Projected gradient algorithms for optimization over order simplices

A primal-dual algorithm is proposed for computing the distance from a point to an order simplex. An advantage of the algorithm is that, for any initial active set, it can adjust the active set to improve both primal and dual feasibility until the optimal active set is found. We verify that the algor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 29; číslo 5; s. 1090 - 1117
Hlavní autoři: Hu, Yi-Qing, Hao, Chun-Lin, Dai, Yu-Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 03.09.2014
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A primal-dual algorithm is proposed for computing the distance from a point to an order simplex. An advantage of the algorithm is that, for any initial active set, it can adjust the active set to improve both primal and dual feasibility until the optimal active set is found. We verify that the algorithm takes only O(n) elementary arithmetic operations, where n is the problem dimension. Numerical results demonstrate the efficiency of the primal-dual algorithm compared with the primal feasible algorithm and the dual feasible algorithm. The primal-dual algorithm proves very useful in projected gradient algorithms applied to general order simplex constrained problems since a series of projection subproblems are requested there and the primal-dual algorithm makes warm starts possible.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2014.911872