Value distribution of derivatives in polynomial dynamics

For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems Jg. 41; H. 12; S. 3780 - 3806
Hauptverfasser: OKUYAMA, YÛSUKE, VIGNY, GABRIEL
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.12.2021
Cambridge University Press (CUP)
Schlagworte:
ISSN:0143-3857, 1469-4417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of f with pole at $\infty $ . We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on $\mathbb {P}^1(\overline {k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of $\mathbb {C}^2$ has a given eigenvalue.
AbstractList Abstract For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of f with pole at $\infty $ . We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on $\mathbb {P}^1(\overline {k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of $\mathbb {C}^2$ has a given eigenvalue.
For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of f with pole at $\infty $ . We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on $\mathbb {P}^1(\overline {k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of $\mathbb {C}^2$ has a given eigenvalue.
For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of f with pole at $\infty $ . We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on $\mathbb {P}^1(\overline {k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of $\mathbb {C}^2$ has a given eigenvalue.
For every $m\in \mathbb {N}$, we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of f with pole at $\infty $. We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on $\mathbb {P}^1(\overline {k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of $\mathbb {C}^2$ has a given eigenvalue.
Author OKUYAMA, YÛSUKE
VIGNY, GABRIEL
Author_xml – sequence: 1
  givenname: YÛSUKE
  surname: OKUYAMA
  fullname: OKUYAMA, YÛSUKE
  email: okuyama@kit.ac.jp
  organization: †Division of Mathematics, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan (e-mail: okuyama@kit.ac.jp)
– sequence: 2
  givenname: GABRIEL
  surname: VIGNY
  fullname: VIGNY, GABRIEL
  email: gabriel.vigny@u-picardie.fr
  organization: ‡LAMFA, UPJV, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France
BackLink https://hal.science/hal-03510076$$DView record in HAL
BookMark eNp1kE1Lw0AQhhepYK0evQc8eUi7n_k4lqJWKHhRr8tkd6Nbkmzd3RT6701oURA9DTM87_DyXKJJ5zqD0A3Bc4JJvjBRhznFdFipOENTwrMy5ZzkEzTFhLOUFSK_QJchbDHGjORiioo3aHqTaBuit1UfresSVyfaeLuHaPcmJLZLdq45dK610CT60EFrVbhC5zU0wVyf5gy9Pty_rNbp5vnxabXcpIpjEVNGCdMUqyoTUOK8YKLIKgq1KA0wURlacaIyVhSGFhgyMMBNpTQb-mlFlGAzdHf8-wGN3Hnbgj9IB1aulxs53jATBOM825OBvT2yO-8-exOi3Lred0M9SUXJy4yznA5UeqSUdyF4U3-_JViOIuUoUo4i5SBy4NkvXtkIo6nowTb_phanFLSVt_rd_JT5O_EFPHSIAw
CitedBy_id crossref_primary_10_1007_s12220_023_01436_1
Cites_doi 10.1007/978-3-642-13171-4_4
10.1090/gsm/198
10.1112/plms/pdp022
10.1090/S1088-4173-2011-00229-3
10.1007/BF02921791
10.5186/aasfm.2017.4233
10.1090/surv/159
10.1017/CBO9780511623776
10.1007/BF02591353
10.1007/s00208-006-0751-x
10.5802/aif.2196
10.1007/b100262
10.1515/crll.2005.2005.585.61
10.1112/plms/pds051
10.1007/978-94-011-0934-5_4
10.1007/978-3-319-11029-5_6
10.1512/iumj.1997.46.1441
10.2140/pjm.2016.280.141
10.1007/978-1-4612-0041-3
ContentType Journal Article
Copyright The Author(s), 2020. Published by Cambridge University Press
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), 2020. Published by Cambridge University Press
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
H8D
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
DOI 10.1017/etds.2020.125
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-4417
EndPage 3806
ExternalDocumentID oai:HAL:hal-03510076v1
10_1017_etds_2020_125
GroupedDBID --Z
-1D
-1F
-2P
-2V
-DZ
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
29G
3V.
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6-
S6U
SAAAG
T9M
TN5
UT1
VH1
WFFJZ
WQ3
WXU
WXY
WYP
ZDLDU
ZJOSE
ZMEZD
ZYDXJ
~V1
AAKNA
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
AFFHD
AFZFC
AKMAY
ANOYL
CITATION
PHGZM
PHGZT
PQGLB
7SC
7U5
7XB
8FD
8FK
H8D
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
ID FETCH-LOGICAL-c405t-3213d20cb65a90783586b2af59ea35be2b41c6388e280a6aea4ebcd3003dc1c53
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721323900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-3857
IngestDate Tue Oct 14 20:33:11 EDT 2025
Fri Jul 25 10:54:21 EDT 2025
Sat Nov 29 01:35:45 EST 2025
Tue Nov 18 22:18:35 EST 2025
Wed Mar 13 05:46:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords higher derivative
37P30
32H50
value distribution
37F10
Hénon map
non-archimedean dynamics
complex dynamics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-3213d20cb65a90783586b2af59ea35be2b41c6388e280a6aea4ebcd3003dc1c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4926-9794
PQID 2594964372
PQPubID 36706
PageCount 27
ParticipantIDs hal_primary_oai_HAL_hal_03510076v1
proquest_journals_2594964372
crossref_primary_10_1017_etds_2020_125
crossref_citationtrail_10_1017_etds_2020_125
cambridge_journals_10_1017_etds_2020_125
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Ergodic theory and dynamical systems
PublicationTitleAlternate Ergod. Th. Dynam. Sys
PublicationYear 2021
Publisher Cambridge University Press
Cambridge University Press (CUP)
Publisher_xml – name: Cambridge University Press
– name: Cambridge University Press (CUP)
References Jonsson (S014338572000125X_r19) 2015
S014338572000125X_r2
S014338572000125X_r1
S014338572000125X_r4
S014338572000125X_r3
S014338572000125X_r5
S014338572000125X_r14
S014338572000125X_r8
S014338572000125X_r15
S014338572000125X_r12
S014338572000125X_r13
Berkovich (S014338572000125X_r6) 1990
S014338572000125X_r16
Dinh (S014338572000125X_r11) 2014; 8
Gauthier (S014338572000125X_r17) 2017; 8
S014338572000125X_r10
S014338572000125X_r30
S014338572000125X_r25
Milnor (S014338572000125X_r20) 2006
S014338572000125X_r23
Rivera-Letelier (S014338572000125X_r26) 2003
S014338572000125X_r24
S014338572000125X_r29
Okuyama (S014338572000125X_r22) 2017
S014338572000125X_r27
S014338572000125X_r28
Chambert-Loir (S014338572000125X_r9) 2006; 595
Berteloot (S014338572000125X_r7) 2001
Hörmander (S014338572000125X_r18) 1983
S014338572000125X_r21
References_xml – ident: S014338572000125X_r10
  doi: 10.1007/978-3-642-13171-4_4
– volume-title: Dynamics in One Complex Variable
  year: 2006
  ident: S014338572000125X_r20
– volume: 8
  start-page: 247
  year: 2017
  ident: S014338572000125X_r17
  article-title: Distribution of points with prescribed derivative in polynomial dynamics
  publication-title: Riv. Math. Univ. Parma (N.S.)
– ident: S014338572000125X_r5
  doi: 10.1090/gsm/198
– ident: S014338572000125X_r14
  doi: 10.1112/plms/pdp022
– ident: S014338572000125X_r30
  doi: 10.1090/S1088-4173-2011-00229-3
– ident: S014338572000125X_r4
  doi: 10.1007/BF02921791
– ident: S014338572000125X_r23
  doi: 10.5186/aasfm.2017.4233
– ident: S014338572000125X_r3
  doi: 10.1090/surv/159
– ident: S014338572000125X_r28
– ident: S014338572000125X_r24
– ident: S014338572000125X_r25
  doi: 10.1017/CBO9780511623776
– ident: S014338572000125X_r8
  doi: 10.1007/BF02591353
– volume-title: Spectral Theory and Analytic Geometry over Non-Archimedean Fields
  year: 1990
  ident: S014338572000125X_r6
– ident: S014338572000125X_r13
  doi: 10.1007/s00208-006-0751-x
– volume: 595
  start-page: 215
  year: 2006
  ident: S014338572000125X_r9
  article-title: Mesures et équidistribution sur les espaces de Berkovich
  publication-title: J. Reine Angew. Math.
– ident: S014338572000125X_r2
  doi: 10.5802/aif.2196
– ident: S014338572000125X_r12
  doi: 10.1007/b100262
– volume-title: The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis
  year: 1983
  ident: S014338572000125X_r18
– ident: S014338572000125X_r1
  doi: 10.1515/crll.2005.2005.585.61
– ident: S014338572000125X_r29
  doi: 10.1112/plms/pds051
– ident: S014338572000125X_r15
  doi: 10.1007/978-94-011-0934-5_4
– start-page: 205
  volume-title: Berkovich Spaces and Applications
  year: 2015
  ident: S014338572000125X_r19
  doi: 10.1007/978-3-319-11029-5_6
– start-page: 147
  volume-title: Geometric Methods in Dynamics. II
  year: 2003
  ident: S014338572000125X_r26
– start-page: 55
  volume-title: Algebraic Number Theory and Related Topics 2014
  year: 2017
  ident: S014338572000125X_r22
– ident: S014338572000125X_r27
  doi: 10.1512/iumj.1997.46.1441
– ident: S014338572000125X_r21
  doi: 10.2140/pjm.2016.280.141
– ident: S014338572000125X_r16
  doi: 10.1007/978-1-4612-0041-3
– volume-title: Rudiments de Dynamique Holomorphe
  year: 2001
  ident: S014338572000125X_r7
– volume: 8
  start-page: 499
  year: 2014
  ident: S014338572000125X_r11
  article-title: Rigidity of Julia sets for Hénon type maps
  publication-title: J. Mod. Dyn.
SSID ssj0003175
Score 2.3143308
Snippet For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb...
For every $m\in \mathbb {N}$, we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb...
Abstract For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in...
SourceID hal
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3780
SubjectTerms Automorphisms
Eigenvalues
Mathematical analysis
Mathematics
Number theory
Original Article
Polynomials
Potential theory
Title Value distribution of derivatives in polynomial dynamics
URI https://www.cambridge.org/core/product/identifier/S014338572000125X/type/journal_article
https://www.proquest.com/docview/2594964372
https://hal.science/hal-03510076
Volume 41
WOSCitedRecordID wos000721323900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-4417
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003175
  issn: 0143-3857
  databaseCode: P5Z
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1469-4417
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003175
  issn: 0143-3857
  databaseCode: K7-
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-4417
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003175
  issn: 0143-3857
  databaseCode: M7S
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-4417
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003175
  issn: 0143-3857
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-4417
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003175
  issn: 0143-3857
  databaseCode: M2P
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS9xAFH501YMetLWKWl1CKcVDhybzI5mcREUR1GVprUgvYX4FF5bd1awL_vedl8xGK-jFyxySRxjmm3nzMu_N9wF8y6iOlaM5yXRmCZe5X1JxyYnEJJFQWivaiE1kvZ68ucn74cCtCmWVc59YO2o7NnhG_tOH6Tyvs0wHkzuCqlGYXQ0SGh1Y9JFNgiVdl7TfemLcG5sSRkaYFFng2ETKaDe1SNZNkV5BPOdV-G9_6txideQLJ13vPKdr7-3zR1gNMWd02EyST_DBjdZh5bIlbK0-g7xWwwcXWaTRDQpY0biMrJ-fs5oavIoGo2gyHj7iNWb_Mdso2Vcb8Of05Or4jARRBWJ8bDYljCbM0tjoVKgcc3hCppqqUuROMaEd1TwxflFKR2WsUuUUd9pY5kfTmsQItgkLo_HIbUHE_c8Xk1SxuHRcU6t5KhF4XpYsT0WyDfvtsBZhaVRFU1aWFYhAgQgUHoFt-DEf9cIEcnLUyBi-Zv69NZ80rByvGX71ELY2yKV9dnhR4DNMoWIecub7uTuH76mbT9jtvP36CyxTrHOpS1x2YWF6_-D2YMnMpoPqvguLRye9_q8udM4z0q2nJ7bZb9_2xd9_iDnrGA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUKn0ALQFkRJaC7VVD7Wwd9f2-oAQgqIgQsSBVtzcfVlECk6Ik6D8KX4jO37RVqI3Dr3aY2vl-eaxntlvAD5FRHrCkNiNZKRdxmNrUl7KXI5FokBIKUg5bCLq9_nVVXyxBPf1WRhsq6x9YuGo9UjhP_I9m6azuKgyHYxvXZwahdXVeoRGCYszs7izW7Z8__TY6vczISffL4-6bjVVwFU2OZm6lPhUE0_JMBAxFrECHkoi0iA2ggbSEMl8ZVHJDeGeCIURzEilqYW_Vr7CKRHW5S8zZBbDVkFy0Xh-jMVlyyR1KQ-iitMTKarNVCM5OEE6h-B3Hoc_4uGLa-zG_CsoFJHuZO1_-0brsFrl1M5haQRvYMlkb-H1eUNIm78D_lMMZ8bRSBNcTfhyRqmjrf3NC-rz3Blkzng0XOAxbfsyvcjEjX10A348y9I3oZWNMrMFDrObS8qJoF5qmCRaspAjsFma0jgM_DZ8bdSYVKafJ2XbXJSgxhPUeGI13oZvtZYTVZGv4wyQ4VPiXxrxcck68pTgroVMI4Nc4d3DXoLXsESMdda5XWenhsvjMh-x8v7ftz_Cq-7leS_pnfbPtmGFYE9P0c7TgdZ0MjM78FLNp4N88qEwBgd-PTeyHgD7EEOJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+distribution+of+derivatives+in+polynomial+dynamics&rft.jtitle=Ergodic+theory+and+dynamical+systems&rft.au=Okuyama%2C+Y%C3%BBsuke&rft.au=Vigny%2C+Gabriel&rft.date=2021-12-01&rft.pub=Cambridge+University+Press+%28CUP%29&rft.issn=0143-3857&rft.eissn=1469-4417&rft.volume=41&rft.issue=12&rft.spage=3780&rft.epage=3806&rft_id=info:doi/10.1017%2Fetds.2020.125&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03510076v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-3857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-3857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-3857&client=summon