Revolutionizing Open-Pit Mining Fleet Management: Integrating Computer Vision and Multi-Objective Optimization for Real-Time Truck Dispatching

The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel. Additionally, integrating new software with existing systems can be complex, requiring significant time and resources. This study aims to mitigate t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 15; číslo 9; s. 4603
Hlavní autori: Hasözdemir, Kürşat, Meral, Mert, Kahraman, Muhammet Mustafa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2025
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel. Additionally, integrating new software with existing systems can be complex, requiring significant time and resources. This study aims to mitigate these challenges by leveraging advanced technologies to reduce initial costs and minimize reliance on highly trained employees. Through the integration of computer vision and multi-objective optimization, it seeks to enhance operational efficiency and optimize fleet management in open-pit mining. The objective is to optimize truck-to-excavator assignments, thereby reducing excavator idle time and deviations from production targets. A YOLO v8 model, trained on six hours of mine video footage, identifies vehicles at excavators and dump sites for real-time monitoring. Extracted data—including truck assignments and excavator ready times—is incorporated into a multi-objective binary integer programming model that aims to minimize excavator waiting times and discrepancies in target truck assignments. The epsilon-constraint method generates a Pareto frontier, illustrating trade-offs between these objectives. Integrating real-time image analysis with optimization significantly improves operational efficiency, enabling adaptive truck-excavator allocation. This study highlights the potential of advanced computer vision and optimization techniques to enhance fleet management in mining, leading to more cost-effective and data-driven decision-making.
AbstractList The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel. Additionally, integrating new software with existing systems can be complex, requiring significant time and resources. This study aims to mitigate these challenges by leveraging advanced technologies to reduce initial costs and minimize reliance on highly trained employees. Through the integration of computer vision and multi-objective optimization, it seeks to enhance operational efficiency and optimize fleet management in open-pit mining. The objective is to optimize truck-to-excavator assignments, thereby reducing excavator idle time and deviations from production targets. A YOLO v8 model, trained on six hours of mine video footage, identifies vehicles at excavators and dump sites for real-time monitoring. Extracted data—including truck assignments and excavator ready times—is incorporated into a multi-objective binary integer programming model that aims to minimize excavator waiting times and discrepancies in target truck assignments. The epsilon-constraint method generates a Pareto frontier, illustrating trade-offs between these objectives. Integrating real-time image analysis with optimization significantly improves operational efficiency, enabling adaptive truck-excavator allocation. This study highlights the potential of advanced computer vision and optimization techniques to enhance fleet management in mining, leading to more cost-effective and data-driven decision-making.
Audience Academic
Author Kahraman, Muhammet Mustafa
Hasözdemir, Kürşat
Meral, Mert
Author_xml – sequence: 1
  givenname: Kürşat
  orcidid: 0000-0002-2710-9562
  surname: Hasözdemir
  fullname: Hasözdemir, Kürşat
– sequence: 2
  givenname: Mert
  orcidid: 0009-0007-3855-434X
  surname: Meral
  fullname: Meral, Mert
– sequence: 3
  givenname: Muhammet Mustafa
  orcidid: 0000-0003-3792-1084
  surname: Kahraman
  fullname: Kahraman, Muhammet Mustafa
BookMark eNptkc1u1DAQxyNUJErpiReIxBGl2HG-zK1aWlip1aJq4WrZk8kyS2IHx6lEH6LPXGcXpAphHzwznv9vxp7XyYl1FpPkLWcXQkj2QY8jL5ksKiZeJKc5q6tMFLw-eWa_Ss6nac_iklw0nJ0mj3d47_o5kLP0QHaXbka02VcK6S3Zxb_uEaOjrd7hgDZ8TNc24M7rsNyu3DDOAX36naaISLVt09u5D5RtzB4h0D1GYqCBHvRSI-2cT-9Q99mWBky3foaf6SeaRh3gRwS-SV52up_w_M95lny7vtquvmQ3m8_r1eVNBgUrQyakqHTHmeF5bRjkugXJTA68qUsoTVVWLRaygybnEjso2pjDIS9LKXjeNlycJesjt3V6r0ZPg_a_ldOkDgHnd0r7QNCjanJjwGCkRRCHSjNsAbUphWEVFDKy3h1Zo3e_ZpyC2rvZ29i-EjkTsSd-qHhxzNrpCCXbueA1xN3iQBAn2VGMXzZC1pKV1YLlRwF4N00eOwUUDp8YhdQrztQydvVs7FHz_h_N36f9L_sJKsqyEA
CitedBy_id crossref_primary_10_3390_wevj16080477
Cites_doi 10.1016/j.compag.2022.107227
10.1016/j.jksuci.2018.06.002
10.1080/19475705.2024.2322492
10.3390/rs15010211
10.3390/s23062938
10.1016/j.autcon.2023.104980
10.3390/make5040083
10.1016/j.resourpol.2024.104692
10.1016/j.tust.2020.103677
10.1016/j.eng.2018.11.030
10.1186/s42492-021-00075-z
10.3390/s23094294
10.1016/j.autcon.2019.103013
10.3390/jimaging6080073
10.1007/s00500-021-05880-5
10.3390/min12010060
10.1007/978-981-99-6550-2_50
10.1016/j.engappai.2023.107680
10.1016/j.jclepro.2023.137396
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app15094603
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_82bbcbe9fcfc41c6a0edceab53b06c49
A839790569
10_3390_app15094603
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c405t-3936af10b127b0c2adc90b2c1875c5b656de49fc8219efc4d0c21c2559312d813
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486087200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:35:42 EST 2025
Mon Jun 30 08:24:15 EDT 2025
Tue Nov 04 18:15:28 EST 2025
Tue Nov 18 22:43:28 EST 2025
Sat Nov 29 07:17:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-3936af10b127b0c2adc90b2c1875c5b656de49fc8219efc4d0c21c2559312d813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2710-9562
0009-0007-3855-434X
0000-0003-3792-1084
OpenAccessLink https://doaj.org/article/82bbcbe9fcfc41c6a0edceab53b06c49
PQID 3203187181
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_82bbcbe9fcfc41c6a0edceab53b06c49
proquest_journals_3203187181
gale_infotracacademiconefile_A839790569
crossref_citationtrail_10_3390_app15094603
crossref_primary_10_3390_app15094603
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Singh (ref_5) 2024; 15
Huang (ref_8) 2021; 108
Abrarov (ref_4) 2023; 4
Bhargava (ref_12) 2021; 33
Zhou (ref_21) 2021; 25
ref_11
ref_10
ref_20
Radulescu (ref_2) 2024; 89
Terven (ref_18) 2023; 5
ref_1
Spencer (ref_13) 2019; 5
Li (ref_14) 2022; 200
ref_19
ref_17
Bendaouia (ref_3) 2024; 129
Alsakka (ref_15) 2023; 154
Sharma (ref_9) 2023; 412
Fang (ref_16) 2020; 110
ref_7
ref_6
References_xml – volume: 200
  start-page: 107227
  year: 2022
  ident: ref_14
  article-title: Barriers to computer vision applications in pig production facilities
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107227
– volume: 33
  start-page: 243
  year: 2021
  ident: ref_12
  article-title: Fruits and vegetables quality evaluation using computer vision: A review
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2018.06.002
– volume: 15
  start-page: 2322492
  year: 2024
  ident: ref_5
  article-title: Enhancing dragline operations supervision through computer vision: Real time height measurement of dragline spoil piles dump using YOLO
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2024.2322492
– ident: ref_1
  doi: 10.3390/rs15010211
– ident: ref_10
  doi: 10.3390/s23062938
– volume: 4
  start-page: 1054
  year: 2023
  ident: ref_4
  article-title: Flotation Froth Monitoring Using Unsupervised Multiple Object Tracking Methods
  publication-title: J. Miner. Mater. Sci.
– volume: 154
  start-page: 104980
  year: 2023
  ident: ref_15
  article-title: Computer vision applications in offsite construction
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104980
– volume: 5
  start-page: 1680
  year: 2023
  ident: ref_18
  article-title: A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make5040083
– volume: 89
  start-page: 104692
  year: 2024
  ident: ref_2
  article-title: Optimizing mineral identification for sustainable resource extraction through hybrid deep learning enabled FinTech model
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2024.104692
– volume: 108
  start-page: 103677
  year: 2021
  ident: ref_8
  article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2020.103677
– volume: 5
  start-page: 199
  year: 2019
  ident: ref_13
  article-title: Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.030
– ident: ref_17
  doi: 10.1186/s42492-021-00075-z
– ident: ref_7
  doi: 10.3390/s23094294
– volume: 110
  start-page: 103013
  year: 2020
  ident: ref_16
  article-title: Computer vision applications in construction safety assurance
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.103013
– ident: ref_11
  doi: 10.3390/jimaging6080073
– volume: 25
  start-page: 8051
  year: 2021
  ident: ref_21
  article-title: An infeasible solutions diversity maintenance epsilon constraint handling method for evolutionary constrained multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05880-5
– ident: ref_6
  doi: 10.3390/min12010060
– ident: ref_19
  doi: 10.1007/978-981-99-6550-2_50
– ident: ref_20
– volume: 129
  start-page: 107680
  year: 2024
  ident: ref_3
  article-title: Hybrid features extraction for the online mineral grades determination in the flotation froth using Deep Learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107680
– volume: 412
  start-page: 137396
  year: 2023
  ident: ref_9
  article-title: Enablers to computer vision technology for sustainable E-waste management
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.137396
SSID ssj0000913810
Score 2.324197
Snippet The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4603
SubjectTerms Algorithms
Automation
Computer vision
Construction equipment industry
Deep learning
Digital cameras
Efficiency
Electronic waste
Excavating machinery
fleet management
Inventory control
Machine learning
Machine vision
Mineral industry
Mines
Mines and mineral resources
Mining
Mining industry
mining operations
Motor vehicle fleets
multi-objective optimization
Optimization
real-time optimization
Underground construction
Video recorders
Waste management
SummonAdditionalLinks – databaseName: Publicly Available Content Database (ProQuest)
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgywEOQAuIbQvyoRIPyWoc58kFlUdFJVpWVanKybLHDkoLu-1u6KE_gt_MjOMsPQAnbrvJaBWvv_kytme-YWzLkBfVaSOK2iiRuQZdqslLkfuyrjwuxyDsdxx_LA8OqpOTehLLoxcxrXLgxEDUvdoz5W0jCW-7GdCO-bZKCYzIq_L1-YWgHlJ01hobatxkKyS8lYzYymRvf_JluedCGpiVTPoyPYWrfTolliQhVwxNs-KLKej3_42lw6tn997_fej77G4MQflOj5lVdsNP19ida8KEa2w1uvyCP4-61C8esJ-H_jICtb1CM07JKGLSdnw_dJngiAGPX5YJNa_4XhSjoLtD_wh-HMrZuZk6Hsp_xSd72tMu_mLXfo-VoRzDaX6IcaygMhV-hCA84-9aZMAu5H8-ZJ933x-9_SBiOwcBGBV2QtWqMI1MrExLm0BqHNSJTQH_khxyi4Gl81ndQIUk6hvIHNpIoCWPkqmrpHrERtPZ1D9mvLR55jLrwJgGPzTG1kpJBVmZ4-VEjtnLYS41RK1zarnxTeOahyZeX5v4MdtaGp_3Eh9_NntDoFiakC53uDCbf9XRzXWVWgvW4yhwABIKk1CWrbG5skkBWT1mzwhSmtgDHwhMLILAYZEOl96p6JwVg1K03BwgpSOtLPRvBK3_-_YGu51So-KQmbnJRt38h3_CbsFl1y7mT6Nf_AK5SyFs
  priority: 102
  providerName: ProQuest
Title Revolutionizing Open-Pit Mining Fleet Management: Integrating Computer Vision and Multi-Objective Optimization for Real-Time Truck Dispatching
URI https://www.proquest.com/docview/3203187181
https://doaj.org/article/82bbcbe9fcfc41c6a0edceab53b06c49
Volume 15
WOSCitedRecordID wos001486087200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hyqE9VEBbdVuKfECirWQ1jvMyN2hBIME2WlFET5btOFJou63YwKE_gt_cGce72gMVF25xMoocz8Mz8cw3ADuGtEilLS-UkTxrWlSpNi957ktVeQzHXPjfcXFajsfV5aWql1p9UU7YAA88LNynKrXWWa9a17pMuMIklLdobC5tUrgslO4lpVoKpoINVoKgq4aCPIlxPZ0HCwKLK-btseIWFJD6_2ePwyZztA7Po3fI9odZbcCKn27CsyXMwE3YiNo4Y-8jZPSHF3A38bdRhrq_SMYoT4TXXc_OQgMIhuzxOFjkuuyxk4gTQU_nrR3YRag0Z2basFCZy7_aq8Ei4hv77lcs2mTo6bIJupicKkjYOcrHD_alQ-PUh9TMl_Dt6PD88zGPnRa4Q4et51LJwrQisSItbeJS0ziV2NQJjGZcbtHna3yGLKjQvnnkQ4M0wlE0IkXaVEK-gtXp76l_Day0edZktnHGtHjRGqukFNJlZY63EzGCj_PF1y7CkFM3jJ8awxHilF7i1Ah2FsR_BvSN-8kOiIsLEoLMDjdQkHQUJP2QII1gl2RAk2LjhJyJ9Qn4WQSRpfcrOgJFfxEpt-ZioqPGz7RMyTziTi_ePMZs3sLTlDoNh9TKLVjtr2_8O1hzt303u96GJweH43qyHYQeR_XJWf39H2fDDHQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpALBTwoYiHFBHHySZGQqhQqq66u6yqbVVOxnYcFB67ZTcUwY_gp_AbmUmcpQfg1gO3PEZW7HwzHtsz3wBsatIiGRVBT2oRxHmBKlUkaZC4VGYOl2O23u84HKSjUXZ0JMcr8LPNhaGwytYm1oY6n1naI38iIoIfWlL-_PhzQFWj6HS1LaHRwGLPffuKS7bFs_42_t_7UbTzavJyN_BVBQKLzkkVCCl6uuCh4VFqQhvp3MrQRBYbT2xi0L_JXSwLm6Euu8LGOcpwS5634FGecYHtnoPVGMEedmB13B-O3yx3dYhlM-NhkwgohAzpHJoTSV2vLcvlp766QsDf5oF6ctu58r8Ny1W47N1ottXgfg1W3HQdLp0iV1yHNW-2Fuyh59Z-dA1-7LsTr2zldxRjFFATjMuKDetKGQxx7PBmGRT0lPU9oQa9bWtgsMM6JZ_pac7qFObgtXnfTB3YYlV-8tmtDJcEbB998YBSbdgEFekD2y7Rild1DOt1ODiTUboBnels6m4CS00S57HJrdYFXhTaSCG4sHGa4OOQd-FxixZlPV87lQ35qHDdRtBSp6DVhc2l8HFDU_JnsRcEu6UIcYvXD2bzd8qbKpVFxljjsBfYAW57OqRIYW0SYcKejWUXHhBoFVlA_CCrfSIHdou4xNRWRmfF6Fij5EYLWuVN40L9Ruytf7--Bxd2J8OBGvRHe7fhYkSFl-tI0w3oVPMv7g6ctydVuZjf9VrI4O1ZI_wXZV1xxQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCE4AC0gAgX2UMSPZNXrtWMvEkItaUTUEqKorXozu-s1Mj9JSUwRPAQPxNMxs16HHoBbD9wce2R7nW9mZ3ZnvgHYVKRFMiqDnlQiiIsSVapM0iCxqcwshmPGrXcc7aejUXZ8LMcr8LOthaG0ytYmOkNdzAytkW-JiOCHlpRvlT4tYtwfvDj5HFAHKdppbdtpNBDZs9--Yvi2eD7s43_9MIoGuwcvXwW-w0Bg0FGpAyFFT5U81DxKdWgiVRgZ6sjggxKTaPR1ChvL0mSo17Y0cYEy3JAXLnhUZFzgfS_Aaiow6OnA6s7uaDxZrvAQ42bGw6YoUAgZ0p40J8K6Xtuiy0-DrlvA3-YEN9ENrv3Pn-g6XPXuNdtu9GENVux0Ha6cIV1chzVvzhbssefcfnIDfkzsqVfC6juKMUq0CcZVzV67DhoM8W3xxzJZ6BkbeqINutr2xmBHrlSfqWnBXGlz8Ea_b6YUvGNdffJVrwxDBTZBHz2gEhx2gAr2gfUrtO61y229CYfn8pVuQWc6m9rbwFKdxEWsC6NUiQel0lIILkycJng65F142iInN57HndqJfMwxniOY5Wdg1oXNpfBJQ1_yZ7EdguBShDjH3YnZ_F3uTVieRVobbXEUOABueiqkDGKlE6HDnollFx4RgHOyjPhCRvkCDxwWcYzl2xntIaPDjZIbLYBzbzIX-W_03vn35QdwCWGd7w9He3fhckT9mF0C6gZ06vkXew8umtO6Wszve4Vk8Pa8Af4LF8V6Xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Open-Pit+Mining+Fleet+Management%3A+Integrating+Computer+Vision+and+Multi-Objective+Optimization+for+Real-Time+Truck+Dispatching&rft.jtitle=Applied+sciences&rft.au=Has%C3%B6zdemir%2C+K%C3%BCr%C5%9Fat&rft.au=Meral%2C+Mert&rft.au=Kahraman%2C+Muhammet+Mustafa&rft.date=2025-05-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=9&rft.spage=4603&rft_id=info:doi/10.3390%2Fapp15094603&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15094603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon