Graph-based approach for outlier detection in sequential data and its application on stock market and weather data

Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather data, to identifying indicators of potential crisis in stock market data, etc. The problem of finding outliers in sequential data has been w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 61; S. 89 - 97
Hauptverfasser: Rahmani, Ali, Afra, Salim, Zarour, Omar, Addam, Omar, Koochakzadeh, Negar, Kianmehr, Keivan, Alhajj, Reda, Rokne, Jon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2014
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather data, to identifying indicators of potential crisis in stock market data, etc. The problem of finding outliers in sequential data has been widely studied in the data mining literature and many techniques have been developed to tackle the problem in various application domains. However, many of these techniques rely on the peculiar characteristics of a specific type of data to detect the outliers. As a result, they cannot be easily applied to different types of data in other application domains; they should at least be tuned and customized to adapt to the new domain. They also may need certain amount of training data to build their models. This makes them hard to apply especially when only a limited amount of data is available. The work described in this paper tackle the problem by proposing a graph-based approach for the discovery of contextual outliers in sequential data. The developed algorithm offers a higher degree of flexibility and requires less amount of information about the nature of the analyzed data compared to the previous approaches described in the literature. In order to validate our approach, we conducted experiments on stock market and weather data; we compared the results with the results from our previous work. Our analysis of the results demonstrate that the algorithm proposed in this paper is successful and effective in detecting outliers in data from different domains, one financial and the other meteorological.
AbstractList Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather data, to identifying indicators of potential crisis in stock market data, etc. The problem of finding outliers in sequential data has been widely studied in the data mining literature and many techniques have been developed to tackle the problem in various application domains. However, many of these techniques rely on the peculiar characteristics of a specific type of data to detect the outliers. As a result, they cannot be easily applied to different types of data in other application domains; they should at least be tuned and customized to adapt to the new domain. They also may need certain amount of training data to build their models. This makes them hard to apply especially when only a limited amount of data is available. The work described in this paper tackle the problem by proposing a graph-based approach for the discovery of contextual outliers in sequential data. The developed algorithm offers a higher degree of flexibility and requires less amount of information about the nature of the analyzed data compared to the previous approaches described in the literature. In order to validate our approach, we conducted experiments on stock market and weather data; we compared the results with the results from our previous work. Our analysis of the results demonstrate that the algorithm proposed in this paper is successful and effective in detecting outliers in data from different domains, one financial and the other meteorological.
Author Kianmehr, Keivan
Alhajj, Reda
Rokne, Jon
Addam, Omar
Afra, Salim
Koochakzadeh, Negar
Rahmani, Ali
Zarour, Omar
Author_xml – sequence: 1
  givenname: Ali
  surname: Rahmani
  fullname: Rahmani, Ali
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 2
  givenname: Salim
  surname: Afra
  fullname: Afra, Salim
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 3
  givenname: Omar
  surname: Zarour
  fullname: Zarour, Omar
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 4
  givenname: Omar
  surname: Addam
  fullname: Addam, Omar
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 5
  givenname: Negar
  surname: Koochakzadeh
  fullname: Koochakzadeh, Negar
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 6
  givenname: Keivan
  surname: Kianmehr
  fullname: Kianmehr, Keivan
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 7
  givenname: Reda
  surname: Alhajj
  fullname: Alhajj, Reda
  email: alhajj@ucalgary.ca, rsalhajj@gmail.com
  organization: Department of Computer Science, Global University, Beirut, Lebanon
– sequence: 8
  givenname: Jon
  surname: Rokne
  fullname: Rokne, Jon
  organization: Department of Computer Science, Global University, Beirut, Lebanon
BookMark eNqNkcGOFCEURYkZE3tG_8AFSzdVPigowIWJmehoMokbXRMKXqXprilaoDXz99Ldrlw4JiRs7rmBe67J1ZpWJOQ1g54BG9_u-v2aymPpOTDRA-8B9DOyYVrxTgkwV2QDRkKnQLIX5LqUHQBwzvSG5LvsDttucgUDdYdDTs5v6ZwyTce6RMw0YEVfY1ppXGnBH0dca3QLDa466tZAYy0nconenWPtlJr8nj64vMd6zvxCV7ensga9JM9ntxR89ee-Id8_ffx2-7m7_3r35fbDfecFyNrpgTmj0eh5YMj5ZPhoZqbYqMQ0KMW4nGbOvBn4qCappWKTGL2HME44Bx2GG_Lm0ts-1V5dqn2IxeOyuBXTsdjWxKQCYYano1IyGJUezH9EBwZcCC1bVFyiPqdSMs72kGMb5dEysCdxdmcv4uxJnAVum7iGvfsL87Gep63ZxeUp-P0Fxrbsz-bPFh9x9RhibhptSPHfBb8BEwa5Ig
CitedBy_id crossref_primary_10_1007_s10489_023_05066_6
crossref_primary_10_1080_02664763_2019_1701637
crossref_primary_10_1016_j_jksuci_2019_09_009
crossref_primary_10_1016_j_apenergy_2021_116601
crossref_primary_10_1007_s11704_018_7289_4
crossref_primary_10_1016_j_knosys_2017_07_021
crossref_primary_10_3389_fphy_2019_00194
crossref_primary_10_1016_j_neucom_2022_05_005
crossref_primary_10_1007_s00500_022_07034_7
crossref_primary_10_1016_j_rser_2024_114975
crossref_primary_10_1109_ACCESS_2018_2840086
crossref_primary_10_1002_sam_70001
Cites_doi 10.1145/1341012.1341075
10.1111/j.1467-9671.2006.00256.x
10.1016/j.ins.2006.09.013
10.1145/1081870.1081917
10.1016/S0167-8655(03)00003-5
10.1007/3-540-36175-8_40
10.2498/cit.2006.04.04
10.1109/CSAC.2003.1254306
10.1145/502512.502567
10.1109/TAI.1999.809773
10.1145/956676.956683
10.1007/s10115-006-0026-6
10.1109/SURV.2010.021510.00088
10.1145/508791.508835
10.1007/s10844-011-0183-2
10.1109/ICDE.2011.5767885
10.1109/69.755614
10.1023/A:1023455925009
10.1007/s101150200013
10.1145/335191.335437
10.3233/IDA-2009-0375
10.1007/978-3-642-04394-9_39
10.1007/s10489-005-4610-3
10.1142/S0218194010004669
10.1109/ICDM.2004.10097
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7TG
KL.
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2014.02.008
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 97
ExternalDocumentID 10_1016_j_knosys_2014_02_008
S0950705114000574
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TG
KL.
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c405t-831a98e98f31e22b9269f171674b377125bf21c93267b58571b46cc0d6befd8d3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335275700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Sep 27 18:24:27 EDT 2025
Thu Oct 02 10:57:30 EDT 2025
Wed Oct 01 14:55:43 EDT 2025
Sat Nov 29 07:59:36 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outlier detection
Data mining
Stock market
Graph-based algorithm
Weather data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-831a98e98f31e22b9269f171674b377125bf21c93267b58571b46cc0d6befd8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1531024485
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1671570493
proquest_miscellaneous_1551067839
proquest_miscellaneous_1531024485
crossref_primary_10_1016_j_knosys_2014_02_008
crossref_citationtrail_10_1016_j_knosys_2014_02_008
elsevier_sciencedirect_doi_10_1016_j_knosys_2014_02_008
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Basu, Meckesheimer (b0020) 2007; 11
Chandola, Debray, Kumar (b0035) 2009; 41
Shekhar, Lu, Zhang (b0125) 2003; 7
E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in large datasets, in: Proceedings of VLDB, 24–27 1998, pp. 392–403.
Agovic, Banerjee, Ganguly, Protopopescu (b0005) 2009; 13
Yu, Sheikholeslami, Zhang (b0140) 2002; 4
Cheng, Li (b0040) 2006; 10
E. Eskin, Anomaly detection over noisy data using learned probability distributions, in: Proceedings of the Seventeenth International Conference on Machine Learning, 2000, pp. 255–262.
Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, Outlier detection in graph streams, in: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, April 2011, pp. 399–409.
C. Krugel, T. Toth, E. Kirda, Service specific anomaly detection for network intrusion detection, in: Proceedings of the 2002 ACM Symposium on Applied Computing, 2002, pp. 201–208.
Lu, Kou, Zhao, Chen (b0090) 2007; 177
S. Barua and R. Alhajj, A parallel multi-scale region outlier mining algorithm for meteorological data, in: Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, 2007.
J. Zhao, C. Lu, Y. Kou, Detecting region outliers in meteorological data, in: Proceedings of ACM International Symposium on Advances in Geographic Information Systems, 2003, pp. 49–55.
C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classification for intrusion detection, in: Proceedings of the 19th Annual Computer Security Applications Conference, 2003, p. 14.
Salvador, Chan (b0110) 2005; 23
Yang Zhang, Nirvana Meratnia, Paul Havinga, Outlier detection techniques for wireless sensor networks: a survey, in: IEEE Communications Surveys and Tutorials, vol. 12(2), Second Quarter 2010.
S. Ramaswamy, P. Alto, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of ACM SIGMOD, 2000, pp. 427–438.
Birant, Kut (b0030) 2006; 14
Karthikeyan, John Peter (b0165) 2011; 31
E. Hung, D. Cheung, Parallel algorithm for mining outliers in large database, in: Proceedings of IDC, Hong Kong, July 15–17 1999.
F. Rasheed, P. Peng, R. Alhajj, J. Rokne, Fourier transform based spatial outlier mining, in: Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, 2009, pp. 317–324.
W. Lee, D. Xiang, Information-theoretic measures for anomaly detection, in: Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001, p. 130.
S. Shekhar, C.-T. Lu, P. Zhang, Detecting graph-based spatial outliers: algorithms and applications (a summary of results), in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2001, pp. 371–376.
Shekhar, Chawla, Ravada, Fetterer, Liu, Lu (b0120) 1999; 11
R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 401–410.
M.K. Edwin, T.N. Raymond, A unified notion of outliers: properties and computation, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Newport Beach, CA, 1997, pp. 219–222.
Chen, Hendrix, Samatova (b0170) 2012; 39
P. Sun, S. Chawla, On local spatial outliers, in: Proceedings of IEEE ICDM, 2004, pp. 209–216.
Barnett (b0010) 1994
Koochakzadeh, Kianmehr, Jida, Lee, Alhajj, Rokne (b0160) 2010; 20
R. Brause, T. Langsdorf, and M. Hepp, Neural data mining for credit card fraud detection, in: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, 1999, p. 103.
R. Ramachandran, J. Rushing, H. Conover, S. Graves, K. Keiser, Flexible framework for mining meteorological data, in: Proceedings of IIPS for Meteorology, Oceanography, and Hydrology, Long Beach, CA, February 2003.
Zhang, Jin (b0155) 2011; 6464
He, Xu, Deng (b0060) 2003; 24
L. Wei, W. Qian, A. Zhou, W. Jin, J.X. Yu, Hot: hypergraph-based outlier test for categorical data, in: Proceedings of the 7th Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining, 2003, pp. 399–410.
Zhang (10.1016/j.knosys.2014.02.008_b0155) 2011; 6464
Shekhar (10.1016/j.knosys.2014.02.008_b0120) 1999; 11
Cheng (10.1016/j.knosys.2014.02.008_b0040) 2006; 10
Basu (10.1016/j.knosys.2014.02.008_b0020) 2007; 11
10.1016/j.knosys.2014.02.008_b0075
10.1016/j.knosys.2014.02.008_b0130
Agovic (10.1016/j.knosys.2014.02.008_b0005) 2009; 13
Chandola (10.1016/j.knosys.2014.02.008_b0035) 2009; 41
Chen (10.1016/j.knosys.2014.02.008_b0170) 2012; 39
10.1016/j.knosys.2014.02.008_b0175
10.1016/j.knosys.2014.02.008_b0055
10.1016/j.knosys.2014.02.008_b0070
10.1016/j.knosys.2014.02.008_b0050
10.1016/j.knosys.2014.02.008_b0095
10.1016/j.knosys.2014.02.008_b0150
10.1016/j.knosys.2014.02.008_b0115
Shekhar (10.1016/j.knosys.2014.02.008_b0125) 2003; 7
Barnett (10.1016/j.knosys.2014.02.008_b0010) 1994
10.1016/j.knosys.2014.02.008_b0135
10.1016/j.knosys.2014.02.008_b0015
Yu (10.1016/j.knosys.2014.02.008_b0140) 2002; 4
Birant (10.1016/j.knosys.2014.02.008_b0030) 2006; 14
Lu (10.1016/j.knosys.2014.02.008_b0090) 2007; 177
Salvador (10.1016/j.knosys.2014.02.008_b0110) 2005; 23
10.1016/j.knosys.2014.02.008_b0080
Koochakzadeh (10.1016/j.knosys.2014.02.008_b0160) 2010; 20
10.1016/j.knosys.2014.02.008_b0085
10.1016/j.knosys.2014.02.008_b0065
He (10.1016/j.knosys.2014.02.008_b0060) 2003; 24
Karthikeyan (10.1016/j.knosys.2014.02.008_b0165) 2011; 31
10.1016/j.knosys.2014.02.008_b0105
10.1016/j.knosys.2014.02.008_b0045
10.1016/j.knosys.2014.02.008_b0100
10.1016/j.knosys.2014.02.008_b0145
10.1016/j.knosys.2014.02.008_b0025
References_xml – volume: 20
  start-page: 139
  year: 2010
  end-page: 154
  ident: b0160
  article-title: Semi-supervised dynamic classification for intrusion detection. Approach for mixed attribute data
  publication-title: Int. J. Softw. Eng. Knowl. Eng.
– volume: 14
  start-page: 291
  year: 2006
  end-page: 298
  ident: b0030
  article-title: Spatio-temporal outlier detection in large databases
  publication-title: J. Comput. Inform. Technol.
– reference: M.K. Edwin, T.N. Raymond, A unified notion of outliers: properties and computation, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Newport Beach, CA, 1997, pp. 219–222.
– volume: 177
  start-page: 1609
  year: 2007
  end-page: 1632
  ident: b0090
  article-title: Detecting and tracking regional outliers in meteorological data
  publication-title: Inform. Sci.: An Int. J.
– volume: 31
  start-page: 0975
  year: 2011
  end-page: 8887
  ident: b0165
  article-title: Outlier removal clustering through minimum spanning tree
  publication-title: Int. J. Comp. Appl.
– reference: J. Zhao, C. Lu, Y. Kou, Detecting region outliers in meteorological data, in: Proceedings of ACM International Symposium on Advances in Geographic Information Systems, 2003, pp. 49–55.
– volume: 4
  start-page: 387
  year: 2002
  end-page: 412
  ident: b0140
  article-title: Findout: finding outliers in very large datasets
  publication-title: Knowl. Inform. Syst.
– reference: C. Kruegel, D. Mutz, W. Robertson, F. Valeur, Bayesian event classification for intrusion detection, in: Proceedings of the 19th Annual Computer Security Applications Conference, 2003, p. 14.
– volume: 7
  year: 2003
  ident: b0125
  article-title: A unified approach to detecting spatial outliers
  publication-title: GeoInformatica
– reference: Yang Zhang, Nirvana Meratnia, Paul Havinga, Outlier detection techniques for wireless sensor networks: a survey, in: IEEE Communications Surveys and Tutorials, vol. 12(2), Second Quarter 2010.
– reference: Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, Outlier detection in graph streams, in: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, April 2011, pp. 399–409.
– reference: S. Barua and R. Alhajj, A parallel multi-scale region outlier mining algorithm for meteorological data, in: Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, 2007.
– reference: C. Krugel, T. Toth, E. Kirda, Service specific anomaly detection for network intrusion detection, in: Proceedings of the 2002 ACM Symposium on Applied Computing, 2002, pp. 201–208.
– reference: S. Ramaswamy, P. Alto, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, in: Proceedings of ACM SIGMOD, 2000, pp. 427–438.
– reference: R. Brause, T. Langsdorf, and M. Hepp, Neural data mining for credit card fraud detection, in: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, 1999, p. 103.
– volume: 13
  start-page: 435
  year: 2009
  end-page: 455
  ident: b0005
  article-title: Anomaly detection using manifold embedding and its applications in transportation corridors
  publication-title: Intell. Data Anal.
– volume: 11
  start-page: 45
  year: 1999
  end-page: 55
  ident: b0120
  article-title: Spatial databases-accomplishments and research needs
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: P. Sun, S. Chawla, On local spatial outliers, in: Proceedings of IEEE ICDM, 2004, pp. 209–216.
– reference: E. Eskin, Anomaly detection over noisy data using learned probability distributions, in: Proceedings of the Seventeenth International Conference on Machine Learning, 2000, pp. 255–262.
– volume: 23
  start-page: 241
  year: 2005
  end-page: 255
  ident: b0110
  article-title: Learning states and rules for detecting anomalies in time series
  publication-title: Appl. Intell.
– volume: 41
  year: 2009
  ident: b0035
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv. (CSUR)
– reference: R. Fujimaki, T. Yairi, K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 401–410.
– volume: 24
  start-page: 1641
  year: 2003
  end-page: 1650
  ident: b0060
  article-title: Discovering cluster-based local outliers
  publication-title: Patt. Recog. Lett.
– reference: F. Rasheed, P. Peng, R. Alhajj, J. Rokne, Fourier transform based spatial outlier mining, in: Proceedings of the 10th International Conference on Intelligent Data Engineering and Automated Learning, 2009, pp. 317–324.
– reference: E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in large datasets, in: Proceedings of VLDB, 24–27 1998, pp. 392–403.
– year: 1994
  ident: b0010
  article-title: Outliers in Statistical Data
– volume: 39
  start-page: 59
  year: 2012
  end-page: 85
  ident: b0170
  article-title: Community-based anomaly detection in evolutionary networks
  publication-title: J. Intell. Inf. Syst.
– volume: 6464
  start-page: 122
  year: 2011
  end-page: 131
  ident: b0155
  article-title: An effective pattern based outlier detection approach for mixed attribute data
  publication-title: Advan. Artif. Intell.
– volume: 10
  start-page: 253
  year: 2006
  end-page: 263
  ident: b0040
  article-title: A multiscale approach for spatio-temporal outlier detection
  publication-title: Trans. GIS
– reference: W. Lee, D. Xiang, Information-theoretic measures for anomaly detection, in: Proceedings of the 2001 IEEE Symposium on Security and Privacy, 2001, p. 130.
– reference: S. Shekhar, C.-T. Lu, P. Zhang, Detecting graph-based spatial outliers: algorithms and applications (a summary of results), in: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2001, pp. 371–376.
– reference: E. Hung, D. Cheung, Parallel algorithm for mining outliers in large database, in: Proceedings of IDC, Hong Kong, July 15–17 1999.
– reference: L. Wei, W. Qian, A. Zhou, W. Jin, J.X. Yu, Hot: hypergraph-based outlier test for categorical data, in: Proceedings of the 7th Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining, 2003, pp. 399–410.
– volume: 11
  start-page: 137
  year: 2007
  end-page: 154
  ident: b0020
  article-title: Automatic outlier detection for time series: an application to sensor data
  publication-title: Knowl. Inform. Syst.
– reference: R. Ramachandran, J. Rushing, H. Conover, S. Graves, K. Keiser, Flexible framework for mining meteorological data, in: Proceedings of IIPS for Meteorology, Oceanography, and Hydrology, Long Beach, CA, February 2003.
– ident: 10.1016/j.knosys.2014.02.008_b0015
  doi: 10.1145/1341012.1341075
– volume: 10
  start-page: 253
  issue: 2
  year: 2006
  ident: 10.1016/j.knosys.2014.02.008_b0040
  article-title: A multiscale approach for spatio-temporal outlier detection
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2006.00256.x
– volume: 177
  start-page: 1609
  year: 2007
  ident: 10.1016/j.knosys.2014.02.008_b0090
  article-title: Detecting and tracking regional outliers in meteorological data
  publication-title: Inform. Sci.: An Int. J.
  doi: 10.1016/j.ins.2006.09.013
– ident: 10.1016/j.knosys.2014.02.008_b0055
  doi: 10.1145/1081870.1081917
– volume: 31
  start-page: 0975
  issue: 10
  year: 2011
  ident: 10.1016/j.knosys.2014.02.008_b0165
  article-title: Outlier removal clustering through minimum spanning tree
  publication-title: Int. J. Comp. Appl.
– volume: 24
  start-page: 1641
  year: 2003
  ident: 10.1016/j.knosys.2014.02.008_b0060
  article-title: Discovering cluster-based local outliers
  publication-title: Patt. Recog. Lett.
  doi: 10.1016/S0167-8655(03)00003-5
– ident: 10.1016/j.knosys.2014.02.008_b0135
  doi: 10.1007/3-540-36175-8_40
– volume: 14
  start-page: 291
  issue: 4
  year: 2006
  ident: 10.1016/j.knosys.2014.02.008_b0030
  article-title: Spatio-temporal outlier detection in large databases
  publication-title: J. Comput. Inform. Technol.
  doi: 10.2498/cit.2006.04.04
– ident: 10.1016/j.knosys.2014.02.008_b0075
  doi: 10.1109/CSAC.2003.1254306
– ident: 10.1016/j.knosys.2014.02.008_b0045
– ident: 10.1016/j.knosys.2014.02.008_b0115
  doi: 10.1145/502512.502567
– ident: 10.1016/j.knosys.2014.02.008_b0025
  doi: 10.1109/TAI.1999.809773
– ident: 10.1016/j.knosys.2014.02.008_b0050
– ident: 10.1016/j.knosys.2014.02.008_b0145
  doi: 10.1145/956676.956683
– volume: 11
  start-page: 137
  issue: 2
  year: 2007
  ident: 10.1016/j.knosys.2014.02.008_b0020
  article-title: Automatic outlier detection for time series: an application to sensor data
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s10115-006-0026-6
– ident: 10.1016/j.knosys.2014.02.008_b0150
  doi: 10.1109/SURV.2010.021510.00088
– ident: 10.1016/j.knosys.2014.02.008_b0080
  doi: 10.1145/508791.508835
– volume: 39
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2014.02.008_b0170
  article-title: Community-based anomaly detection in evolutionary networks
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-011-0183-2
– ident: 10.1016/j.knosys.2014.02.008_b0085
– volume: 41
  issue: 15
  year: 2009
  ident: 10.1016/j.knosys.2014.02.008_b0035
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv. (CSUR)
– ident: 10.1016/j.knosys.2014.02.008_b0175
  doi: 10.1109/ICDE.2011.5767885
– year: 1994
  ident: 10.1016/j.knosys.2014.02.008_b0010
– volume: 11
  start-page: 45
  issue: 1
  year: 1999
  ident: 10.1016/j.knosys.2014.02.008_b0120
  article-title: Spatial databases-accomplishments and research needs
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.755614
– volume: 7
  issue: 2
  year: 2003
  ident: 10.1016/j.knosys.2014.02.008_b0125
  article-title: A unified approach to detecting spatial outliers
  publication-title: GeoInformatica
  doi: 10.1023/A:1023455925009
– volume: 4
  start-page: 387
  issue: 4
  year: 2002
  ident: 10.1016/j.knosys.2014.02.008_b0140
  article-title: Findout: finding outliers in very large datasets
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s101150200013
– ident: 10.1016/j.knosys.2014.02.008_b0100
  doi: 10.1145/335191.335437
– ident: 10.1016/j.knosys.2014.02.008_b0070
– ident: 10.1016/j.knosys.2014.02.008_b0095
– volume: 13
  start-page: 435
  year: 2009
  ident: 10.1016/j.knosys.2014.02.008_b0005
  article-title: Anomaly detection using manifold embedding and its applications in transportation corridors
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2009-0375
– ident: 10.1016/j.knosys.2014.02.008_b0065
– ident: 10.1016/j.knosys.2014.02.008_b0105
  doi: 10.1007/978-3-642-04394-9_39
– volume: 23
  start-page: 241
  issue: 3
  year: 2005
  ident: 10.1016/j.knosys.2014.02.008_b0110
  article-title: Learning states and rules for detecting anomalies in time series
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-005-4610-3
– volume: 20
  start-page: 139
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2014.02.008_b0160
  article-title: Semi-supervised dynamic classification for intrusion detection. Approach for mixed attribute data
  publication-title: Int. J. Softw. Eng. Knowl. Eng.
  doi: 10.1142/S0218194010004669
– volume: 6464
  start-page: 122
  year: 2011
  ident: 10.1016/j.knosys.2014.02.008_b0155
  article-title: An effective pattern based outlier detection approach for mixed attribute data
  publication-title: Advan. Artif. Intell.
– ident: 10.1016/j.knosys.2014.02.008_b0130
  doi: 10.1109/ICDM.2004.10097
SSID ssj0002218
Score 2.162711
Snippet Outlier detection has a large variety of applications ranging from detecting intrusion in a computer network, to forecasting hurricanes and tornados in weather...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Algorithms
Climatology
Computer networks
Construction
Data mining
Graph-based algorithm
Markets
Outlier detection
Raw materials
Stock market
Weather
Weather data
Title Graph-based approach for outlier detection in sequential data and its application on stock market and weather data
URI https://dx.doi.org/10.1016/j.knosys.2014.02.008
https://www.proquest.com/docview/1531024485
https://www.proquest.com/docview/1551067839
https://www.proquest.com/docview/1671570493
Volume 61
WOSCitedRecordID wos000335275700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5cp4de-i5NX2yh9GJUZGml3T2a4vQVnEId8G3RY0Wd2LJrO2lO_e2d2ZdNQ5P0UDDCLCNb0nzaec8Q8oblINSLGL028LqxjOlI6FpGed1wmdVgEzFTKHzIRyMxmcivnc4vXwtzPuNtKy4u5PK_shrWgNlYOvsP7A4_CgvwHZgOR2A7HG_E-A_YgjpC6VSHjuEmmRBzf6ZmIPhGVz7H0aZSb9BvjsmiIZawE9jGeAKoiNVpb25KpA3NT6s69lxtW1Bwv3gfnbuC9U5HdBNO-j63U6R6g9k0oK0x045638AomAdXdrGC28Xlo3kRUogHdW0hHBady6LPtgmCwfcYRzx2nWbdNmx7srt91I4VchLZJvBe2uut2-Hk3Wm7gHvBLD1m26-KrWzz8fzRkTo4PjxU4-Fk_Hb5I8KpYxiddyNYbpG9hGdSdMne4NNw8jnI8iQxHuJwwb740mQIXv7jvyk3f4h5o7uM75O7zuigAwuWB6Sj24fknh_oQd3-_oisdrBDPXYoYIc67NCAHTpt6RY7FGFAARcUsEN3sEPhY7BDLXYMjcOOOekxOT4Yjt9_jNxQjqgC3X4TibRfSKGlaNK-TpJSJrlssOcSZ2XKOejLZZP0KzQLeAm2KO-XLK-quM5L3dSiTp-Qbrto9VNCYY_AaQBNnOSaZbooRCZ1lUlWgFbJpdwnqX-aqnId63Fwykz51MQTZXmgkAcqThTwYJ9E4ayl7dhyDT33jFJO67TapAKgXXPma89XBZsyRtqKVi_O1grUCFDcGRPZVTQZtm8EA-UKmpzDkwAjPn12A5rn5M72bXtBupvVmX5Jblfnm-l69cpB-zdoFMqm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+approach+for+outlier+detection+in+sequential+data+and+its+application+on+stock+market+and+weather+data&rft.jtitle=Knowledge-based+systems&rft.au=Rahmani%2C+Ali&rft.au=Afra%2C+Salim&rft.au=Zarour%2C+Omar&rft.au=Addam%2C+Omar&rft.date=2014-05-01&rft.issn=0950-7051&rft.volume=61&rft.spage=89&rft.epage=97&rft_id=info:doi/10.1016%2Fj.knosys.2014.02.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon