CFD simulation of a thermoacoustic engine with coiled resonator

Thermoacoustic energy conversion is based on the Stirling cycle. In their most basic forms, thermoacoustic devices are comprised of two heat exchangers, a porous medium, both placed inside a resonator. Work is created through the interaction of strong sound waves with the porous medium that is subje...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International communications in heat and mass transfer Ročník 37; číslo 3; s. 226 - 229
Hlavní autoři: Zink, Florian, Vipperman, Jeffrey, Schaefer, Laura
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.03.2010
Elsevier
Témata:
ISSN:0735-1933, 1879-0178
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Thermoacoustic energy conversion is based on the Stirling cycle. In their most basic forms, thermoacoustic devices are comprised of two heat exchangers, a porous medium, both placed inside a resonator. Work is created through the interaction of strong sound waves with the porous medium that is subject to external heating. This work explores the effect of resonator curvature on the thermoacoustic effect. A CFD analysis of a whole thermoacoustic engine was developed and the influence of a curved resonator on the thermoacoustic effect is discussed. The variation of pressure amplitude and operating frequency serves as metrics in this investigation. It was found that the introduction of curvature affects the pressure amplitude achieved. Severely curved resonators also exhibited a variation in operating frequency.
AbstractList Thermoacoustic energy conversion is based on the Stirling cycle. In their most basic forms, thermoacoustic devices are comprised of two heat exchangers, a porous medium, both placed inside a resonator. Work is created through the interaction of strong sound waves with the porous medium that is subject to external heating. This work explores the effect of resonator curvature on the thermoacoustic effect. A CFD analysis of a whole thermoacoustic engine was developed and the influence of a curved resonator on the thermoacoustic effect is discussed. The variation of pressure amplitude and operating frequency serves as metrics in this investigation. It was found that the introduction of curvature affects the pressure amplitude achieved. Severely curved resonators also exhibited a variation in operating frequency.
Author Vipperman, Jeffrey
Schaefer, Laura
Zink, Florian
Author_xml – sequence: 1
  givenname: Florian
  surname: Zink
  fullname: Zink, Florian
  email: flz2@pitt.edu
  organization: University of Pittsburgh, Department of Mechanical Engineering and Material Science, 225 Benedum Hall, Pittsburgh, PA 15261, United States
– sequence: 2
  givenname: Jeffrey
  surname: Vipperman
  fullname: Vipperman, Jeffrey
  organization: University of Pittsburgh, Department of Mechanical Engineering and Material Science, 531 Benedum Hall, Pittsburgh, PA 15261, United States
– sequence: 3
  givenname: Laura
  surname: Schaefer
  fullname: Schaefer, Laura
  organization: University of Pittsburgh, Department of Mechanical Engineering and Material Science, 153 Benedum Hall, Pittsburgh, PA 15261, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22475250$$DView record in Pascal Francis
BookMark eNqVkE1PGzEQQK0KpAbof9hLJS6bjr-y3hOtAuFDSL3A2TLeceNo16a2A-Lf1yGoB3qh0khzmKen0TsiByEGJOSUwpwCXXzbzL1doymTybkkE7LDNGcA_Xw3QD-RGVVd3wLt1AGZQcdlS3vOP5OjnDdQCUXVjJwtV-dN9tN2NMXH0ETXmKasMU3R2LjNxdsGwy8fsHn2Zd3Y6EccmoQ5BlNiOiGHzowZv7ztY3K_urhbXrW3Py-vlz9uWytAlpbTB8Gd5YyroWOKCgeKgTWcgXAPkisnZIfGgMReLBCE6AYnee-gEmaB_Jic7r2PKf7eYi568tniOJqA9U1NFx1likspK_r1DTXZmtHVONZn_Zj8ZNKLZkx0kkmo3Pc9Z1PMOaH7i1DQu8Z6o_9trHeN9W6AVsXqncL68hqy4n78H9HNXoS14ZOv12w9BouDT2iLHqL_uOwPzA2rCQ
CODEN IHMTDL
CitedBy_id crossref_primary_10_1016_j_compfluid_2015_01_011
crossref_primary_10_1016_j_energy_2017_07_058
crossref_primary_10_1108_EC_01_2015_0018
crossref_primary_10_1016_j_icheatmasstransfer_2023_106617
crossref_primary_10_3390_en15103806
crossref_primary_10_1016_j_applthermaleng_2016_08_093
crossref_primary_10_1016_j_applthermaleng_2024_123466
crossref_primary_10_1016_j_enconman_2019_01_075
crossref_primary_10_1016_j_enconman_2019_04_089
crossref_primary_10_3390_en11092253
crossref_primary_10_1016_j_energy_2015_04_088
crossref_primary_10_1016_j_apacoust_2014_02_002
crossref_primary_10_1016_j_jsv_2025_119402
crossref_primary_10_1016_j_applthermaleng_2023_121930
crossref_primary_10_1016_j_apenergy_2020_115458
crossref_primary_10_1080_23311916_2024_2322073
crossref_primary_10_1016_j_ijrefrig_2022_09_024
crossref_primary_10_1007_s00231_015_1634_z
crossref_primary_10_1016_j_ijheatmasstransfer_2010_05_012
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122181
crossref_primary_10_1016_j_proeng_2012_01_283
crossref_primary_10_1016_j_tsep_2023_102134
crossref_primary_10_1134_S0869864315030051
crossref_primary_10_2478_v10173_011_0021_5
crossref_primary_10_1016_j_ijheatmasstransfer_2014_05_018
crossref_primary_10_1016_j_proeng_2013_03_205
crossref_primary_10_1080_01430750_2019_1614991
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124526
crossref_primary_10_1016_j_icheatmasstransfer_2012_03_004
crossref_primary_10_1016_j_apenergy_2024_122817
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122530
crossref_primary_10_1016_j_apacoust_2023_109274
crossref_primary_10_1016_j_energy_2024_130634
crossref_primary_10_1016_j_ijthermalsci_2015_02_010
crossref_primary_10_1080_10789669_2012_755897
crossref_primary_10_1016_j_jsv_2014_07_003
crossref_primary_10_1063_1_4984795
crossref_primary_10_1088_1757_899X_171_1_012078
crossref_primary_10_1080_01430750_2021_1874523
crossref_primary_10_1016_j_energy_2020_117228
crossref_primary_10_1016_j_applthermaleng_2018_07_073
crossref_primary_10_1016_j_euromechflu_2014_05_008
crossref_primary_10_1016_j_applthermaleng_2024_122985
crossref_primary_10_1016_j_apenergy_2024_123886
crossref_primary_10_1016_j_applthermaleng_2025_126688
crossref_primary_10_1016_j_energy_2013_11_041
crossref_primary_10_4028_www_scientific_net_AMM_471_361
crossref_primary_10_1016_j_applthermaleng_2016_07_028
crossref_primary_10_1016_j_ijthermalsci_2014_09_016
Cites_doi 10.1119/1.1621034
10.1080/10407780152619784
10.1121/1.2063087
10.1080/10407780252780153
10.1016/j.cryogenics.2004.08.007
10.1121/1.383505
10.1121/1.1430687
10.1007/s00231-005-0046-x
10.1121/1.392191
10.1038/20546
10.1016/j.crme.2004.07.010
10.1121/1.2035567
10.2514/1.4342
10.1121/1.414992
10.1016/S0360-5442(00)00023-2
10.1080/104077899275362
10.1121/1.2165000
10.1121/1.1558931
10.1080/10407789008944780
10.1016/j.ijheatmasstransfer.2005.11.009
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.icheatmasstransfer.2009.09.001
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1879-0178
EndPage 229
ExternalDocumentID 22475250
10_1016_j_icheatmasstransfer_2009_09_001
S0735193309002176
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c405t-31b43fc3238d72814f0820ca3204fb538f457eaa05e946e0447df539f0320a6e3
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275259100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0735-1933
IngestDate Sun Sep 28 00:23:58 EDT 2025
Mon Jul 21 09:16:17 EDT 2025
Sat Nov 29 07:10:53 EST 2025
Tue Nov 18 22:39:09 EST 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CFD simulation
Thermoacoustics
Resonator curvature
Resonator
Computational fluid dynamics
Numerical simulation
Thermoacoustic effect
Boundary condition
Refrigeration
Curvature
Modeling
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-31b43fc3238d72814f0820ca3204fb538f457eaa05e946e0447df539f0320a6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671283555
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1671283555
pascalfrancis_primary_22475250
crossref_primary_10_1016_j_icheatmasstransfer_2009_09_001
crossref_citationtrail_10_1016_j_icheatmasstransfer_2009_09_001
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2009_09_001
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International communications in heat and mass transfer
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References P. E. Phelan, J. Swanson, F. Chiriac, V. Chiriac, Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics, Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM'04).
Ozoe, Sato, Churchill (bib17) 1990; 18
Entezam, van Moorhem, Majdalani (bib15) 2002; 41
M. E. Poese, R. W. Smith, S. L. Garrett, R. van Gerwen, P. Gosselin, Thermoacoustic refrigeration for ice cream sales, in: Proceedings of 6th IIR Gustav Lorentzen Conference, 2004.
Worlikar, Knio (bib21) 1999; 35
Piccolo, Pistone (bib27) 2006; 49
Marx, Blanc-Benon (bib24) 2004; 42
P. H. Ceperley, Us pat. no. 4114380 (1978).
L. Zoontjens, Numerical investigation of the performance and effectiveness of thermoacoustic couples, Ph.D. thesis, School of Mechanical Engineering, The University of Adelaide (2008).
Kaushik, Kumar (bib2) 2000; 25
Herman, Travnicek (bib11) 2006; 42
Ceperley (bib7) 1979; 66
Garrett (bib1) 1999; 339
Lycklama À Nijeholt, Tijani, Spoelstra (bib12) 2005; 118
Marx, Blanc-Benon (bib26) 2005; 118
Garrett (bib6) 2004; 72
Marx, Blanc-Benon (bib23) 2004; 332
Ishikawa, Mee (bib22) 2002; 111
Besnoin, Knio (bib19) 2001; 40
Bastyr, Keolian (bib14) 2003; 4
Hantschk, Vortmeyer (bib13) 1999; 277
Marx, Blanc-Benon (bib25) 2005; 45
Swift (bib4) 2002
E. Besnoin, Numerical study of thermoacoustic heat exchangers, Ph.D. thesis, Johns Hopkins University (2001).
Cao, Olson, Swift, Chen (bib18) 1996; 99
Kagawa (bib8) 2000
Liu, Garrett (bib28) 2006; 119
Ceperley (bib3) 1985; 77
Entezam (10.1016/j.icheatmasstransfer.2009.09.001_bib15) 2002; 41
Kagawa (10.1016/j.icheatmasstransfer.2009.09.001_bib8) 2000
Cao (10.1016/j.icheatmasstransfer.2009.09.001_bib18) 1996; 99
10.1016/j.icheatmasstransfer.2009.09.001_bib9
Herman (10.1016/j.icheatmasstransfer.2009.09.001_bib11) 2006; 42
10.1016/j.icheatmasstransfer.2009.09.001_bib5
Kaushik (10.1016/j.icheatmasstransfer.2009.09.001_bib2) 2000; 25
Marx (10.1016/j.icheatmasstransfer.2009.09.001_bib25) 2005; 45
Ozoe (10.1016/j.icheatmasstransfer.2009.09.001_bib17) 1990; 18
Piccolo (10.1016/j.icheatmasstransfer.2009.09.001_bib27) 2006; 49
Garrett (10.1016/j.icheatmasstransfer.2009.09.001_bib6) 2004; 72
10.1016/j.icheatmasstransfer.2009.09.001_bib16
Besnoin (10.1016/j.icheatmasstransfer.2009.09.001_bib19) 2001; 40
Worlikar (10.1016/j.icheatmasstransfer.2009.09.001_bib21) 1999; 35
Garrett (10.1016/j.icheatmasstransfer.2009.09.001_bib1) 1999; 339
Swift (10.1016/j.icheatmasstransfer.2009.09.001_bib4) 2002
10.1016/j.icheatmasstransfer.2009.09.001_bib10
Ceperley (10.1016/j.icheatmasstransfer.2009.09.001_bib7) 1979; 66
Ishikawa (10.1016/j.icheatmasstransfer.2009.09.001_bib22) 2002; 111
Bastyr (10.1016/j.icheatmasstransfer.2009.09.001_bib14) 2003; 4
Hantschk (10.1016/j.icheatmasstransfer.2009.09.001_bib13) 1999; 277
Ceperley (10.1016/j.icheatmasstransfer.2009.09.001_bib3) 1985; 77
Lycklama À Nijeholt (10.1016/j.icheatmasstransfer.2009.09.001_bib12) 2005; 118
Marx (10.1016/j.icheatmasstransfer.2009.09.001_bib24) 2004; 42
Marx (10.1016/j.icheatmasstransfer.2009.09.001_bib23) 2004; 332
Marx (10.1016/j.icheatmasstransfer.2009.09.001_bib26) 2005; 118
Liu (10.1016/j.icheatmasstransfer.2009.09.001_bib28) 2006; 119
10.1016/j.icheatmasstransfer.2009.09.001_bib20
References_xml – reference: L. Zoontjens, Numerical investigation of the performance and effectiveness of thermoacoustic couples, Ph.D. thesis, School of Mechanical Engineering, The University of Adelaide (2008).
– volume: 332
  start-page: 867
  year: 2004
  end-page: 874
  ident: bib23
  article-title: Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
  publication-title: Comptes rendus-Mécanique
– volume: 25
  start-page: 989
  year: 2000
  end-page: 1003
  ident: bib2
  article-title: Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses
  publication-title: Energy
– year: 2002
  ident: bib4
  article-title: Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
– reference: P. E. Phelan, J. Swanson, F. Chiriac, V. Chiriac, Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics, Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM'04).
– volume: 77
  start-page: 1239
  year: 1985
  end-page: 1244
  ident: bib3
  article-title: Gain and efficiency of a short traveling wave heat engine
  publication-title: Journal of the Acoustical Society of America
– volume: 41
  start-page: 245
  year: 2002
  end-page: 262
  ident: bib15
  article-title: Two-dimensional numerical verification of the unsteady thermoacoustic field inside a rijke-type pulse combustor
  publication-title: Numerical Heat Transfer; Part A: Applications
– volume: 45
  start-page: 163
  year: 2005
  end-page: 172
  ident: bib25
  article-title: Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate
  publication-title: Cryogenics
– year: 2000
  ident: bib8
  article-title: Regenerative Thermal Machines
– volume: 99
  start-page: 3456
  year: 1996
  end-page: 3464
  ident: bib18
  article-title: Energy flux density in a thermoacoustic couple
  publication-title: Journal of the Acoustical Society of America
– volume: 66
  start-page: 1508
  year: 1979
  end-page: 1513
  ident: bib7
  article-title: A pistonless Stirling engine — the traveling wave heat engine
  publication-title: Journal of the Acoustical Society of America
– volume: 111
  start-page: 831
  year: 2002
  ident: bib22
  article-title: Numerical investigations of flow and energy fields near a thermoacoustic couple
  publication-title: The Journal of the Acoustical Society of America
– volume: 42
  start-page: 1338
  year: 2004
  end-page: 1347
  ident: bib24
  article-title: Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator
  publication-title: AIAA Journal
– volume: 339
  start-page: 303
  year: 1999
  end-page: 305
  ident: bib1
  article-title: Reinventing the engine
  publication-title: Nature
– reference: M. E. Poese, R. W. Smith, S. L. Garrett, R. van Gerwen, P. Gosselin, Thermoacoustic refrigeration for ice cream sales, in: Proceedings of 6th IIR Gustav Lorentzen Conference, 2004.
– volume: 42
  start-page: 492
  year: 2006
  end-page: 500
  ident: bib11
  article-title: Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration
  publication-title: Heat and Mass Transfer
– volume: 72
  start-page: 11
  year: 2004
  end-page: 17
  ident: bib6
  article-title: Resource letter: Ta-1: thermoacoustic engines and refrigerators
  publication-title: American Journal of Physics
– volume: 119
  year: 2006
  ident: bib28
  article-title: Relationship between Nusselt number and the thermoviscous (Rott) functions
  publication-title: Journal of the Acoustical Society of America
– volume: 277
  start-page: 758
  year: 1999
  end-page: 763
  ident: bib13
  article-title: Numerical simulation of self-excited thermoacoustic instabilities in a rijke tube
  publication-title: Journal of Sound and Vibration
– reference: E. Besnoin, Numerical study of thermoacoustic heat exchangers, Ph.D. thesis, Johns Hopkins University (2001).
– volume: 118
  start-page: 2265
  year: 2005
  end-page: 2270
  ident: bib12
  article-title: Simulation of traveling wave thermoacoustic engine using computational fluid dynamics
  publication-title: Journal of the Acoustical Society of America
– volume: 18
  start-page: 1
  year: 1990
  end-page: 15
  ident: bib17
  article-title: Numerical analyses of two- and three-dimensional thermoacoustic convection generated by a transient step in the temperature of one walls
  publication-title: Numerical Heat Transfer; Part A: Applications
– volume: 118
  start-page: 2993
  year: 2005
  ident: bib26
  article-title: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator
  publication-title: The Journal of the Acoustical Society of America
– volume: 49
  start-page: 1631
  year: 2006
  end-page: 1642
  ident: bib27
  article-title: Estimation of heat transfer coefficients in oscillating flows: the thermoacoustic case
  publication-title: Int. Journal of Heat and Mass Transfer
– reference: P. H. Ceperley, Us pat. no. 4114380 (1978).
– volume: 40
  start-page: 445
  year: 2001
  end-page: 471
  ident: bib19
  article-title: Numerical study of thermoacoustic heat exchangers in the thin plate limit
  publication-title: Numerical Heat Transfer; Part A: Applications
– volume: 4
  start-page: 37
  year: 2003
  end-page: 40
  ident: bib14
  article-title: High-frequency thermoacoustic-Stirling heat engine demonstration device
  publication-title: Acoustics Research Letters Online
– volume: 35
  start-page: 49
  year: 1999
  end-page: 65
  ident: bib21
  article-title: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack
  publication-title: Numerical Heat Transfer; Part A: Applications
– ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib9
– volume: 72
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib6
  article-title: Resource letter: Ta-1: thermoacoustic engines and refrigerators
  publication-title: American Journal of Physics
  doi: 10.1119/1.1621034
– volume: 40
  start-page: 445
  year: 2001
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib19
  article-title: Numerical study of thermoacoustic heat exchangers in the thin plate limit
  publication-title: Numerical Heat Transfer; Part A: Applications
  doi: 10.1080/10407780152619784
– volume: 277
  start-page: 758
  issue: 9
  year: 1999
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib13
  article-title: Numerical simulation of self-excited thermoacoustic instabilities in a rijke tube
  publication-title: Journal of Sound and Vibration
– volume: 118
  start-page: 2993
  year: 2005
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib26
  article-title: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.2063087
– ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib5
– volume: 41
  start-page: 245
  issue: 3
  year: 2002
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib15
  article-title: Two-dimensional numerical verification of the unsteady thermoacoustic field inside a rijke-type pulse combustor
  publication-title: Numerical Heat Transfer; Part A: Applications
  doi: 10.1080/10407780252780153
– volume: 45
  start-page: 163
  issue: 3
  year: 2005
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib25
  article-title: Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2004.08.007
– volume: 66
  start-page: 1508
  issue: 5
  year: 1979
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib7
  article-title: A pistonless Stirling engine — the traveling wave heat engine
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.383505
– year: 2000
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib8
– volume: 111
  start-page: 831
  year: 2002
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib22
  article-title: Numerical investigations of flow and energy fields near a thermoacoustic couple
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.1430687
– volume: 42
  start-page: 492
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib11
  article-title: Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration
  publication-title: Heat and Mass Transfer
  doi: 10.1007/s00231-005-0046-x
– volume: 77
  start-page: 1239
  issue: 3
  year: 1985
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib3
  article-title: Gain and efficiency of a short traveling wave heat engine
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.392191
– ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib16
– volume: 339
  start-page: 303
  year: 1999
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib1
  article-title: Reinventing the engine
  publication-title: Nature
  doi: 10.1038/20546
– volume: 332
  start-page: 867
  issue: 11
  year: 2004
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib23
  article-title: Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
  publication-title: Comptes rendus-Mécanique
  doi: 10.1016/j.crme.2004.07.010
– ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib10
– volume: 118
  start-page: 2265
  issue: 4
  year: 2005
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib12
  article-title: Simulation of traveling wave thermoacoustic engine using computational fluid dynamics
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.2035567
– volume: 42
  start-page: 1338
  year: 2004
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib24
  article-title: Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator
  publication-title: AIAA Journal
  doi: 10.2514/1.4342
– volume: 99
  start-page: 3456
  issue: 6
  year: 1996
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib18
  article-title: Energy flux density in a thermoacoustic couple
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.414992
– volume: 25
  start-page: 989
  year: 2000
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib2
  article-title: Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses
  publication-title: Energy
  doi: 10.1016/S0360-5442(00)00023-2
– volume: 35
  start-page: 49
  issue: 1
  year: 1999
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib21
  article-title: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack
  publication-title: Numerical Heat Transfer; Part A: Applications
  doi: 10.1080/104077899275362
– volume: 119
  issue: 3
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib28
  article-title: Relationship between Nusselt number and the thermoviscous (Rott) functions
  publication-title: Journal of the Acoustical Society of America
  doi: 10.1121/1.2165000
– volume: 4
  start-page: 37
  issue: 2
  year: 2003
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib14
  article-title: High-frequency thermoacoustic-Stirling heat engine demonstration device
  publication-title: Acoustics Research Letters Online
  doi: 10.1121/1.1558931
– ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib20
– year: 2002
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib4
– volume: 18
  start-page: 1
  issue: 1
  year: 1990
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib17
  article-title: Numerical analyses of two- and three-dimensional thermoacoustic convection generated by a transient step in the temperature of one walls
  publication-title: Numerical Heat Transfer; Part A: Applications
  doi: 10.1080/10407789008944780
– volume: 49
  start-page: 1631
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2009.09.001_bib27
  article-title: Estimation of heat transfer coefficients in oscillating flows: the thermoacoustic case
  publication-title: Int. Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.11.009
SSID ssj0001818
Score 2.1828558
Snippet Thermoacoustic energy conversion is based on the Stirling cycle. In their most basic forms, thermoacoustic devices are comprised of two heat exchangers, a...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 226
SubjectTerms Amplitudes
Applied sciences
CFD simulation
Computational methods in fluid dynamics
Cryogenics
Curvature
Curved
Energy
Energy. Thermal use of fuels
Engines
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical models
Physics
Refrigerating engineering. Cryogenics. Food conservation
Resonator curvature
Resonators
Thermoacoustics
Title CFD simulation of a thermoacoustic engine with coiled resonator
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2009.09.001
https://www.proquest.com/docview/1671283555
Volume 37
WOSCitedRecordID wos000275259100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001818
  issn: 0735-1933
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT0UR0VOxfhwRRIQjR5rdZJOn46gtKkf1oSfFl7DZ7mKPaxqv9Tj8653ZzSYpRbk-CCWUkCxJ5rczv935IuStkjwHw8l8oAPMZ33078Yy9OksiJRM8lSHwjSb4ONxMp2mXzud3y4X5uqCF0VyfZ2W_1XUcA6EjamzO4i7HhROwH8QOhxB7HC8keAHow-Hq_miastl8x-R5S2WoPxM765DZYoQurBz0AuYwoKc3JYertnq5nahbOeSmDBaVOTG-7AACo7dJoADN9G-32GZa7gxBvk1IPw2L0s0B0UrkaxxB_0QWPnWZWyL9qYE-tNdVFaluziNfOCGtK1obXWXClC0rTXDuGWAQ7sFsqXb7TbD-RGGyIo1vph7r6rsqKk82tg158sff8lGZ6en2WQ4nbwrf_rYcQw981X7lVtkL-RRmnTJ3smn4fRzbceB-xg77l7lLnnfRAf--yH-RnIelGIFU0_bnilb5t9wmskj8rBajHgnFkSPSUcV--R-q0TlPrljQoTl6gk5BmB5DbC8pfaEtwkszwLLQ2B5FlheDayn5Gw0nAw--lX7DV8Ci1-Ddc4Z1ZICqZvxMOkzjXRRChoGTOdgKDWLuBICJnXKYhUwxmc6oqkO4AoRK_qMdItloZ5j_NxMUJYGNOewgOdxrpM8zEO4UgdcxaxHjt33ymRVmx5bpFxkLgjxPNv-4thCNc3wF_R7JK1HKG2dlh3uHTgRZRXvtHwyA-jtMMrBhnTrxwCSzDF4oEfeOHFnoMPRMScKBfLJ-jHvY93DKHpxg2teknvNlHtFuuvLX-o1uS2v1vPV5UGF4j9HIsVm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+simulation+of+a+thermoacoustic+engine+with+coiled+resonator&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Zink%2C+Florian&rft.au=Vipperman%2C+Jeffrey&rft.au=Schaefer%2C+Laura&rft.date=2010-03-01&rft.issn=0735-1933&rft.volume=37&rft.issue=3&rft.spage=226&rft.epage=229&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2009.09.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon