Value distribution of derivatives in polynomial dynamics

For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems Jg. 41; H. 12; S. 3780 - 3806
Hauptverfasser: OKUYAMA, YÛSUKE, VIGNY, GABRIEL
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.12.2021
Cambridge University Press (CUP)
Schlagworte:
ISSN:0143-3857, 1469-4417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For every $m\in \mathbb {N}$ , we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in $\mathbb {C}\setminus \{0\}$ under the $m$ th order derivatives of the iterates of a polynomials $f\in \mathbb {C}[z]$ of degree $d>1$ towards the harmonic measure of the filled-in Julia set of f with pole at $\infty $ . We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on $\mathbb {P}^1(\overline {k})$ having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of $\mathbb {C}^2$ has a given eigenvalue.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2020.125