Large-Scale Photonic Ising Machine by Spatial Light Modulation

Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 122; no. 21; p. 213902
Main Authors: Pierangeli, D., Marcucci, G., Conti, C.
Format: Journal Article
Language:English
Published: United States American Physical Society 31.05.2019
Subjects:
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.
AbstractList Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.
Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultrafast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagneticlike phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.
ArticleNumber 213902
Author Pierangeli, D.
Marcucci, G.
Conti, C.
Author_xml – sequence: 1
  givenname: D.
  surname: Pierangeli
  fullname: Pierangeli, D.
– sequence: 2
  givenname: G.
  surname: Marcucci
  fullname: Marcucci, G.
– sequence: 3
  givenname: C.
  surname: Conti
  fullname: Conti, C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31283311$$D View this record in MEDLINE/PubMed
BookMark eNqFkVlLAzEUhYMoWqt_QQZ88WVqbpZZQAQRN5iiuDyHNLnTRqaTOskI_feOVkF88enC5TvnLmefbLe-RUKOgE4AKD99WKzDI75XGOMEGJsw4CVlW2QENC_THEBskxGlHNKS0nyP7IfwSikFlhW7ZI8DKzgHGJHzSndzTJ-MbjB5WPjoW2eSu-DaeTLVZuFaTGbr5Gmlo9NNUrn5IiZTb_tmaPj2gOzUugl4-F3H5OX66vnyNq3ub-4uL6rUCCpjym1douDWAkOR5bXQwgqOYMUMQSK3OhO6LrUs0LLamJmpi9xKiUCx5lTwMTnZ-K46_9ZjiGrpgsGm0S36PijGpJCUM5ADevwHffV91w7bDZTIMyEK-Wl49E31syVatercUndr9fOZATjbAKbzIXRYK-Pi182x065RQNVnEOpXEGoIQm2CGOTZH_nPhH-EH6FEj3w
CitedBy_id crossref_primary_10_1002_andp_202400390
crossref_primary_10_1038_s41598_021_04057_2
crossref_primary_10_1103_PhysRevApplied_14_054040
crossref_primary_10_3389_fphy_2022_1064693
crossref_primary_10_1364_PRJ_511389
crossref_primary_10_1103_PhysRevX_13_031020
crossref_primary_10_1364_OPTICA_557856
crossref_primary_10_1117_1_APN_2_4_046008
crossref_primary_10_1007_s44214_024_00069_x
crossref_primary_10_1038_s42005_024_01867_4
crossref_primary_10_1002_cta_4256
crossref_primary_10_1103_PhysRevApplied_17_024063
crossref_primary_10_1021_acscentsci_3c00515
crossref_primary_10_1038_s41598_023_40137_1
crossref_primary_10_1038_s41467_025_59537_0
crossref_primary_10_1038_s41928_023_01065_0
crossref_primary_10_1515_nanoph_2020_0256
crossref_primary_10_3788_COL202523_032501
crossref_primary_10_3390_e22030322
crossref_primary_10_1088_2632_959X_ad2999
crossref_primary_10_1103_PhysRevApplied_20_014051
crossref_primary_10_3389_fcomp_2023_1286860
crossref_primary_10_1103_PhysRevLett_134_063802
crossref_primary_10_1007_s12200_024_00133_3
crossref_primary_10_1038_s42005_023_01148_6
crossref_primary_10_1038_s41467_024_46640_x
crossref_primary_10_1007_s00340_023_07994_0
crossref_primary_10_1038_s41377_022_01013_1
crossref_primary_10_1364_PRJ_423531
crossref_primary_10_1103_PhysRevApplied_19_L031001
crossref_primary_10_1038_s42005_021_00655_8
crossref_primary_10_1103_PhysRevResearch_6_013331
crossref_primary_10_1007_s11432_023_3890_2
crossref_primary_10_1126_sciadv_ads7223
crossref_primary_10_1364_JOSAB_36_003290
crossref_primary_10_1038_s42005_022_01111_x
crossref_primary_10_1038_s42005_025_02145_7
crossref_primary_10_1109_JXCDC_2020_3045074
crossref_primary_10_1137_22M1514581
crossref_primary_10_1103_PhysRevB_105_054403
crossref_primary_10_3389_fdata_2025_1599704
crossref_primary_10_1088_2058_9565_addde5
crossref_primary_10_1103_PhysRevApplied_20_044074
crossref_primary_10_1038_s41598_023_28217_8
crossref_primary_10_1038_s42005_025_01953_1
crossref_primary_10_1103_1y39_bgll
crossref_primary_10_21468_SciPostPhys_18_6_198
crossref_primary_10_1038_s41467_023_37695_3
crossref_primary_10_1038_s41566_021_00858_z
crossref_primary_10_1109_MAP_2020_3021391
crossref_primary_10_1002_lpor_202100399
crossref_primary_10_1103_fk9d_k8dc
crossref_primary_10_1109_JSTQE_2023_3235334
crossref_primary_10_1364_AO_521061
crossref_primary_10_1364_OL_570135
crossref_primary_10_1103_chxf_fq9v
crossref_primary_10_1103_PRXQuantum_2_030323
crossref_primary_10_1038_s42005_024_01658_x
crossref_primary_10_1103_PhysRevResearch_6_043151
crossref_primary_10_1002_lpor_202402160
crossref_primary_10_1109_JSSC_2021_3062821
crossref_primary_10_1016_j_physd_2023_133747
crossref_primary_10_3390_nano14080697
crossref_primary_10_1038_s42005_025_01945_1
crossref_primary_10_1038_s42005_022_00929_9
crossref_primary_10_1038_s42005_025_01987_5
crossref_primary_10_1002_qute_202500057
crossref_primary_10_26599_NR_2025_94907957
crossref_primary_10_1016_j_physd_2022_133334
crossref_primary_10_1038_s42005_021_00792_0
crossref_primary_10_1038_s42005_020_00428_9
crossref_primary_10_1088_2632_072X_ad1410
crossref_primary_10_1002_adts_202100497
crossref_primary_10_1103_PhysRevResearch_7_013150
crossref_primary_10_1002_adma_202208683
crossref_primary_10_1038_s41467_023_44498_z
crossref_primary_10_1038_s41467_021_22576_4
crossref_primary_10_3390_sym13091745
crossref_primary_10_1186_s43074_021_00042_0
crossref_primary_10_1038_s42005_020_0376_5
crossref_primary_10_1016_j_cossms_2024_101173
crossref_primary_10_1063_5_0016140
crossref_primary_10_1088_1361_6528_abff8b
crossref_primary_10_1117_1_JOM_4_1_014501
crossref_primary_10_1038_s41377_022_00717_8
crossref_primary_10_1109_JSTQE_2022_3219288
crossref_primary_10_1109_TWC_2022_3189604
crossref_primary_10_1038_s42005_021_00741_x
crossref_primary_10_1109_TCSII_2024_3432799
crossref_primary_10_1038_s41578_020_00243_2
crossref_primary_10_1038_s43588_025_00782_0
crossref_primary_10_1109_JSSC_2022_3176610
crossref_primary_10_1364_OE_567404
crossref_primary_10_1103_9vbb_h73q
crossref_primary_10_1007_s43673_023_00077_4
crossref_primary_10_1109_TAP_2021_3137424
crossref_primary_10_1117_1_AP_4_4_044001
crossref_primary_10_1103_PhysRevApplied_15_034087
crossref_primary_10_1109_TWC_2024_3450190
crossref_primary_10_1016_j_chip_2024_100117
crossref_primary_10_1117_1_AP_7_4_046001
crossref_primary_10_1103_PhysRevLett_126_133603
crossref_primary_10_1002_adpr_202100048
crossref_primary_10_1002_adpr_202400004
crossref_primary_10_1038_s44310_025_00075_4
crossref_primary_10_1038_s41598_022_06559_z
crossref_primary_10_1049_ote2_12112
crossref_primary_10_1073_pnas_2305027120
crossref_primary_10_1364_PRJ_478370
crossref_primary_10_1109_TASC_2025_3540049
crossref_primary_10_1103_PhysRevApplied_22_L021001
crossref_primary_10_1103_PhysRevApplied_16_054022
crossref_primary_10_1103_PhysRevLett_133_266701
crossref_primary_10_1038_s41467_020_17919_6
crossref_primary_10_1063_5_0216656
crossref_primary_10_1088_1572_9494_adc7ea
crossref_primary_10_1109_JSTQE_2023_3272642
crossref_primary_10_1103_PhysRevA_105_033529
crossref_primary_10_1002_andp_202200360
crossref_primary_10_1103_PhysRevResearch_4_013009
crossref_primary_10_1038_s42005_022_00874_7
crossref_primary_10_1109_MNANO_2024_3378485
crossref_primary_10_1103_qs29_2xqc
crossref_primary_10_1038_s41467_024_45896_7
crossref_primary_10_1103_PhysRevLett_134_203801
crossref_primary_10_1126_sciadv_adv5718
crossref_primary_10_1038_s41928_021_00546_4
crossref_primary_10_1038_s41467_022_33441_3
crossref_primary_10_1117_1_APN_2_1_016007
crossref_primary_10_1364_OE_546402
crossref_primary_10_1038_s41598_020_70017_x
crossref_primary_10_1038_s41467_022_34847_9
crossref_primary_10_1038_s42005_021_00768_0
crossref_primary_10_1002_aisy_202500371
crossref_primary_10_1103_PhysRevApplied_21_044042
crossref_primary_10_1364_PRJ_542991
crossref_primary_10_1103_PhysRevApplied_21_024057
crossref_primary_10_1038_s42005_024_01919_9
crossref_primary_10_1103_PhysRevResearch_2_043335
crossref_primary_10_1016_j_cpc_2021_108102
crossref_primary_10_1016_j_optcom_2022_128642
crossref_primary_10_1038_s41928_025_01393_3
crossref_primary_10_1021_acsphotonics_4c02496
crossref_primary_10_1038_s41586_025_09446_5
crossref_primary_10_1103_PhysRevApplied_13_054059
crossref_primary_10_1038_s42005_024_01870_9
crossref_primary_10_1073_pnas_2015192117
crossref_primary_10_1103_PhysRevB_111_014307
crossref_primary_10_1515_nanoph_2020_0230
Cites_doi 10.1126/science.aah4243
10.1364/JOSAA.7.000961
10.1038/nmat4971
10.1038/nphoton.2014.249
10.1364/OE.23.003102
10.1103/PhysRevLett.110.184102
10.1088/0305-4470/15/10/028
10.1038/s41467-017-01612-2
10.1103/PhysRevX.8.041037
10.1038/nphoton.2017.95
10.1016/j.optcom.2008.02.022
10.1103/PhysRevLett.114.063903
10.1126/science.aah5178
10.1038/nature10981
10.1088/2058-9565/aa923b
10.1038/srep44370
10.1016/0375-9601(76)90396-0
10.1103/PhysRevB.95.161108
10.1038/nphys1919
10.1126/science.aab3326
10.1093/acprof:oso/9780198509417.001.0001
10.1038/nphoton.2017.93
10.1103/PhysRevB.13.2997
10.1038/srep37113
10.1364/OE.15.005801
10.1364/OE.16.002597
10.3389/fphy.2014.00005
10.1038/ncomms7058
10.1126/sciadv.1600236
10.1007/978-3-662-03336-4
10.1038/nature09071
10.1038/nature10012
10.1103/PhysRevLett.119.163902
10.1038/srep32134
10.1364/OPTICA.4.000280
10.1038/nphoton.2016.68
ContentType Journal Article
Copyright Copyright American Physical Society May 31, 2019
Copyright_xml – notice: Copyright American Physical Society May 31, 2019
DBID AAYXX
CITATION
NPM
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.122.213902
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 31283311
10_1103_PhysRevLett_122_213902
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
UCJ
VQA
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c405t-3df9e43dd12e467f4a4d43e1d4be15e3da64af9a58ed2fccbcf87d55e10ef3043
IEDL.DBID 3MX
ISICitedReferencesCount 252
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470880900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Fri Jul 11 12:14:05 EDT 2025
Sun Nov 09 08:57:20 EST 2025
Thu Jan 02 23:00:44 EST 2025
Sat Nov 29 05:55:24 EST 2025
Tue Nov 18 20:56:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-3df9e43dd12e467f4a4d43e1d4be15e3da64af9a58ed2fccbcf87d55e10ef3043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31283311
PQID 2247644854
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2254503215
proquest_journals_2247644854
pubmed_primary_31283311
crossref_citationtrail_10_1103_PhysRevLett_122_213902
crossref_primary_10_1103_PhysRevLett_122_213902
PublicationCentury 2000
PublicationDate 2019-05-31
PublicationDateYYYYMMDD 2019-05-31
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: College Park
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.122.213902Cc1R1
PhysRevLett.122.213902Cc2R1
PhysRevLett.122.213902Cc3R1
PhysRevLett.122.213902Cc4R1
PhysRevLett.122.213902Cc5R1
PhysRevLett.122.213902Cc6R1
PhysRevLett.122.213902Cc30R1
PhysRevLett.122.213902Cc7R1
PhysRevLett.122.213902Cc10R1
PhysRevLett.122.213902Cc8R1
PhysRevLett.122.213902Cc11R1
PhysRevLett.122.213902Cc32R1
PhysRevLett.122.213902Cc12R1
PhysRevLett.122.213902Cc35R1
PhysRevLett.122.213902Cc13R1
PhysRevLett.122.213902Cc34R1
PhysRevLett.122.213902Cc14R1
PhysRevLett.122.213902Cc15R1
PhysRevLett.122.213902Cc36R1
PhysRevLett.122.213902Cc16R1
PhysRevLett.122.213902Cc17R1
PhysRevLett.122.213902Cc38R1
PhysRevLett.122.213902Cc18R1
PhysRevLett.122.213902Cc19R1
K. Binder (PhysRevLett.122.213902Cc39R1) 1997
PhysRevLett.122.213902Cc9R1
PhysRevLett.122.213902Cc40R1
PhysRevLett.122.213902Cc20R1
PhysRevLett.122.213902Cc22R1
PhysRevLett.122.213902Cc41R1
PhysRevLett.122.213902Cc21R1
PhysRevLett.122.213902Cc26R1
PhysRevLett.122.213902Cc25R1
G. Parisi (PhysRevLett.122.213902Cc37R1) 1988
PhysRevLett.122.213902Cc28R1
PhysRevLett.122.213902Cc29R1
H. Nishimori (PhysRevLett.122.213902Cc33R1) 2001
References_xml – ident: PhysRevLett.122.213902Cc20R1
  doi: 10.1126/science.aah4243
– ident: PhysRevLett.122.213902Cc36R1
  doi: 10.1364/JOSAA.7.000961
– ident: PhysRevLett.122.213902Cc10R1
  doi: 10.1038/nmat4971
– ident: PhysRevLett.122.213902Cc18R1
  doi: 10.1038/nphoton.2014.249
– ident: PhysRevLett.122.213902Cc28R1
  doi: 10.1364/OE.23.003102
– ident: PhysRevLett.122.213902Cc15R1
  doi: 10.1103/PhysRevLett.110.184102
– ident: PhysRevLett.122.213902Cc1R1
  doi: 10.1088/0305-4470/15/10/028
– ident: PhysRevLett.122.213902Cc17R1
  doi: 10.1038/s41467-017-01612-2
– ident: PhysRevLett.122.213902Cc30R1
  doi: 10.1103/PhysRevX.8.041037
– ident: PhysRevLett.122.213902Cc26R1
  doi: 10.1038/nphoton.2017.95
– ident: PhysRevLett.122.213902Cc34R1
  doi: 10.1016/j.optcom.2008.02.022
– ident: PhysRevLett.122.213902Cc16R1
  doi: 10.1103/PhysRevLett.114.063903
– ident: PhysRevLett.122.213902Cc19R1
  doi: 10.1126/science.aah5178
– ident: PhysRevLett.122.213902Cc5R1
  doi: 10.1038/nature10981
– ident: PhysRevLett.122.213902Cc22R1
  doi: 10.1088/2058-9565/aa923b
– ident: PhysRevLett.122.213902Cc9R1
  doi: 10.1038/srep44370
– ident: PhysRevLett.122.213902Cc32R1
  doi: 10.1016/0375-9601(76)90396-0
– ident: PhysRevLett.122.213902Cc29R1
  doi: 10.1103/PhysRevB.95.161108
– volume-title: Statistical Field Theory
  year: 1988
  ident: PhysRevLett.122.213902Cc37R1
– ident: PhysRevLett.122.213902Cc6R1
  doi: 10.1038/nphys1919
– ident: PhysRevLett.122.213902Cc3R1
  doi: 10.1126/science.aab3326
– volume-title: Statistical Physics of Spin Glasses and Information Processing: An Introduction
  year: 2001
  ident: PhysRevLett.122.213902Cc33R1
  doi: 10.1093/acprof:oso/9780198509417.001.0001
– ident: PhysRevLett.122.213902Cc25R1
  doi: 10.1038/nphoton.2017.93
– ident: PhysRevLett.122.213902Cc38R1
  doi: 10.1103/PhysRevB.13.2997
– ident: PhysRevLett.122.213902Cc12R1
  doi: 10.1038/srep37113
– ident: PhysRevLett.122.213902Cc35R1
  doi: 10.1364/OE.15.005801
– ident: PhysRevLett.122.213902Cc40R1
  doi: 10.1364/OE.16.002597
– ident: PhysRevLett.122.213902Cc2R1
  doi: 10.3389/fphy.2014.00005
– ident: PhysRevLett.122.213902Cc11R1
  doi: 10.1038/ncomms7058
– ident: PhysRevLett.122.213902Cc8R1
  doi: 10.1126/sciadv.1600236
– volume-title: Monte Carlo Simulation in Statistical Physics
  year: 1997
  ident: PhysRevLett.122.213902Cc39R1
  doi: 10.1007/978-3-662-03336-4
– ident: PhysRevLett.122.213902Cc4R1
  doi: 10.1038/nature09071
– ident: PhysRevLett.122.213902Cc7R1
  doi: 10.1038/nature10012
– ident: PhysRevLett.122.213902Cc13R1
  doi: 10.1103/PhysRevLett.119.163902
– ident: PhysRevLett.122.213902Cc14R1
  doi: 10.1038/srep32134
– ident: PhysRevLett.122.213902Cc41R1
  doi: 10.1364/OPTICA.4.000280
– ident: PhysRevLett.122.213902Cc21R1
  doi: 10.1038/nphoton.2016.68
SSID ssj0001268
Score 2.6924584
Snippet Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 213902
SubjectTerms Amplitude modulation
Couplings
Ferromagnetism
Ising model
Light modulation
Machine learning
Parallel degrees of freedom
Parallel processing
Phase modulation
Photonics
Spatial light modulators
Title Large-Scale Photonic Ising Machine by Spatial Light Modulation
URI https://www.ncbi.nlm.nih.gov/pubmed/31283311
https://www.proquest.com/docview/2247644854
https://www.proquest.com/docview/2254503215
Volume 122
WOSCitedRecordID wos000470880900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GUPDF74_qlAi-dmua9OtFEHEobGP4AXsrbXJBQTbZuoH_vZe2DgWH7KUvbdJwd8n9LvnlDuCKQESeZBi6oUTtSm6Mm2sduBigIXhAFm1MWWwiGgzi0SgZNsD7-wSfe6JjmZCPuLC3W9rc99s-YZYqe2QsbbJ80R8tl17uh9XSKyzvwIvqK8Gru_ntjVZAzNLVdHfWH-QubNewkt1UdrAHDRzvw2ZJ71SzA7juWcK3-0QKQTZ8nRQ2IS57sPsErF_SKZHln8zWJyZ7ZD0bsbP-RNe1vQ7hpXv3fHvv1pUTXEUArHCFNglKoTX3kVZCIzOppUCuZY48QKGzUGYmyYIYtW-UypWJIx0EyD00wpPiCJrjyRhPgKnEJFqSn8MsoVjMUMTsS0N9Ko9nQuQOBN8STFWdVtxWt3hPy_DCE-kP2aQkm7SSjQOdZbuPKrHGvy1a3wpK64k2SwmBRDbEDKQDl8vXNEXsuUc2xsncfkMw0RMEbhw4rhS7_KUg_ywE56drD-cMtgg8JRWToAXNYjrHc9hQi-JtNr0o7ZKe0Sj-ApVf4PQ
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Photonic+Ising+Machine+by+Spatial+Light+Modulation&rft.jtitle=Physical+review+letters&rft.au=Pierangeli%2C+D&rft.au=Marcucci%2C+G&rft.au=Conti%2C+C&rft.date=2019-05-31&rft.eissn=1079-7114&rft.volume=122&rft.issue=21&rft.spage=213902&rft_id=info:doi/10.1103%2FPhysRevLett.122.213902&rft_id=info%3Apmid%2F31283311&rft.externalDocID=31283311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon