Large-Scale Photonic Ising Machine by Spatial Light Modulation
Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. Howe...
Saved in:
| Published in: | Physical review letters Vol. 122; no. 21; p. 213902 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Physical Society
31.05.2019
|
| Subjects: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings. |
|---|---|
| AbstractList | Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings. Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings. |
| ArticleNumber | 213902 |
| Author | Pierangeli, D. Marcucci, G. Conti, C. |
| Author_xml | – sequence: 1 givenname: D. surname: Pierangeli fullname: Pierangeli, D. – sequence: 2 givenname: G. surname: Marcucci fullname: Marcucci, G. – sequence: 3 givenname: C. surname: Conti fullname: Conti, C. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31283311$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkVlLAzEUhYMoWqt_QQZ88WVqbpZZQAQRN5iiuDyHNLnTRqaTOskI_feOVkF88enC5TvnLmefbLe-RUKOgE4AKD99WKzDI75XGOMEGJsw4CVlW2QENC_THEBskxGlHNKS0nyP7IfwSikFlhW7ZI8DKzgHGJHzSndzTJ-MbjB5WPjoW2eSu-DaeTLVZuFaTGbr5Gmlo9NNUrn5IiZTb_tmaPj2gOzUugl4-F3H5OX66vnyNq3ub-4uL6rUCCpjym1douDWAkOR5bXQwgqOYMUMQSK3OhO6LrUs0LLamJmpi9xKiUCx5lTwMTnZ-K46_9ZjiGrpgsGm0S36PijGpJCUM5ADevwHffV91w7bDZTIMyEK-Wl49E31syVatercUndr9fOZATjbAKbzIXRYK-Pi182x065RQNVnEOpXEGoIQm2CGOTZH_nPhH-EH6FEj3w |
| CitedBy_id | crossref_primary_10_1002_andp_202400390 crossref_primary_10_1038_s41598_021_04057_2 crossref_primary_10_1103_PhysRevApplied_14_054040 crossref_primary_10_3389_fphy_2022_1064693 crossref_primary_10_1364_PRJ_511389 crossref_primary_10_1103_PhysRevX_13_031020 crossref_primary_10_1364_OPTICA_557856 crossref_primary_10_1117_1_APN_2_4_046008 crossref_primary_10_1007_s44214_024_00069_x crossref_primary_10_1038_s42005_024_01867_4 crossref_primary_10_1002_cta_4256 crossref_primary_10_1103_PhysRevApplied_17_024063 crossref_primary_10_1021_acscentsci_3c00515 crossref_primary_10_1038_s41598_023_40137_1 crossref_primary_10_1038_s41467_025_59537_0 crossref_primary_10_1038_s41928_023_01065_0 crossref_primary_10_1515_nanoph_2020_0256 crossref_primary_10_3788_COL202523_032501 crossref_primary_10_3390_e22030322 crossref_primary_10_1088_2632_959X_ad2999 crossref_primary_10_1103_PhysRevApplied_20_014051 crossref_primary_10_3389_fcomp_2023_1286860 crossref_primary_10_1103_PhysRevLett_134_063802 crossref_primary_10_1007_s12200_024_00133_3 crossref_primary_10_1038_s42005_023_01148_6 crossref_primary_10_1038_s41467_024_46640_x crossref_primary_10_1007_s00340_023_07994_0 crossref_primary_10_1038_s41377_022_01013_1 crossref_primary_10_1364_PRJ_423531 crossref_primary_10_1103_PhysRevApplied_19_L031001 crossref_primary_10_1038_s42005_021_00655_8 crossref_primary_10_1103_PhysRevResearch_6_013331 crossref_primary_10_1007_s11432_023_3890_2 crossref_primary_10_1126_sciadv_ads7223 crossref_primary_10_1364_JOSAB_36_003290 crossref_primary_10_1038_s42005_022_01111_x crossref_primary_10_1038_s42005_025_02145_7 crossref_primary_10_1109_JXCDC_2020_3045074 crossref_primary_10_1137_22M1514581 crossref_primary_10_1103_PhysRevB_105_054403 crossref_primary_10_3389_fdata_2025_1599704 crossref_primary_10_1088_2058_9565_addde5 crossref_primary_10_1103_PhysRevApplied_20_044074 crossref_primary_10_1038_s41598_023_28217_8 crossref_primary_10_1038_s42005_025_01953_1 crossref_primary_10_1103_1y39_bgll crossref_primary_10_21468_SciPostPhys_18_6_198 crossref_primary_10_1038_s41467_023_37695_3 crossref_primary_10_1038_s41566_021_00858_z crossref_primary_10_1109_MAP_2020_3021391 crossref_primary_10_1002_lpor_202100399 crossref_primary_10_1103_fk9d_k8dc crossref_primary_10_1109_JSTQE_2023_3235334 crossref_primary_10_1364_AO_521061 crossref_primary_10_1364_OL_570135 crossref_primary_10_1103_chxf_fq9v crossref_primary_10_1103_PRXQuantum_2_030323 crossref_primary_10_1038_s42005_024_01658_x crossref_primary_10_1103_PhysRevResearch_6_043151 crossref_primary_10_1002_lpor_202402160 crossref_primary_10_1109_JSSC_2021_3062821 crossref_primary_10_1016_j_physd_2023_133747 crossref_primary_10_3390_nano14080697 crossref_primary_10_1038_s42005_025_01945_1 crossref_primary_10_1038_s42005_022_00929_9 crossref_primary_10_1038_s42005_025_01987_5 crossref_primary_10_1002_qute_202500057 crossref_primary_10_26599_NR_2025_94907957 crossref_primary_10_1016_j_physd_2022_133334 crossref_primary_10_1038_s42005_021_00792_0 crossref_primary_10_1038_s42005_020_00428_9 crossref_primary_10_1088_2632_072X_ad1410 crossref_primary_10_1002_adts_202100497 crossref_primary_10_1103_PhysRevResearch_7_013150 crossref_primary_10_1002_adma_202208683 crossref_primary_10_1038_s41467_023_44498_z crossref_primary_10_1038_s41467_021_22576_4 crossref_primary_10_3390_sym13091745 crossref_primary_10_1186_s43074_021_00042_0 crossref_primary_10_1038_s42005_020_0376_5 crossref_primary_10_1016_j_cossms_2024_101173 crossref_primary_10_1063_5_0016140 crossref_primary_10_1088_1361_6528_abff8b crossref_primary_10_1117_1_JOM_4_1_014501 crossref_primary_10_1038_s41377_022_00717_8 crossref_primary_10_1109_JSTQE_2022_3219288 crossref_primary_10_1109_TWC_2022_3189604 crossref_primary_10_1038_s42005_021_00741_x crossref_primary_10_1109_TCSII_2024_3432799 crossref_primary_10_1038_s41578_020_00243_2 crossref_primary_10_1038_s43588_025_00782_0 crossref_primary_10_1109_JSSC_2022_3176610 crossref_primary_10_1364_OE_567404 crossref_primary_10_1103_9vbb_h73q crossref_primary_10_1007_s43673_023_00077_4 crossref_primary_10_1109_TAP_2021_3137424 crossref_primary_10_1117_1_AP_4_4_044001 crossref_primary_10_1103_PhysRevApplied_15_034087 crossref_primary_10_1109_TWC_2024_3450190 crossref_primary_10_1016_j_chip_2024_100117 crossref_primary_10_1117_1_AP_7_4_046001 crossref_primary_10_1103_PhysRevLett_126_133603 crossref_primary_10_1002_adpr_202100048 crossref_primary_10_1002_adpr_202400004 crossref_primary_10_1038_s44310_025_00075_4 crossref_primary_10_1038_s41598_022_06559_z crossref_primary_10_1049_ote2_12112 crossref_primary_10_1073_pnas_2305027120 crossref_primary_10_1364_PRJ_478370 crossref_primary_10_1109_TASC_2025_3540049 crossref_primary_10_1103_PhysRevApplied_22_L021001 crossref_primary_10_1103_PhysRevApplied_16_054022 crossref_primary_10_1103_PhysRevLett_133_266701 crossref_primary_10_1038_s41467_020_17919_6 crossref_primary_10_1063_5_0216656 crossref_primary_10_1088_1572_9494_adc7ea crossref_primary_10_1109_JSTQE_2023_3272642 crossref_primary_10_1103_PhysRevA_105_033529 crossref_primary_10_1002_andp_202200360 crossref_primary_10_1103_PhysRevResearch_4_013009 crossref_primary_10_1038_s42005_022_00874_7 crossref_primary_10_1109_MNANO_2024_3378485 crossref_primary_10_1103_qs29_2xqc crossref_primary_10_1038_s41467_024_45896_7 crossref_primary_10_1103_PhysRevLett_134_203801 crossref_primary_10_1126_sciadv_adv5718 crossref_primary_10_1038_s41928_021_00546_4 crossref_primary_10_1038_s41467_022_33441_3 crossref_primary_10_1117_1_APN_2_1_016007 crossref_primary_10_1364_OE_546402 crossref_primary_10_1038_s41598_020_70017_x crossref_primary_10_1038_s41467_022_34847_9 crossref_primary_10_1038_s42005_021_00768_0 crossref_primary_10_1002_aisy_202500371 crossref_primary_10_1103_PhysRevApplied_21_044042 crossref_primary_10_1364_PRJ_542991 crossref_primary_10_1103_PhysRevApplied_21_024057 crossref_primary_10_1038_s42005_024_01919_9 crossref_primary_10_1103_PhysRevResearch_2_043335 crossref_primary_10_1016_j_cpc_2021_108102 crossref_primary_10_1016_j_optcom_2022_128642 crossref_primary_10_1038_s41928_025_01393_3 crossref_primary_10_1021_acsphotonics_4c02496 crossref_primary_10_1038_s41586_025_09446_5 crossref_primary_10_1103_PhysRevApplied_13_054059 crossref_primary_10_1038_s42005_024_01870_9 crossref_primary_10_1073_pnas_2015192117 crossref_primary_10_1103_PhysRevB_111_014307 crossref_primary_10_1515_nanoph_2020_0230 |
| Cites_doi | 10.1126/science.aah4243 10.1364/JOSAA.7.000961 10.1038/nmat4971 10.1038/nphoton.2014.249 10.1364/OE.23.003102 10.1103/PhysRevLett.110.184102 10.1088/0305-4470/15/10/028 10.1038/s41467-017-01612-2 10.1103/PhysRevX.8.041037 10.1038/nphoton.2017.95 10.1016/j.optcom.2008.02.022 10.1103/PhysRevLett.114.063903 10.1126/science.aah5178 10.1038/nature10981 10.1088/2058-9565/aa923b 10.1038/srep44370 10.1016/0375-9601(76)90396-0 10.1103/PhysRevB.95.161108 10.1038/nphys1919 10.1126/science.aab3326 10.1093/acprof:oso/9780198509417.001.0001 10.1038/nphoton.2017.93 10.1103/PhysRevB.13.2997 10.1038/srep37113 10.1364/OE.15.005801 10.1364/OE.16.002597 10.3389/fphy.2014.00005 10.1038/ncomms7058 10.1126/sciadv.1600236 10.1007/978-3-662-03336-4 10.1038/nature09071 10.1038/nature10012 10.1103/PhysRevLett.119.163902 10.1038/srep32134 10.1364/OPTICA.4.000280 10.1038/nphoton.2016.68 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society May 31, 2019 |
| Copyright_xml | – notice: Copyright American Physical Society May 31, 2019 |
| DBID | AAYXX CITATION NPM 7U5 8FD H8D L7M 7X8 |
| DOI | 10.1103/PhysRevLett.122.213902 |
| DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 31283311 10_1103_PhysRevLett_122_213902 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM UCJ VQA 7U5 8FD H8D L7M 7X8 |
| ID | FETCH-LOGICAL-c405t-3df9e43dd12e467f4a4d43e1d4be15e3da64af9a58ed2fccbcf87d55e10ef3043 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 252 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470880900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Fri Jul 11 12:14:05 EDT 2025 Sun Nov 09 08:57:20 EST 2025 Thu Jan 02 23:00:44 EST 2025 Sat Nov 29 05:55:24 EST 2025 Tue Nov 18 20:56:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-3df9e43dd12e467f4a4d43e1d4be15e3da64af9a58ed2fccbcf87d55e10ef3043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31283311 |
| PQID | 2247644854 |
| PQPubID | 2048222 |
| ParticipantIDs | proquest_miscellaneous_2254503215 proquest_journals_2247644854 pubmed_primary_31283311 crossref_citationtrail_10_1103_PhysRevLett_122_213902 crossref_primary_10_1103_PhysRevLett_122_213902 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-31 |
| PublicationDateYYYYMMDD | 2019-05-31 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: College Park |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2019 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.122.213902Cc1R1 PhysRevLett.122.213902Cc2R1 PhysRevLett.122.213902Cc3R1 PhysRevLett.122.213902Cc4R1 PhysRevLett.122.213902Cc5R1 PhysRevLett.122.213902Cc6R1 PhysRevLett.122.213902Cc30R1 PhysRevLett.122.213902Cc7R1 PhysRevLett.122.213902Cc10R1 PhysRevLett.122.213902Cc8R1 PhysRevLett.122.213902Cc11R1 PhysRevLett.122.213902Cc32R1 PhysRevLett.122.213902Cc12R1 PhysRevLett.122.213902Cc35R1 PhysRevLett.122.213902Cc13R1 PhysRevLett.122.213902Cc34R1 PhysRevLett.122.213902Cc14R1 PhysRevLett.122.213902Cc15R1 PhysRevLett.122.213902Cc36R1 PhysRevLett.122.213902Cc16R1 PhysRevLett.122.213902Cc17R1 PhysRevLett.122.213902Cc38R1 PhysRevLett.122.213902Cc18R1 PhysRevLett.122.213902Cc19R1 K. Binder (PhysRevLett.122.213902Cc39R1) 1997 PhysRevLett.122.213902Cc9R1 PhysRevLett.122.213902Cc40R1 PhysRevLett.122.213902Cc20R1 PhysRevLett.122.213902Cc22R1 PhysRevLett.122.213902Cc41R1 PhysRevLett.122.213902Cc21R1 PhysRevLett.122.213902Cc26R1 PhysRevLett.122.213902Cc25R1 G. Parisi (PhysRevLett.122.213902Cc37R1) 1988 PhysRevLett.122.213902Cc28R1 PhysRevLett.122.213902Cc29R1 H. Nishimori (PhysRevLett.122.213902Cc33R1) 2001 |
| References_xml | – ident: PhysRevLett.122.213902Cc20R1 doi: 10.1126/science.aah4243 – ident: PhysRevLett.122.213902Cc36R1 doi: 10.1364/JOSAA.7.000961 – ident: PhysRevLett.122.213902Cc10R1 doi: 10.1038/nmat4971 – ident: PhysRevLett.122.213902Cc18R1 doi: 10.1038/nphoton.2014.249 – ident: PhysRevLett.122.213902Cc28R1 doi: 10.1364/OE.23.003102 – ident: PhysRevLett.122.213902Cc15R1 doi: 10.1103/PhysRevLett.110.184102 – ident: PhysRevLett.122.213902Cc1R1 doi: 10.1088/0305-4470/15/10/028 – ident: PhysRevLett.122.213902Cc17R1 doi: 10.1038/s41467-017-01612-2 – ident: PhysRevLett.122.213902Cc30R1 doi: 10.1103/PhysRevX.8.041037 – ident: PhysRevLett.122.213902Cc26R1 doi: 10.1038/nphoton.2017.95 – ident: PhysRevLett.122.213902Cc34R1 doi: 10.1016/j.optcom.2008.02.022 – ident: PhysRevLett.122.213902Cc16R1 doi: 10.1103/PhysRevLett.114.063903 – ident: PhysRevLett.122.213902Cc19R1 doi: 10.1126/science.aah5178 – ident: PhysRevLett.122.213902Cc5R1 doi: 10.1038/nature10981 – ident: PhysRevLett.122.213902Cc22R1 doi: 10.1088/2058-9565/aa923b – ident: PhysRevLett.122.213902Cc9R1 doi: 10.1038/srep44370 – ident: PhysRevLett.122.213902Cc32R1 doi: 10.1016/0375-9601(76)90396-0 – ident: PhysRevLett.122.213902Cc29R1 doi: 10.1103/PhysRevB.95.161108 – volume-title: Statistical Field Theory year: 1988 ident: PhysRevLett.122.213902Cc37R1 – ident: PhysRevLett.122.213902Cc6R1 doi: 10.1038/nphys1919 – ident: PhysRevLett.122.213902Cc3R1 doi: 10.1126/science.aab3326 – volume-title: Statistical Physics of Spin Glasses and Information Processing: An Introduction year: 2001 ident: PhysRevLett.122.213902Cc33R1 doi: 10.1093/acprof:oso/9780198509417.001.0001 – ident: PhysRevLett.122.213902Cc25R1 doi: 10.1038/nphoton.2017.93 – ident: PhysRevLett.122.213902Cc38R1 doi: 10.1103/PhysRevB.13.2997 – ident: PhysRevLett.122.213902Cc12R1 doi: 10.1038/srep37113 – ident: PhysRevLett.122.213902Cc35R1 doi: 10.1364/OE.15.005801 – ident: PhysRevLett.122.213902Cc40R1 doi: 10.1364/OE.16.002597 – ident: PhysRevLett.122.213902Cc2R1 doi: 10.3389/fphy.2014.00005 – ident: PhysRevLett.122.213902Cc11R1 doi: 10.1038/ncomms7058 – ident: PhysRevLett.122.213902Cc8R1 doi: 10.1126/sciadv.1600236 – volume-title: Monte Carlo Simulation in Statistical Physics year: 1997 ident: PhysRevLett.122.213902Cc39R1 doi: 10.1007/978-3-662-03336-4 – ident: PhysRevLett.122.213902Cc4R1 doi: 10.1038/nature09071 – ident: PhysRevLett.122.213902Cc7R1 doi: 10.1038/nature10012 – ident: PhysRevLett.122.213902Cc13R1 doi: 10.1103/PhysRevLett.119.163902 – ident: PhysRevLett.122.213902Cc14R1 doi: 10.1038/srep32134 – ident: PhysRevLett.122.213902Cc41R1 doi: 10.1364/OPTICA.4.000280 – ident: PhysRevLett.122.213902Cc21R1 doi: 10.1038/nphoton.2016.68 |
| SSID | ssj0001268 |
| Score | 2.6924584 |
| Snippet | Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 213902 |
| SubjectTerms | Amplitude modulation Couplings Ferromagnetism Ising model Light modulation Machine learning Parallel degrees of freedom Parallel processing Phase modulation Photonics Spatial light modulators |
| Title | Large-Scale Photonic Ising Machine by Spatial Light Modulation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31283311 https://www.proquest.com/docview/2247644854 https://www.proquest.com/docview/2254503215 |
| Volume | 122 |
| WOSCitedRecordID | wos000470880900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GUPDF74_qlAi-dmua9OtFEHEobGP4AXsrbXJBQTbZuoH_vZe2DgWH7KUvbdJwd8n9LvnlDuCKQESeZBi6oUTtSm6Mm2sduBigIXhAFm1MWWwiGgzi0SgZNsD7-wSfe6JjmZCPuLC3W9rc99s-YZYqe2QsbbJ80R8tl17uh9XSKyzvwIvqK8Gru_ntjVZAzNLVdHfWH-QubNewkt1UdrAHDRzvw2ZJ71SzA7juWcK3-0QKQTZ8nRQ2IS57sPsErF_SKZHln8zWJyZ7ZD0bsbP-RNe1vQ7hpXv3fHvv1pUTXEUArHCFNglKoTX3kVZCIzOppUCuZY48QKGzUGYmyYIYtW-UypWJIx0EyD00wpPiCJrjyRhPgKnEJFqSn8MsoVjMUMTsS0N9Ko9nQuQOBN8STFWdVtxWt3hPy_DCE-kP2aQkm7SSjQOdZbuPKrHGvy1a3wpK64k2SwmBRDbEDKQDl8vXNEXsuUc2xsncfkMw0RMEbhw4rhS7_KUg_ywE56drD-cMtgg8JRWToAXNYjrHc9hQi-JtNr0o7ZKe0Sj-ApVf4PQ |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Photonic+Ising+Machine+by+Spatial+Light+Modulation&rft.jtitle=Physical+review+letters&rft.au=Pierangeli%2C+D&rft.au=Marcucci%2C+G&rft.au=Conti%2C+C&rft.date=2019-05-31&rft.eissn=1079-7114&rft.volume=122&rft.issue=21&rft.spage=213902&rft_id=info:doi/10.1103%2FPhysRevLett.122.213902&rft_id=info%3Apmid%2F31283311&rft.externalDocID=31283311 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |