Revolutionizing Open-Pit Mining Fleet Management: Integrating Computer Vision and Multi-Objective Optimization for Real-Time Truck Dispatching
The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel. Additionally, integrating new software with existing systems can be complex, requiring significant time and resources. This study aims to mitigate t...
Uložené v:
| Vydané v: | Applied sciences Ročník 15; číslo 9; s. 4603 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.05.2025
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel. Additionally, integrating new software with existing systems can be complex, requiring significant time and resources. This study aims to mitigate these challenges by leveraging advanced technologies to reduce initial costs and minimize reliance on highly trained employees. Through the integration of computer vision and multi-objective optimization, it seeks to enhance operational efficiency and optimize fleet management in open-pit mining. The objective is to optimize truck-to-excavator assignments, thereby reducing excavator idle time and deviations from production targets. A YOLO v8 model, trained on six hours of mine video footage, identifies vehicles at excavators and dump sites for real-time monitoring. Extracted data—including truck assignments and excavator ready times—is incorporated into a multi-objective binary integer programming model that aims to minimize excavator waiting times and discrepancies in target truck assignments. The epsilon-constraint method generates a Pareto frontier, illustrating trade-offs between these objectives. Integrating real-time image analysis with optimization significantly improves operational efficiency, enabling adaptive truck-excavator allocation. This study highlights the potential of advanced computer vision and optimization techniques to enhance fleet management in mining, leading to more cost-effective and data-driven decision-making. |
|---|---|
| AbstractList | The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel. Additionally, integrating new software with existing systems can be complex, requiring significant time and resources. This study aims to mitigate these challenges by leveraging advanced technologies to reduce initial costs and minimize reliance on highly trained employees. Through the integration of computer vision and multi-objective optimization, it seeks to enhance operational efficiency and optimize fleet management in open-pit mining. The objective is to optimize truck-to-excavator assignments, thereby reducing excavator idle time and deviations from production targets. A YOLO v8 model, trained on six hours of mine video footage, identifies vehicles at excavators and dump sites for real-time monitoring. Extracted data—including truck assignments and excavator ready times—is incorporated into a multi-objective binary integer programming model that aims to minimize excavator waiting times and discrepancies in target truck assignments. The epsilon-constraint method generates a Pareto frontier, illustrating trade-offs between these objectives. Integrating real-time image analysis with optimization significantly improves operational efficiency, enabling adaptive truck-excavator allocation. This study highlights the potential of advanced computer vision and optimization techniques to enhance fleet management in mining, leading to more cost-effective and data-driven decision-making. |
| Audience | Academic |
| Author | Kahraman, Muhammet Mustafa Hasözdemir, Kürşat Meral, Mert |
| Author_xml | – sequence: 1 givenname: Kürşat orcidid: 0000-0002-2710-9562 surname: Hasözdemir fullname: Hasözdemir, Kürşat – sequence: 2 givenname: Mert orcidid: 0009-0007-3855-434X surname: Meral fullname: Meral, Mert – sequence: 3 givenname: Muhammet Mustafa orcidid: 0000-0003-3792-1084 surname: Kahraman fullname: Kahraman, Muhammet Mustafa |
| BookMark | eNptkc1u1DAQxyNUJErpiReIxBGl2HG-zK1aWlip1aJq4WrZk8kyS2IHx6lEH6LPXGcXpAphHzwznv9vxp7XyYl1FpPkLWcXQkj2QY8jL5ksKiZeJKc5q6tMFLw-eWa_Ss6nac_iklw0nJ0mj3d47_o5kLP0QHaXbka02VcK6S3Zxb_uEaOjrd7hgDZ8TNc24M7rsNyu3DDOAX36naaISLVt09u5D5RtzB4h0D1GYqCBHvRSI-2cT-9Q99mWBky3foaf6SeaRh3gRwS-SV52up_w_M95lny7vtquvmQ3m8_r1eVNBgUrQyakqHTHmeF5bRjkugXJTA68qUsoTVVWLRaygybnEjso2pjDIS9LKXjeNlycJesjt3V6r0ZPg_a_ldOkDgHnd0r7QNCjanJjwGCkRRCHSjNsAbUphWEVFDKy3h1Zo3e_ZpyC2rvZ29i-EjkTsSd-qHhxzNrpCCXbueA1xN3iQBAn2VGMXzZC1pKV1YLlRwF4N00eOwUUDp8YhdQrztQydvVs7FHz_h_N36f9L_sJKsqyEA |
| CitedBy_id | crossref_primary_10_3390_wevj16080477 |
| Cites_doi | 10.1016/j.compag.2022.107227 10.1016/j.jksuci.2018.06.002 10.1080/19475705.2024.2322492 10.3390/rs15010211 10.3390/s23062938 10.1016/j.autcon.2023.104980 10.3390/make5040083 10.1016/j.resourpol.2024.104692 10.1016/j.tust.2020.103677 10.1016/j.eng.2018.11.030 10.1186/s42492-021-00075-z 10.3390/s23094294 10.1016/j.autcon.2019.103013 10.3390/jimaging6080073 10.1007/s00500-021-05880-5 10.3390/min12010060 10.1007/978-981-99-6550-2_50 10.1016/j.engappai.2023.107680 10.1016/j.jclepro.2023.137396 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15094603 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_82bbcbe9fcfc41c6a0edceab53b06c49 A839790569 10_3390_app15094603 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c405t-3936af10b127b0c2adc90b2c1875c5b656de49fc8219efc4d0c21c2559312d813 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486087200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:35:42 EST 2025 Mon Jun 30 08:24:15 EDT 2025 Tue Nov 04 18:15:28 EST 2025 Tue Nov 18 22:43:28 EST 2025 Sat Nov 29 07:17:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-3936af10b127b0c2adc90b2c1875c5b656de49fc8219efc4d0c21c2559312d813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2710-9562 0009-0007-3855-434X 0000-0003-3792-1084 |
| OpenAccessLink | https://doaj.org/article/82bbcbe9fcfc41c6a0edceab53b06c49 |
| PQID | 3203187181 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_82bbcbe9fcfc41c6a0edceab53b06c49 proquest_journals_3203187181 gale_infotracacademiconefile_A839790569 crossref_citationtrail_10_3390_app15094603 crossref_primary_10_3390_app15094603 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Singh (ref_5) 2024; 15 Huang (ref_8) 2021; 108 Abrarov (ref_4) 2023; 4 Bhargava (ref_12) 2021; 33 Zhou (ref_21) 2021; 25 ref_11 ref_10 ref_20 Radulescu (ref_2) 2024; 89 Terven (ref_18) 2023; 5 ref_1 Spencer (ref_13) 2019; 5 Li (ref_14) 2022; 200 ref_19 ref_17 Bendaouia (ref_3) 2024; 129 Alsakka (ref_15) 2023; 154 Sharma (ref_9) 2023; 412 Fang (ref_16) 2020; 110 ref_7 ref_6 |
| References_xml | – volume: 200 start-page: 107227 year: 2022 ident: ref_14 article-title: Barriers to computer vision applications in pig production facilities publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107227 – volume: 33 start-page: 243 year: 2021 ident: ref_12 article-title: Fruits and vegetables quality evaluation using computer vision: A review publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2018.06.002 – volume: 15 start-page: 2322492 year: 2024 ident: ref_5 article-title: Enhancing dragline operations supervision through computer vision: Real time height measurement of dragline spoil piles dump using YOLO publication-title: Geomat. Nat. Hazards Risk doi: 10.1080/19475705.2024.2322492 – ident: ref_1 doi: 10.3390/rs15010211 – ident: ref_10 doi: 10.3390/s23062938 – volume: 4 start-page: 1054 year: 2023 ident: ref_4 article-title: Flotation Froth Monitoring Using Unsupervised Multiple Object Tracking Methods publication-title: J. Miner. Mater. Sci. – volume: 154 start-page: 104980 year: 2023 ident: ref_15 article-title: Computer vision applications in offsite construction publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104980 – volume: 5 start-page: 1680 year: 2023 ident: ref_18 article-title: A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make5040083 – volume: 89 start-page: 104692 year: 2024 ident: ref_2 article-title: Optimizing mineral identification for sustainable resource extraction through hybrid deep learning enabled FinTech model publication-title: Resour. Policy doi: 10.1016/j.resourpol.2024.104692 – volume: 108 start-page: 103677 year: 2021 ident: ref_8 article-title: BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103677 – volume: 5 start-page: 199 year: 2019 ident: ref_13 article-title: Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring publication-title: Engineering doi: 10.1016/j.eng.2018.11.030 – ident: ref_17 doi: 10.1186/s42492-021-00075-z – ident: ref_7 doi: 10.3390/s23094294 – volume: 110 start-page: 103013 year: 2020 ident: ref_16 article-title: Computer vision applications in construction safety assurance publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.103013 – ident: ref_11 doi: 10.3390/jimaging6080073 – volume: 25 start-page: 8051 year: 2021 ident: ref_21 article-title: An infeasible solutions diversity maintenance epsilon constraint handling method for evolutionary constrained multiobjective optimization publication-title: Soft Comput. doi: 10.1007/s00500-021-05880-5 – ident: ref_6 doi: 10.3390/min12010060 – ident: ref_19 doi: 10.1007/978-981-99-6550-2_50 – ident: ref_20 – volume: 129 start-page: 107680 year: 2024 ident: ref_3 article-title: Hybrid features extraction for the online mineral grades determination in the flotation froth using Deep Learning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107680 – volume: 412 start-page: 137396 year: 2023 ident: ref_9 article-title: Enablers to computer vision technology for sustainable E-waste management publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137396 |
| SSID | ssj0000913810 |
| Score | 2.324197 |
| Snippet | The implementation of fleet management software in mining operations poses challenges, including high initial costs and the need for skilled personnel.... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4603 |
| SubjectTerms | Algorithms Automation Computer vision Construction equipment industry Deep learning Digital cameras Efficiency Electronic waste Excavating machinery fleet management Inventory control Machine learning Machine vision Mineral industry Mines Mines and mineral resources Mining Mining industry mining operations Motor vehicle fleets multi-objective optimization Optimization real-time optimization Underground construction Video recorders Waste management |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database (ProQuest) dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgywEOQAuIbQvyoRIPyWoc58kFlUdFJVpWVanKybLHDkoLu-1u6KE_gt_MjOMsPQAnbrvJaBWvv_kytme-YWzLkBfVaSOK2iiRuQZdqslLkfuyrjwuxyDsdxx_LA8OqpOTehLLoxcxrXLgxEDUvdoz5W0jCW-7GdCO-bZKCYzIq_L1-YWgHlJ01hobatxkKyS8lYzYymRvf_JluedCGpiVTPoyPYWrfTolliQhVwxNs-KLKej3_42lw6tn997_fej77G4MQflOj5lVdsNP19ida8KEa2w1uvyCP4-61C8esJ-H_jICtb1CM07JKGLSdnw_dJngiAGPX5YJNa_4XhSjoLtD_wh-HMrZuZk6Hsp_xSd72tMu_mLXfo-VoRzDaX6IcaygMhV-hCA84-9aZMAu5H8-ZJ933x-9_SBiOwcBGBV2QtWqMI1MrExLm0BqHNSJTQH_khxyi4Gl81ndQIUk6hvIHNpIoCWPkqmrpHrERtPZ1D9mvLR55jLrwJgGPzTG1kpJBVmZ4-VEjtnLYS41RK1zarnxTeOahyZeX5v4MdtaGp_3Eh9_NntDoFiakC53uDCbf9XRzXWVWgvW4yhwABIKk1CWrbG5skkBWT1mzwhSmtgDHwhMLILAYZEOl96p6JwVg1K03BwgpSOtLPRvBK3_-_YGu51So-KQmbnJRt38h3_CbsFl1y7mT6Nf_AK5SyFs priority: 102 providerName: ProQuest |
| Title | Revolutionizing Open-Pit Mining Fleet Management: Integrating Computer Vision and Multi-Objective Optimization for Real-Time Truck Dispatching |
| URI | https://www.proquest.com/docview/3203187181 https://doaj.org/article/82bbcbe9fcfc41c6a0edceab53b06c49 |
| Volume | 15 |
| WOSCitedRecordID | wos001486087200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hyqE9VEBbdVuKfECirWQ1jvMyN2hBIME2WlFET5btOFJou63YwKE_gt_cGce72gMVF25xMoocz8Mz8cw3ADuGtEilLS-UkTxrWlSpNi957ktVeQzHXPjfcXFajsfV5aWql1p9UU7YAA88LNynKrXWWa9a17pMuMIklLdobC5tUrgslO4lpVoKpoINVoKgq4aCPIlxPZ0HCwKLK-btseIWFJD6_2ePwyZztA7Po3fI9odZbcCKn27CsyXMwE3YiNo4Y-8jZPSHF3A38bdRhrq_SMYoT4TXXc_OQgMIhuzxOFjkuuyxk4gTQU_nrR3YRag0Z2basFCZy7_aq8Ei4hv77lcs2mTo6bIJupicKkjYOcrHD_alQ-PUh9TMl_Dt6PD88zGPnRa4Q4et51LJwrQisSItbeJS0ziV2NQJjGZcbtHna3yGLKjQvnnkQ4M0wlE0IkXaVEK-gtXp76l_Day0edZktnHGtHjRGqukFNJlZY63EzGCj_PF1y7CkFM3jJ8awxHilF7i1Ah2FsR_BvSN-8kOiIsLEoLMDjdQkHQUJP2QII1gl2RAk2LjhJyJ9Qn4WQSRpfcrOgJFfxEpt-ZioqPGz7RMyTziTi_ePMZs3sLTlDoNh9TKLVjtr2_8O1hzt303u96GJweH43qyHYQeR_XJWf39H2fDDHQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwAFpALBTwoYiHFBHHySZGQqhQqq66u6yqbVVOxnYcFB67ZTcUwY_gp_AbmUmcpQfg1gO3PEZW7HwzHtsz3wBsatIiGRVBT2oRxHmBKlUkaZC4VGYOl2O23u84HKSjUXZ0JMcr8LPNhaGwytYm1oY6n1naI38iIoIfWlL-_PhzQFWj6HS1LaHRwGLPffuKS7bFs_42_t_7UbTzavJyN_BVBQKLzkkVCCl6uuCh4VFqQhvp3MrQRBYbT2xi0L_JXSwLm6Euu8LGOcpwS5634FGecYHtnoPVGMEedmB13B-O3yx3dYhlM-NhkwgohAzpHJoTSV2vLcvlp766QsDf5oF6ctu58r8Ny1W47N1ottXgfg1W3HQdLp0iV1yHNW-2Fuyh59Z-dA1-7LsTr2zldxRjFFATjMuKDetKGQxx7PBmGRT0lPU9oQa9bWtgsMM6JZ_pac7qFObgtXnfTB3YYlV-8tmtDJcEbB998YBSbdgEFekD2y7Rild1DOt1ODiTUboBnels6m4CS00S57HJrdYFXhTaSCG4sHGa4OOQd-FxixZlPV87lQ35qHDdRtBSp6DVhc2l8HFDU_JnsRcEu6UIcYvXD2bzd8qbKpVFxljjsBfYAW57OqRIYW0SYcKejWUXHhBoFVlA_CCrfSIHdou4xNRWRmfF6Fij5EYLWuVN40L9Ruytf7--Bxd2J8OBGvRHe7fhYkSFl-tI0w3oVPMv7g6ctydVuZjf9VrI4O1ZI_wXZV1xxQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCE4AC0gAgX2UMSPZNXrtWMvEkItaUTUEqKorXozu-s1Mj9JSUwRPAQPxNMxs16HHoBbD9wce2R7nW9mZ3ZnvgHYVKRFMiqDnlQiiIsSVapM0iCxqcwshmPGrXcc7aejUXZ8LMcr8LOthaG0ytYmOkNdzAytkW-JiOCHlpRvlT4tYtwfvDj5HFAHKdppbdtpNBDZs9--Yvi2eD7s43_9MIoGuwcvXwW-w0Bg0FGpAyFFT5U81DxKdWgiVRgZ6sjggxKTaPR1ChvL0mSo17Y0cYEy3JAXLnhUZFzgfS_Aaiow6OnA6s7uaDxZrvAQ42bGw6YoUAgZ0p40J8K6Xtuiy0-DrlvA3-YEN9ENrv3Pn-g6XPXuNdtu9GENVux0Ha6cIV1chzVvzhbssefcfnIDfkzsqVfC6juKMUq0CcZVzV67DhoM8W3xxzJZ6BkbeqINutr2xmBHrlSfqWnBXGlz8Ea_b6YUvGNdffJVrwxDBTZBHz2gEhx2gAr2gfUrtO61y229CYfn8pVuQWc6m9rbwFKdxEWsC6NUiQel0lIILkycJng65F142iInN57HndqJfMwxniOY5Wdg1oXNpfBJQ1_yZ7EdguBShDjH3YnZ_F3uTVieRVobbXEUOABueiqkDGKlE6HDnollFx4RgHOyjPhCRvkCDxwWcYzl2xntIaPDjZIbLYBzbzIX-W_03vn35QdwCWGd7w9He3fhckT9mF0C6gZ06vkXew8umtO6Wszve4Vk8Pa8Af4LF8V6Xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Open-Pit+Mining+Fleet+Management%3A+Integrating+Computer+Vision+and+Multi-Objective+Optimization+for+Real-Time+Truck+Dispatching&rft.jtitle=Applied+sciences&rft.au=Has%C3%B6zdemir%2C+K%C3%BCr%C5%9Fat&rft.au=Meral%2C+Mert&rft.au=Kahraman%2C+Muhammet+Mustafa&rft.date=2025-05-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=9&rft.spage=4603&rft_id=info:doi/10.3390%2Fapp15094603&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15094603 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |