Graph-based approach for outlier detection in sequential data and its application on stock market and weather data
Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather data, to identifying indicators of potential crisis in stock market data, etc. The problem of finding outliers in sequential data has been w...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 61; s. 89 - 97 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2014
|
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather data, to identifying indicators of potential crisis in stock market data, etc. The problem of finding outliers in sequential data has been widely studied in the data mining literature and many techniques have been developed to tackle the problem in various application domains. However, many of these techniques rely on the peculiar characteristics of a specific type of data to detect the outliers. As a result, they cannot be easily applied to different types of data in other application domains; they should at least be tuned and customized to adapt to the new domain. They also may need certain amount of training data to build their models. This makes them hard to apply especially when only a limited amount of data is available. The work described in this paper tackle the problem by proposing a graph-based approach for the discovery of contextual outliers in sequential data. The developed algorithm offers a higher degree of flexibility and requires less amount of information about the nature of the analyzed data compared to the previous approaches described in the literature. In order to validate our approach, we conducted experiments on stock market and weather data; we compared the results with the results from our previous work. Our analysis of the results demonstrate that the algorithm proposed in this paper is successful and effective in detecting outliers in data from different domains, one financial and the other meteorological. |
|---|---|
| AbstractList | Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather data, to identifying indicators of potential crisis in stock market data, etc. The problem of finding outliers in sequential data has been widely studied in the data mining literature and many techniques have been developed to tackle the problem in various application domains. However, many of these techniques rely on the peculiar characteristics of a specific type of data to detect the outliers. As a result, they cannot be easily applied to different types of data in other application domains; they should at least be tuned and customized to adapt to the new domain. They also may need certain amount of training data to build their models. This makes them hard to apply especially when only a limited amount of data is available. The work described in this paper tackle the problem by proposing a graph-based approach for the discovery of contextual outliers in sequential data. The developed algorithm offers a higher degree of flexibility and requires less amount of information about the nature of the analyzed data compared to the previous approaches described in the literature. In order to validate our approach, we conducted experiments on stock market and weather data; we compared the results with the results from our previous work. Our analysis of the results demonstrate that the algorithm proposed in this paper is successful and effective in detecting outliers in data from different domains, one financial and the other meteorological. |
| Author | Kianmehr, Keivan Alhajj, Reda Rokne, Jon Addam, Omar Afra, Salim Koochakzadeh, Negar Rahmani, Ali Zarour, Omar |
| Author_xml | – sequence: 1 givenname: Ali surname: Rahmani fullname: Rahmani, Ali organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 2 givenname: Salim surname: Afra fullname: Afra, Salim organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 3 givenname: Omar surname: Zarour fullname: Zarour, Omar organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 4 givenname: Omar surname: Addam fullname: Addam, Omar organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 5 givenname: Negar surname: Koochakzadeh fullname: Koochakzadeh, Negar organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 6 givenname: Keivan surname: Kianmehr fullname: Kianmehr, Keivan organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 7 givenname: Reda surname: Alhajj fullname: Alhajj, Reda email: alhajj@ucalgary.ca, rsalhajj@gmail.com organization: Department of Computer Science, Global University, Beirut, Lebanon – sequence: 8 givenname: Jon surname: Rokne fullname: Rokne, Jon organization: Department of Computer Science, Global University, Beirut, Lebanon |
| BookMark | eNqNkcGOFCEURYkZE3tG_8AFSzdVPigowIWJmehoMokbXRMKXqXprilaoDXz99Ldrlw4JiRs7rmBe67J1ZpWJOQ1g54BG9_u-v2aymPpOTDRA-8B9DOyYVrxTgkwV2QDRkKnQLIX5LqUHQBwzvSG5LvsDttucgUDdYdDTs5v6ZwyTce6RMw0YEVfY1ppXGnBH0dca3QLDa466tZAYy0nconenWPtlJr8nj64vMd6zvxCV7ensga9JM9ntxR89ee-Id8_ffx2-7m7_3r35fbDfecFyNrpgTmj0eh5YMj5ZPhoZqbYqMQ0KMW4nGbOvBn4qCappWKTGL2HME44Bx2GG_Lm0ts-1V5dqn2IxeOyuBXTsdjWxKQCYYano1IyGJUezH9EBwZcCC1bVFyiPqdSMs72kGMb5dEysCdxdmcv4uxJnAVum7iGvfsL87Gep63ZxeUp-P0Fxrbsz-bPFh9x9RhibhptSPHfBb8BEwa5Ig |
| CitedBy_id | crossref_primary_10_1007_s10489_023_05066_6 crossref_primary_10_1080_02664763_2019_1701637 crossref_primary_10_1016_j_jksuci_2019_09_009 crossref_primary_10_1016_j_apenergy_2021_116601 crossref_primary_10_1007_s11704_018_7289_4 crossref_primary_10_1016_j_knosys_2017_07_021 crossref_primary_10_3389_fphy_2019_00194 crossref_primary_10_1016_j_neucom_2022_05_005 crossref_primary_10_1007_s00500_022_07034_7 crossref_primary_10_1016_j_rser_2024_114975 crossref_primary_10_1109_ACCESS_2018_2840086 crossref_primary_10_1002_sam_70001 |
| Cites_doi | 10.1145/1341012.1341075 10.1111/j.1467-9671.2006.00256.x 10.1016/j.ins.2006.09.013 10.1145/1081870.1081917 10.1016/S0167-8655(03)00003-5 10.1007/3-540-36175-8_40 10.2498/cit.2006.04.04 10.1109/CSAC.2003.1254306 10.1145/502512.502567 10.1109/TAI.1999.809773 10.1145/956676.956683 10.1007/s10115-006-0026-6 10.1109/SURV.2010.021510.00088 10.1145/508791.508835 10.1007/s10844-011-0183-2 10.1109/ICDE.2011.5767885 10.1109/69.755614 10.1023/A:1023455925009 10.1007/s101150200013 10.1145/335191.335437 10.3233/IDA-2009-0375 10.1007/978-3-642-04394-9_39 10.1007/s10489-005-4610-3 10.1142/S0218194010004669 10.1109/ICDM.2004.10097 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION 7TG KL. 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2014.02.008 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts - Academic Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 97 |
| ExternalDocumentID | 10_1016_j_knosys_2014_02_008 S0950705114000574 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TG KL. 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c405t-831a98e98f31e22b9269f171674b377125bf21c93267b58571b46cc0d6befd8d3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335275700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Sep 27 18:24:27 EDT 2025 Thu Oct 02 10:57:30 EDT 2025 Wed Oct 01 14:55:43 EDT 2025 Sat Nov 29 07:59:36 EST 2025 Tue Nov 18 22:18:31 EST 2025 Fri Feb 23 02:28:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Outlier detection Data mining Stock market Graph-based algorithm Weather data |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c405t-831a98e98f31e22b9269f171674b377125bf21c93267b58571b46cc0d6befd8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1531024485 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1671570493 proquest_miscellaneous_1551067839 proquest_miscellaneous_1531024485 crossref_primary_10_1016_j_knosys_2014_02_008 crossref_citationtrail_10_1016_j_knosys_2014_02_008 elsevier_sciencedirect_doi_10_1016_j_knosys_2014_02_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Basu, Meckesheimer (b0020) 2007; 11 Chandola, Debray, Kumar (b0035) 2009; 41 Shekhar, Lu, Zhang (b0125) 2003; 7 E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in large datasets, in: Proceedings of VLDB, 24–27 1998, pp. 392–403. Agovic, Banerjee, Ganguly, Protopopescu (b0005) 2009; 13 Yu, Sheikholeslami, Zhang (b0140) 2002; 4 Cheng, Li (b0040) 2006; 10 E. Eskin, Anomaly detection over noisy data using learned probability distributions, in: Proceedings of the Seventeenth International Conference on Machine Learning, 2000, pp. 255–262. Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, Outlier detection in graph streams, in: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, April 2011, pp. 399–409. C. Krugel, T. Toth, E. Kirda, Service specific anomaly detection for network intrusion detection, in: Proceedings of the 2002 ACM Symposium on Applied Computing, 2002, pp. 201–208. Lu, Kou, Zhao, Chen (b0090) 2007; 177 S. Barua and R. Alhajj, A parallel multi-scale region outlier mining algorithm for meteorological data, in: Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, 2007. J. Zhao, C. Lu, Y. Kou, Detecting region outliers in meteorological data, in: Proceedings of ACM International Symposium on Advances in Geographic Information Systems, 2003, pp. 49–55. C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classification for intrusion detection, in: Proceedings of the 19th Annual Computer Security Applications Conference, 2003, p. 14. Salvador, Chan (b0110) 2005; 23 Yang Zhang, Nirvana Meratnia, Paul Havinga, Outlier detection techniques for wireless sensor networks: a survey, in: IEEE Communications Surveys and Tutorials, vol. 12(2), Second Quarter 2010. S. Ramaswamy, P. Alto, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of ACM SIGMOD, 2000, pp. 427–438. Birant, Kut (b0030) 2006; 14 Karthikeyan, John Peter (b0165) 2011; 31 E. Hung, D. Cheung, Parallel algorithm for mining outliers in large database, in: Proceedings of IDC, Hong Kong, July 15–17 1999. F. Rasheed, P. Peng, R. Alhajj, J. Rokne, Fourier transform based spatial outlier mining, in: Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, 2009, pp. 317–324. W. Lee, D. Xiang, Information-theoretic measures for anomaly detection, in: Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001, p. 130. S. Shekhar, C.-T. Lu, P. Zhang, Detecting graph-based spatial outliers: algorithms and applications (a summary of results), in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2001, pp. 371–376. Shekhar, Chawla, Ravada, Fetterer, Liu, Lu (b0120) 1999; 11 R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 401–410. M.K. Edwin, T.N. Raymond, A unified notion of outliers: properties and computation, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Newport Beach, CA, 1997, pp. 219–222. Chen, Hendrix, Samatova (b0170) 2012; 39 P. Sun, S. Chawla, On local spatial outliers, in: Proceedings of IEEE ICDM, 2004, pp. 209–216. Barnett (b0010) 1994 Koochakzadeh, Kianmehr, Jida, Lee, Alhajj, Rokne (b0160) 2010; 20 R. Brause, T. Langsdorf, and M. Hepp, Neural data mining for credit card fraud detection, in: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, 1999, p. 103. R. Ramachandran, J. Rushing, H. Conover, S. Graves, K. Keiser, Flexible framework for mining meteorological data, in: Proceedings of IIPS for Meteorology, Oceanography, and Hydrology, Long Beach, CA, February 2003. Zhang, Jin (b0155) 2011; 6464 He, Xu, Deng (b0060) 2003; 24 L. Wei, W. Qian, A. Zhou, W. Jin, J.X. Yu, Hot: hypergraph-based outlier test for categorical data, in: Proceedings of the 7th Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining, 2003, pp. 399–410. Zhang (10.1016/j.knosys.2014.02.008_b0155) 2011; 6464 Shekhar (10.1016/j.knosys.2014.02.008_b0120) 1999; 11 Cheng (10.1016/j.knosys.2014.02.008_b0040) 2006; 10 Basu (10.1016/j.knosys.2014.02.008_b0020) 2007; 11 10.1016/j.knosys.2014.02.008_b0075 10.1016/j.knosys.2014.02.008_b0130 Agovic (10.1016/j.knosys.2014.02.008_b0005) 2009; 13 Chandola (10.1016/j.knosys.2014.02.008_b0035) 2009; 41 Chen (10.1016/j.knosys.2014.02.008_b0170) 2012; 39 10.1016/j.knosys.2014.02.008_b0175 10.1016/j.knosys.2014.02.008_b0055 10.1016/j.knosys.2014.02.008_b0070 10.1016/j.knosys.2014.02.008_b0050 10.1016/j.knosys.2014.02.008_b0095 10.1016/j.knosys.2014.02.008_b0150 10.1016/j.knosys.2014.02.008_b0115 Shekhar (10.1016/j.knosys.2014.02.008_b0125) 2003; 7 Barnett (10.1016/j.knosys.2014.02.008_b0010) 1994 10.1016/j.knosys.2014.02.008_b0135 10.1016/j.knosys.2014.02.008_b0015 Yu (10.1016/j.knosys.2014.02.008_b0140) 2002; 4 Birant (10.1016/j.knosys.2014.02.008_b0030) 2006; 14 Lu (10.1016/j.knosys.2014.02.008_b0090) 2007; 177 Salvador (10.1016/j.knosys.2014.02.008_b0110) 2005; 23 10.1016/j.knosys.2014.02.008_b0080 Koochakzadeh (10.1016/j.knosys.2014.02.008_b0160) 2010; 20 10.1016/j.knosys.2014.02.008_b0085 10.1016/j.knosys.2014.02.008_b0065 He (10.1016/j.knosys.2014.02.008_b0060) 2003; 24 Karthikeyan (10.1016/j.knosys.2014.02.008_b0165) 2011; 31 10.1016/j.knosys.2014.02.008_b0105 10.1016/j.knosys.2014.02.008_b0045 10.1016/j.knosys.2014.02.008_b0100 10.1016/j.knosys.2014.02.008_b0145 10.1016/j.knosys.2014.02.008_b0025 |
| References_xml | – volume: 20 start-page: 139 year: 2010 end-page: 154 ident: b0160 article-title: Semi-supervised dynamic classification for intrusion detection. Approach for mixed attribute data publication-title: Int. J. Softw. Eng. Knowl. Eng. – volume: 14 start-page: 291 year: 2006 end-page: 298 ident: b0030 article-title: Spatio-temporal outlier detection in large databases publication-title: J. Comput. Inform. Technol. – reference: M.K. Edwin, T.N. Raymond, A unified notion of outliers: properties and computation, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Newport Beach, CA, 1997, pp. 219–222. – volume: 177 start-page: 1609 year: 2007 end-page: 1632 ident: b0090 article-title: Detecting and tracking regional outliers in meteorological data publication-title: Inform. Sci.: An Int. J. – volume: 31 start-page: 0975 year: 2011 end-page: 8887 ident: b0165 article-title: Outlier removal clustering through minimum spanning tree publication-title: Int. J. Comp. Appl. – reference: J. Zhao, C. Lu, Y. Kou, Detecting region outliers in meteorological data, in: Proceedings of ACM International Symposium on Advances in Geographic Information Systems, 2003, pp. 49–55. – volume: 4 start-page: 387 year: 2002 end-page: 412 ident: b0140 article-title: Findout: finding outliers in very large datasets publication-title: Knowl. Inform. Syst. – reference: C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classification for intrusion detection, in: Proceedings of the 19th Annual Computer Security Applications Conference, 2003, p. 14. – volume: 7 year: 2003 ident: b0125 article-title: A unified approach to detecting spatial outliers publication-title: GeoInformatica – reference: Yang Zhang, Nirvana Meratnia, Paul Havinga, Outlier detection techniques for wireless sensor networks: a survey, in: IEEE Communications Surveys and Tutorials, vol. 12(2), Second Quarter 2010. – reference: Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, Outlier detection in graph streams, in: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, April 2011, pp. 399–409. – reference: S. Barua and R. Alhajj, A parallel multi-scale region outlier mining algorithm for meteorological data, in: Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, 2007. – reference: C. Krugel, T. Toth, E. Kirda, Service specific anomaly detection for network intrusion detection, in: Proceedings of the 2002 ACM Symposium on Applied Computing, 2002, pp. 201–208. – reference: S. Ramaswamy, P. Alto, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of ACM SIGMOD, 2000, pp. 427–438. – reference: R. Brause, T. Langsdorf, and M. Hepp, Neural data mining for credit card fraud detection, in: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, 1999, p. 103. – volume: 13 start-page: 435 year: 2009 end-page: 455 ident: b0005 article-title: Anomaly detection using manifold embedding and its applications in transportation corridors publication-title: Intell. Data Anal. – volume: 11 start-page: 45 year: 1999 end-page: 55 ident: b0120 article-title: Spatial databases-accomplishments and research needs publication-title: IEEE Trans. Knowl. Data Eng. – reference: P. Sun, S. Chawla, On local spatial outliers, in: Proceedings of IEEE ICDM, 2004, pp. 209–216. – reference: E. Eskin, Anomaly detection over noisy data using learned probability distributions, in: Proceedings of the Seventeenth International Conference on Machine Learning, 2000, pp. 255–262. – volume: 23 start-page: 241 year: 2005 end-page: 255 ident: b0110 article-title: Learning states and rules for detecting anomalies in time series publication-title: Appl. Intell. – volume: 41 year: 2009 ident: b0035 article-title: Anomaly detection: a survey publication-title: ACM Comput. Surv. (CSUR) – reference: R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 401–410. – volume: 24 start-page: 1641 year: 2003 end-page: 1650 ident: b0060 article-title: Discovering cluster-based local outliers publication-title: Patt. Recog. Lett. – reference: F. Rasheed, P. Peng, R. Alhajj, J. Rokne, Fourier transform based spatial outlier mining, in: Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, 2009, pp. 317–324. – reference: E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in large datasets, in: Proceedings of VLDB, 24–27 1998, pp. 392–403. – year: 1994 ident: b0010 article-title: Outliers in Statistical Data – volume: 39 start-page: 59 year: 2012 end-page: 85 ident: b0170 article-title: Community-based anomaly detection in evolutionary networks publication-title: J. Intell. Inf. Syst. – volume: 6464 start-page: 122 year: 2011 end-page: 131 ident: b0155 article-title: An effective pattern based outlier detection approach for mixed attribute data publication-title: Advan. Artif. Intell. – volume: 10 start-page: 253 year: 2006 end-page: 263 ident: b0040 article-title: A multiscale approach for spatio-temporal outlier detection publication-title: Trans. GIS – reference: W. Lee, D. Xiang, Information-theoretic measures for anomaly detection, in: Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001, p. 130. – reference: S. Shekhar, C.-T. Lu, P. Zhang, Detecting graph-based spatial outliers: algorithms and applications (a summary of results), in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2001, pp. 371–376. – reference: E. Hung, D. Cheung, Parallel algorithm for mining outliers in large database, in: Proceedings of IDC, Hong Kong, July 15–17 1999. – reference: L. Wei, W. Qian, A. Zhou, W. Jin, J.X. Yu, Hot: hypergraph-based outlier test for categorical data, in: Proceedings of the 7th Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining, 2003, pp. 399–410. – volume: 11 start-page: 137 year: 2007 end-page: 154 ident: b0020 article-title: Automatic outlier detection for time series: an application to sensor data publication-title: Knowl. Inform. Syst. – reference: R. Ramachandran, J. Rushing, H. Conover, S. Graves, K. Keiser, Flexible framework for mining meteorological data, in: Proceedings of IIPS for Meteorology, Oceanography, and Hydrology, Long Beach, CA, February 2003. – ident: 10.1016/j.knosys.2014.02.008_b0015 doi: 10.1145/1341012.1341075 – volume: 10 start-page: 253 issue: 2 year: 2006 ident: 10.1016/j.knosys.2014.02.008_b0040 article-title: A multiscale approach for spatio-temporal outlier detection publication-title: Trans. GIS doi: 10.1111/j.1467-9671.2006.00256.x – volume: 177 start-page: 1609 year: 2007 ident: 10.1016/j.knosys.2014.02.008_b0090 article-title: Detecting and tracking regional outliers in meteorological data publication-title: Inform. Sci.: An Int. J. doi: 10.1016/j.ins.2006.09.013 – ident: 10.1016/j.knosys.2014.02.008_b0055 doi: 10.1145/1081870.1081917 – volume: 31 start-page: 0975 issue: 10 year: 2011 ident: 10.1016/j.knosys.2014.02.008_b0165 article-title: Outlier removal clustering through minimum spanning tree publication-title: Int. J. Comp. Appl. – volume: 24 start-page: 1641 year: 2003 ident: 10.1016/j.knosys.2014.02.008_b0060 article-title: Discovering cluster-based local outliers publication-title: Patt. Recog. Lett. doi: 10.1016/S0167-8655(03)00003-5 – ident: 10.1016/j.knosys.2014.02.008_b0135 doi: 10.1007/3-540-36175-8_40 – volume: 14 start-page: 291 issue: 4 year: 2006 ident: 10.1016/j.knosys.2014.02.008_b0030 article-title: Spatio-temporal outlier detection in large databases publication-title: J. Comput. Inform. Technol. doi: 10.2498/cit.2006.04.04 – ident: 10.1016/j.knosys.2014.02.008_b0075 doi: 10.1109/CSAC.2003.1254306 – ident: 10.1016/j.knosys.2014.02.008_b0045 – ident: 10.1016/j.knosys.2014.02.008_b0115 doi: 10.1145/502512.502567 – ident: 10.1016/j.knosys.2014.02.008_b0025 doi: 10.1109/TAI.1999.809773 – ident: 10.1016/j.knosys.2014.02.008_b0050 – ident: 10.1016/j.knosys.2014.02.008_b0145 doi: 10.1145/956676.956683 – volume: 11 start-page: 137 issue: 2 year: 2007 ident: 10.1016/j.knosys.2014.02.008_b0020 article-title: Automatic outlier detection for time series: an application to sensor data publication-title: Knowl. Inform. Syst. doi: 10.1007/s10115-006-0026-6 – ident: 10.1016/j.knosys.2014.02.008_b0150 doi: 10.1109/SURV.2010.021510.00088 – ident: 10.1016/j.knosys.2014.02.008_b0080 doi: 10.1145/508791.508835 – volume: 39 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.knosys.2014.02.008_b0170 article-title: Community-based anomaly detection in evolutionary networks publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-011-0183-2 – ident: 10.1016/j.knosys.2014.02.008_b0085 – volume: 41 issue: 15 year: 2009 ident: 10.1016/j.knosys.2014.02.008_b0035 article-title: Anomaly detection: a survey publication-title: ACM Comput. Surv. (CSUR) – ident: 10.1016/j.knosys.2014.02.008_b0175 doi: 10.1109/ICDE.2011.5767885 – year: 1994 ident: 10.1016/j.knosys.2014.02.008_b0010 – volume: 11 start-page: 45 issue: 1 year: 1999 ident: 10.1016/j.knosys.2014.02.008_b0120 article-title: Spatial databases-accomplishments and research needs publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/69.755614 – volume: 7 issue: 2 year: 2003 ident: 10.1016/j.knosys.2014.02.008_b0125 article-title: A unified approach to detecting spatial outliers publication-title: GeoInformatica doi: 10.1023/A:1023455925009 – volume: 4 start-page: 387 issue: 4 year: 2002 ident: 10.1016/j.knosys.2014.02.008_b0140 article-title: Findout: finding outliers in very large datasets publication-title: Knowl. Inform. Syst. doi: 10.1007/s101150200013 – ident: 10.1016/j.knosys.2014.02.008_b0100 doi: 10.1145/335191.335437 – ident: 10.1016/j.knosys.2014.02.008_b0070 – ident: 10.1016/j.knosys.2014.02.008_b0095 – volume: 13 start-page: 435 year: 2009 ident: 10.1016/j.knosys.2014.02.008_b0005 article-title: Anomaly detection using manifold embedding and its applications in transportation corridors publication-title: Intell. Data Anal. doi: 10.3233/IDA-2009-0375 – ident: 10.1016/j.knosys.2014.02.008_b0065 – ident: 10.1016/j.knosys.2014.02.008_b0105 doi: 10.1007/978-3-642-04394-9_39 – volume: 23 start-page: 241 issue: 3 year: 2005 ident: 10.1016/j.knosys.2014.02.008_b0110 article-title: Learning states and rules for detecting anomalies in time series publication-title: Appl. Intell. doi: 10.1007/s10489-005-4610-3 – volume: 20 start-page: 139 issue: 2 year: 2010 ident: 10.1016/j.knosys.2014.02.008_b0160 article-title: Semi-supervised dynamic classification for intrusion detection. Approach for mixed attribute data publication-title: Int. J. Softw. Eng. Knowl. Eng. doi: 10.1142/S0218194010004669 – volume: 6464 start-page: 122 year: 2011 ident: 10.1016/j.knosys.2014.02.008_b0155 article-title: An effective pattern based outlier detection approach for mixed attribute data publication-title: Advan. Artif. Intell. – ident: 10.1016/j.knosys.2014.02.008_b0130 doi: 10.1109/ICDM.2004.10097 |
| SSID | ssj0002218 |
| Score | 2.162711 |
| Snippet | Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 89 |
| SubjectTerms | Algorithms Climatology Computer networks Construction Data mining Graph-based algorithm Markets Outlier detection Raw materials Stock market Weather Weather data |
| Title | Graph-based approach for outlier detection in sequential data and its application on stock market and weather data |
| URI | https://dx.doi.org/10.1016/j.knosys.2014.02.008 https://www.proquest.com/docview/1531024485 https://www.proquest.com/docview/1551067839 https://www.proquest.com/docview/1671570493 |
| Volume | 61 |
| WOSCitedRecordID | wos000335275700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JaxsxFBbG6aGX7qVJF1TozUyZ1ZKOpqQrpIWm4JsYbdSJPQ72JM3_6B_u02qTUKc51JhhEBox8vust7-H0BtRaJKLRmWtNtZ0I0RGhS4yXVdGAcuAj282QY6O6HTKvg0Gv2MuzMWcdB29vGRn_5XUMAbEtqmztyB3WhQG4B6IDlcgO1z_ifAfbAnqzHInlSqGu2BCG_szcw3Bey1jjKMPpe6t3dwGiyZfwpZj2_oTQESUp6OFS5F2c3550XEUctuSgPsl2ujCG6y3KqI7d9LPhe8iNZrMZwltxnU7Gn0HpWCRTNntCrZrh78u2hRCPFHKQzgNBpNFUW8CBJPtMc9IHirNhmPY12QP56hvKxQ4sg_gvXbWe7PDydvTbgl7sVF6tS-_Sje8Lfrzr7C8FIgYY9xOuF-F21V4XnKXQL5XkobRIdqbfDqcfk4Mviyd2TjtImZkurDB62_zN4nnCu93As3xA3QvaCJ44hH0EA109wjdj10-cDj0H6PVFqBwBBQGQOEAKJwAhWcd3gAKW2xgAAsGQOEtQGH4OkBhDyg3JwDKPfQE_Xh_ePzuYxY6dWQSBP4-o1XRMqoZNVWhy1KwcsyMLcREalERAkK0MGUhra5ABCiopBD1WMpcjYU2iqrqKRp2y04_Qzg3UrWNBsbDWG3anDKQMW0CdSVNI3K6j6r4a3IZytjbbipzvouW-yhLT535Mi43zCeRUDyIol7E5IC-G558HenK4aS27re208vzNQfZAqT5uqbNrjmNrekIWsuOOWNSNAQ0--rglrt6ju5u_o4v0LBfneuX6I686Gfr1asA8z-kWdTW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+approach+for+outlier+detection+in+sequential+data+and+its+application+on+stock+market+and+weather+data&rft.jtitle=Knowledge-based+systems&rft.au=Rahmani%2C+Ali&rft.au=Afra%2C+Salim&rft.au=Zarour%2C+Omar&rft.au=Addam%2C+Omar&rft.date=2014-05-01&rft.issn=0950-7051&rft.volume=61&rft.spage=89&rft.epage=97&rft_id=info:doi/10.1016%2Fj.knosys.2014.02.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2014_02_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |