1007_s00542_025_05868_3 crossref_primary_10_1002_admt_202001023 crossref_primary_10_1016_j_nanoen_2024_110252 crossref_primary_10_1016_j_nanoen_2022_107608 crossref_primary_10_1038_s41467_024_50494_8 crossref_primary_10_3390_chemosensors10110484 crossref_primary_10_1002_adfm_202107042 crossref_primary_10_1007_s40820_024_01597_w crossref_primary_10_1016_j_joule_2021_06_004 crossref_primary_10_1016_j_sna_2022_113715 crossref_primary_10_3390_biomimetics9050278 crossref_primary_10_1002_admt_202200106 crossref_primary_10_1002_advs_202104635 crossref_primary_10_3390_polym15183692 crossref_primary_10_1002_admt_202401983 crossref_primary_10_1016_j_bios_2020_112946 crossref_primary_10_1039_D3SD00284E crossref_primary_10_1002_adhm_202302460 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1016_j_nanoen_2021_106569 crossref_primary_10_1002_aisy_202300359 crossref_primary_10_1038_s41578_022_00441_0 crossref_primary_10_1021_acsmaterialsau_5c00039 crossref_primary_10_1016_j_nanoen_2021_106682 crossref_primary_10_1038_s41467_021_21701_7 crossref_primary_10_1002_adma_202413112 crossref_primary_10_1002_sus2_14 crossref_primary_10_1038_s41378_021_00248_z crossref_primary_10_1039_D0NH00594K crossref_primary_10_1002_admt_202200477 crossref_primary_10_1007_s42765_024_00398_5 crossref_primary_10_1038_s44222_025_00328_z crossref_primary_10_1016_j_cej_2022_136270 crossref_primary_10_1039_D1EE03113A crossref_primary_10_1016_j_snb_2021_129447 crossref_primary_10_1146_annurev_bioeng_103122_032652 crossref_primary_10_1016_j_bios_2021_113007 crossref_primary_10_1016_j_bios_2021_113249 crossref_primary_10_1016_j_snb_2022_131806 crossref_primary_10_1002_admt_202201936 crossref_primary_10_1007_s42114_022_00472_9 crossref_primary_10_1038_s41578_022_00477_2 crossref_primary_10_1016_j_crmeth_2023_100579 crossref_primary_10_1002_smll_202408745 crossref_primary_10_1002_adma_202205249 crossref_primary_10_1002_adma_202203193 crossref_primary_10_1007_s12221_022_4839_z crossref_primary_10_1002_adma_202313837 crossref_primary_10_3390_chemosensors11090470 crossref_primary_10_1088_1361_6463_ac14ef crossref_primary_10_1002_advs_202205343 crossref_primary_10_1002_adfm_202505046 crossref_primary_10_1126_scirobotics_abd6107 crossref_primary_10_1021_acs_nanolett_5c02380 crossref_primary_10_1038_s41551_022_00916_z crossref_primary_10_1109_JIOT_2024_3383472 crossref_primary_10_1016_j_scib_2021_04_035 crossref_primary_10_1063_5_0094289 crossref_primary_10_1109_JSEN_2021_3074311 crossref_primary_10_1002_advs_202307693 crossref_primary_10_3390_bios14070316 crossref_primary_10_1016_j_addr_2020_09_011 crossref_primary_10_1016_j_jhazmat_2021_127014 crossref_primary_10_1016_j_surfin_2024_104247 crossref_primary_10_1016_j_est_2024_110604 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1007_s00419_024_02689_0 crossref_primary_10_1002_adfm_202109430 crossref_primary_10_1016_j_cej_2022_140443 crossref_primary_10_1016_j_ijmecsci_2023_108564 crossref_primary_10_1002_adfm_202110535 crossref_primary_10_1038_s41467_023_36017_x crossref_primary_10_1021_acs_nanolett_5c01155 crossref_primary_10_1016_j_snb_2024_136859 crossref_primary_10_1088_1361_665X_ac8c0b crossref_primary_10_1002_adfm_202404329 crossref_primary_10_1002_admt_202301583 crossref_primary_10_1039_D4NR04645E crossref_primary_10_1002_advs_202409178 crossref_primary_10_3390_chemosensors9050099 crossref_primary_10_1016_j_electacta_2021_139179 crossref_primary_10_1002_adma_202400333 crossref_primary_10_1038_s41467_024_51102_5 crossref_primary_10_1557_s43577_024_00809_3 crossref_primary_10_1002_adma_202107902 crossref_primary_10_1038_s41467_025_60341_z crossref_primary_10_1109_JSSC_2020_3035491 crossref_primary_10_3390_nano11051220 crossref_primary_10_3390_jcm13175284 crossref_primary_10_1016_j_electacta_2022_140440 crossref_primary_10_1016_j_jcis_2021_06_054 crossref_primary_10_1039_D2NR04283E crossref_primary_10_3390_mi16040394 crossref_primary_10_1002_adhm_202202629 crossref_primary_10_1016_j_nanoen_2022_107774 crossref_primary_10_1002_adfm_202312443 crossref_primary_10_1002_admt_202500937 crossref_primary_10_1002_mame_202400116 crossref_primary_10_1002_adfm_202200694 crossref_primary_10_1038_s41378_022_00419_6 crossref_primary_10_1002_adma_202304701 crossref_primary_10_1016_j_mtener_2021_100900 crossref_primary_10_1016_j_surfin_2024_104312 crossref_primary_10_1016_j_cej_2023_142055 crossref_primary_10_1002_adma_202101262 crossref_primary_10_1002_sus2_204 crossref_primary_10_3390_s22062244 crossref_primary_10_1038_s41565_023_01513_0 crossref_primary_10_1002_adma_202305917 crossref_primary_10_1002_adfm_202105380 crossref_primary_10_1016_j_jelechem_2023_117330 crossref_primary_10_1002_adfm_202310254 crossref_primary_10_1038_s41928_023_00996_y crossref_primary_10_1126_scirobotics_abn0495 crossref_primary_10_1002_adma_202311472 crossref_primary_10_1039_D0EE04013D crossref_primary_10_1016_j_biosx_2025_100678 crossref_primary_10_1002_admt_202200513 crossref_primary_10_1016_j_applthermaleng_2021_117937 crossref_primary_10_1016_j_inffus_2025_103409 crossref_primary_10_1016_j_scib_2023_10_011 crossref_primary_10_1007_s12274_021_3831_z crossref_primary_10_1038_s41467_025_57112_1 crossref_primary_10_1039_D2EE01590K crossref_primary_10_1002_advs_202204875 crossref_primary_10_1038_s41528_022_00192_6 crossref_primary_10_1016_j_sna_2025_117053 crossref_primary_10_1038_s41427_020_00280_x crossref_primary_10_1002_EXP_20210112 crossref_primary_10_3390_mi15070884 crossref_primary_10_1016_j_nanoen_2023_108436 crossref_primary_10_1016_j_bios_2021_113761 crossref_primary_10_1021_acsanm_5c03520 crossref_primary_10_1016_j_cej_2023_141970 crossref_primary_10_1016_j_device_2024_100503 crossref_primary_10_1002_aelm_202201343 crossref_primary_10_1002_anie_202310245 crossref_primary_10_3390_s21010161 crossref_primary_10_1038_s41378_024_00739_9 crossref_primary_10_1002_cmt2_33 crossref_primary_10_1002_aesr_202100031 crossref_primary_10_1016_j_snb_2023_134401 crossref_primary_10_1002_adhm_202100577 crossref_primary_10_3390_mi12080869 crossref_primary_10_1038_s44222_025_00285_7 crossref_primary_10_1002_adfm_202008087 crossref_primary_10_1016_j_mser_2025_100934 crossref_primary_10_3390_bios11080245 crossref_primary_10_1007_s40820_024_01602_2 crossref_primary_10_3390_polym16101304 crossref_primary_10_1002_adsr_202300013 crossref_primary_10_1038_s41528_022_00215_2 crossref_primary_10_1002_adfm_202009289 crossref_primary_10_1002_aenm_202203692 crossref_primary_10_1016_j_fmre_2021_05_002 crossref_primary_10_1109_TIE_2023_3326095 crossref_primary_10_3390_s23239453 crossref_primary_10_1002_adrr_202500047 crossref_primary_10_1002_smtd_202200142 crossref_primary_10_1002_adma_202204091 crossref_primary_10_1002_smll_202304004 crossref_primary_10_1080_10408363_2025_2453152 crossref_primary_10_1016_j_trac_2020_116024 crossref_primary_10_59717_j_xinn_mater_2025_100143 crossref_primary_10_1002_adma_202209300 crossref_primary_10_3389_fmats_2023_1146045 crossref_primary_10_1016_j_nanoen_2025_111157 crossref_primary_10_1002_adfm_202303361 crossref_primary_10_1007_s40436_024_00510_3 crossref_primary_10_1016_j_bios_2021_113855 crossref_primary_10_1007_s42242_021_00171_2 crossref_primary_10_1089_soro_2022_0211 crossref_primary_10_1002_smll_202306655 crossref_primary_10_1002_admt_202000407 crossref_primary_10_1016_j_mtener_2021_100786 crossref_primary_10_1016_j_nanoen_2023_108344 crossref_primary_10_1038_s43246_024_00680_4 crossref_primary_10_1007_s11708_025_0992_6 crossref_primary_10_1109_JIOT_2024_3456244 crossref_primary_10_1080_09205063_2024_2334974 crossref_primary_10_3390_chemosensors10010022 crossref_primary_10_1016_j_coelec_2021_100755 crossref_primary_10_1016_j_actbio_2024_12_037 crossref_primary_10_1016_j_bios_2022_114825 crossref_primary_10_1016_j_cej_2024_157336 crossref_primary_10_1038_s41570_022_00439_w crossref_primary_10_1039_D4MH00757C crossref_primary_10_1038_s41928_024_01194_0 crossref_primary_10_1016_j_matt_2025_102048 crossref_primary_10_1002_admt_202000759 crossref_primary_10_1002_adfm_202102378 crossref_primary_10_1039_D5MH00528K crossref_primary_10_1002_aelm_202400884 crossref_primary_10_1007_s44258_023_00001_3 crossref_primary_10_1016_j_cjac_2021_11_004 crossref_primary_10_1002_adhm_202402891 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1109_JIOT_2022_3142781 crossref_primary_10_1016_j_trac_2021_116476 crossref_primary_10_1002_admt_202100020 crossref_primary_10_1016_j_device_2023_100216 crossref_primary_10_3390_polym15030764 crossref_primary_10_1088_1674_4926_44_2_021601 crossref_primary_10_1002_adsu_202400884 crossref_primary_10_1002_advs_202408384 crossref_primary_10_1016_j_apmt_2021_101257 crossref_primary_10_1002_chem_202202002 crossref_primary_10_1016_j_nanoen_2020_105627 crossref_primary_10_1016_j_nanoen_2023_108535 crossref_primary_10_1016_j_trac_2025_118169 crossref_primary_10_1002_rpm_20240018 crossref_primary_10_1063_5_0077667 crossref_primary_10_1109_JSEN_2023_3281426 crossref_primary_10_1002_adma_202004832 crossref_primary_10_1016_j_device_2024_100401 crossref_primary_10_1002_adfm_202209697 crossref_primary_10_1002_apxr_202400182 crossref_primary_10_1097_PRS_0000000000010270 crossref_primary_10_1016_j_device_2024_100640 crossref_primary_10_1016_j_snb_2023_133451 crossref_primary_10_1017_S026357472200131X crossref_primary_10_1002_adfm_202208362 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1016_j_copbio_2021_08_005 crossref_primary_10_1016_j_pmatsci_2023_101172 crossref_primary_10_1016_j_jcis_2022_12_166 crossref_primary_10_1002_adma_202503413 crossref_primary_10_1016_j_apmt_2022_101423 crossref_primary_10_1002_advs_202100827 crossref_primary_10_1088_1674_1056_ac7a15 crossref_primary_10_1002_adfm_202302345 crossref_primary_10_1039_D3NR06521A crossref_primary_10_1016_j_mtnano_2023_100439 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1126/scirobotics.aaz7946 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2470-9476 |
| ExternalDocumentID | 32607455 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINR NIH HHS grantid: R21 NR018271 |
| GroupedDBID | 0R~ ABJNI ACGFS AFQFN AJGZS ALMA_UNASSIGNED_HOLDINGS ARCSS BKF CGR CUY CVF EBS ECM EIF NPM O9- SJN 7X8 |
| ID | FETCH-LOGICAL-c405t-8afb9d9efa0c89edb215d85525de0f47a8900a44f71a83056965debeb81d25732 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 556 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000550012800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2470-9476 |
| IngestDate | Thu Oct 02 12:07:17 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 41 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-8afb9d9efa0c89edb215d85525de0f47a8900a44f71a83056965debeb81d25732 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7326328 |
| PMID | 32607455 |
| PQID | 2419413822 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2419413822 pubmed_primary_32607455 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-22 |
| PublicationDateYYYYMMDD | 2020-04-22 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Science robotics |
| PublicationTitleAlternate | Sci Robot |
| PublicationYear | 2020 |
| SSID | ssj0001763642 |
| Score | 2.619728 |
| Snippet | Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| SubjectTerms | Bioelectric Energy Sources Biosensing Techniques - instrumentation Biosensing Techniques - methods Humans Muscle Contraction Nanoparticles Robotics - instrumentation Robotics - methods Skin Temperature Sweat Wearable Electronic Devices Wireless Technology |
| Title | Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32607455 https://www.proquest.com/docview/2419413822 |
| Volume | 5 |
| WOSCitedRecordID | wos000550012800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dnrw_VhfRPAardm0TU6i4uLFxYPC3pY8JrKo7bpVEX-9M90u60UQvPTSFko6-ebLZPJ9jB37dsA0DiAiSCcUWCMsgqDQPmYuD94rF2qzibzb1b2euWsKblXTVjnBxBqoQ-mpRn6KmcYoEsyT58NXQa5RtLvaWGjMsvk2Uhlq6cp7elpjwcmT1f45UuWJMCrPGuGh5tzMqHQlqSGfWPtFSuu_08w63XRW_vuhq2y5IZr8YhwZa2wGinW29EN-cIM9Xg7K-A7PYkhWaRB4hZjMp8Y4vHoaFJwqtXzSd_iJT9kicFI4fkaQ5BU1wBePHLkvr_3-xEvdngmchChGkTq-NtlD5_r-6kY0xgvCI397E9pGZ4KBaBOvDQSHvCDoNJVpgCSq3GqTJFapmJ9ZTWsQk-EdBw7JL0JAW26xuaIsYIfxCDFaDUE5IOU_b89csJkBg-DSjka22NFkFPsY2LRbYQso36v-dBxbbHv8K_rDsQJHHzknUp803f3D23tsUdIaOVFCyn02H3FawwFb8B9vg2p0WEcMXrt3t9_AJdCV |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofuel-powered+soft+electronic+skin+with+multiplexed+and+wireless+sensing+for+human-machine+interfaces&rft.jtitle=Science+robotics&rft.au=Yu%2C+You&rft.au=Nassar%2C+Joanna&rft.au=Xu%2C+Changhao&rft.au=Min%2C+Jihong&rft.date=2020-04-22&rft.eissn=2470-9476&rft.volume=5&rft.issue=41&rft_id=info:doi/10.1126%2Fscirobotics.aaz7946&rft_id=info%3Apmid%2F32607455&rft_id=info%3Apmid%2F32607455&rft.externalDocID=32607455 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-9476&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-9476&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-9476&client=summon |