A Hybrid Optimization Algorithm for the Synthesis of Sparse Array Pattern Diagrams

To comprehensively address the challenges of aperture design, element spacing optimization, and sidelobe suppression in sparse radar array antennas, this paper proposes a hybrid particle swarm optimization (PSO) algorithm that integrates quantum-behavior mechanisms with genetic mutation. The algorit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 15; číslo 12; s. 6490
Hlavní autoři: Liu, Youzhi, Huang, Linshu, Xie, Xu, Ye, Huijuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2025
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To comprehensively address the challenges of aperture design, element spacing optimization, and sidelobe suppression in sparse radar array antennas, this paper proposes a hybrid particle swarm optimization (PSO) algorithm that integrates quantum-behavior mechanisms with genetic mutation. The algorithm enhances global search capability through the introduction of a quantum potential well model, while incorporating adaptive mutation operations to prevent premature convergence, thereby improving optimization accuracy during later iterations. The simulation results demonstrate that for sparse linear arrays, planar rectangular arrays, and multi-ring concentric circular arrays, the proposed algorithm achieves a sidelobe level (SLL) reduction exceeding 0.24 dB compared to conventional approaches, including the grey wolf optimizer (GWO), the whale optimization algorithm (WOA), and classical PSO. Furthermore, it exhibits superior global iterative search performance and demonstrates broader applicability across various array configurations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app15126490