Self-Constructing Adaptive Robust Fuzzy Neural Tracking Control of Surface Vehicles With Uncertainties and Unknown Disturbances

In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy neural network (SCFNN) is employed to approximate system uncertainties and unknown disturbances, is proposed. The salient features of the SAR...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on control systems technology Ročník 23; číslo 3; s. 991 - 1002
Hlavní autori: Wang, Ning, Joo Er, Meng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2015
Predmet:
ISSN:1063-6536, 1558-0865
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy neural network (SCFNN) is employed to approximate system uncertainties and unknown disturbances, is proposed. The salient features of the SARFNC scheme are as follows: 1) unlike the predefined-structure approaches, the SCFNN is able to online self-construct dynamic-structure fuzzy neural approximator by generating and pruning fuzzy rules, and achieve accurate approximation; 2) an adaptive approximation-based controller (AAC) is designed by combining sliding-mode control with SCFNN approximation using improved projection-based adaptive laws, which avoid parameter drift and singularity in membership functions simultaneously; 3) to compensate for approximation errors, a robust supervisory controller (RSC) is presented to enhance the robustness of the overall SARFNC control system; and 4) the SARFNC consisting of AAC and RSC can achieve an excellent tracking performance, whereby tracking errors and their first derivatives are globally uniformly ultimately bounded. Simulation studies and comprehensive comparisons with traditional adaptive control schemes demonstrate remarkable performance and superiority of the SARFNC scheme in terms of tracking errors and online approximation.
AbstractList In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy neural network (SCFNN) is employed to approximate system uncertainties and unknown disturbances, is proposed. The salient features of the SARFNC scheme are as follows: 1) unlike the predefined-structure approaches, the SCFNN is able to online self-construct dynamic-structure fuzzy neural approximator by generating and pruning fuzzy rules, and achieve accurate approximation; 2) an adaptive approximation-based controller (AAC) is designed by combining sliding-mode control with SCFNN approximation using improved projection-based adaptive laws, which avoid parameter drift and singularity in membership functions simultaneously; 3) to compensate for approximation errors, a robust supervisory controller (RSC) is presented to enhance the robustness of the overall SARFNC control system; and 4) the SARFNC consisting of AAC and RSC can achieve an excellent tracking performance, whereby tracking errors and their first derivatives are globally uniformly ultimately bounded. Simulation studies and comprehensive comparisons with traditional adaptive control schemes demonstrate remarkable performance and superiority of the SARFNC scheme in terms of tracking errors and online approximation.
Author Ning Wang
Meng Joo Er
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0003-1745-1425
  surname: Wang
  fullname: Wang, Ning
– sequence: 2
  givenname: Meng
  surname: Joo Er
  fullname: Joo Er, Meng
BookMark eNp9kM9OwzAMhyMEEmPwAIhLXqAjSZt0OU7jr4RAYhscKzd1WVhJUZKCxoVXpxWIAwdOtqzfZ8vfAdl1rUNCjjmbcM706XK-WE4E49lEpFJPp2yHjLiU04RNldzte6bSRMlU7ZODEJ5Zn5QiH5HPBTZ1Mm9diL4z0bonOqvgNdo3pPdt2YVIL7qPjy29xc5DQ5cezGZI9Uj0bUPbmi46X4NB-oBraxoM9NHGNV05gz6CddH2I3BVP9m49t3RMxti50voA-GQ7NXQBDz6qWOyujhfzq-Sm7vL6_nsJjEZkzERUBuTa8XLSgA3mMla5pkyaCpQMk-FyCoNquQVCJaVmgFH5BLAqFxUXKVjwr_3Gt-G4LEuXr19Ab8tOCsGg8VgsBgMFj8Geyb_wxgbIdrhc7DNv-TJN2kR8feS0lwLrdMv1xeEBQ
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_isatra_2018_12_042
crossref_primary_10_1016_j_neucom_2016_02_042
crossref_primary_10_1109_TCST_2019_2939248
crossref_primary_10_1109_TFUZZ_2017_2737405
crossref_primary_10_1109_TSMC_2018_2834515
crossref_primary_10_1007_s11071_020_05720_5
crossref_primary_10_1109_TNNLS_2017_2738918
crossref_primary_10_1016_j_oceaneng_2019_04_051
crossref_primary_10_1016_j_isatra_2016_05_010
crossref_primary_10_1016_j_oceaneng_2020_107328
crossref_primary_10_3390_app8060862
crossref_primary_10_1109_ACCESS_2021_3135856
crossref_primary_10_1007_s12555_018_0741_2
crossref_primary_10_1007_s00521_018_3413_5
crossref_primary_10_1109_TCST_2015_2510587
crossref_primary_10_1109_TSMC_2020_3048999
crossref_primary_10_3390_jmse11020281
crossref_primary_10_1016_j_neucom_2015_09_036
crossref_primary_10_3390_axioms12040361
crossref_primary_10_1002_rnc_4956
crossref_primary_10_1002_rnc_70135
crossref_primary_10_1049_iet_cta_2018_6262
crossref_primary_10_1109_TII_2022_3162855
crossref_primary_10_1109_TFUZZ_2017_2697399
crossref_primary_10_1016_j_oceaneng_2024_117117
crossref_primary_10_1007_s12046_020_01433_y
crossref_primary_10_1109_TIV_2024_3428638
crossref_primary_10_1109_TCST_2018_2836358
crossref_primary_10_1109_TCYB_2015_2451116
crossref_primary_10_1109_TSMC_2020_3010678
crossref_primary_10_1109_TNNLS_2021_3059933
crossref_primary_10_1007_s40815_017_0387_x
crossref_primary_10_1109_TMECH_2021_3055450
crossref_primary_10_1007_s40815_016_0216_7
crossref_primary_10_1109_TVT_2018_2868273
crossref_primary_10_1016_j_oceaneng_2022_111129
crossref_primary_10_1109_TIV_2017_2657379
crossref_primary_10_1109_TCST_2015_2496585
crossref_primary_10_1177_1687814016680799
crossref_primary_10_1002_rnc_4628
crossref_primary_10_1016_j_neucom_2015_09_090
crossref_primary_10_1109_TCYB_2024_3371972
crossref_primary_10_1109_TMECH_2019_2906395
crossref_primary_10_1109_TNNLS_2022_3169518
crossref_primary_10_1016_j_isatra_2022_05_004
crossref_primary_10_3390_jmse12091484
crossref_primary_10_1007_s40815_017_0392_0
crossref_primary_10_1109_TIV_2024_3410381
crossref_primary_10_1109_TSMC_2016_2562502
crossref_primary_10_1109_TSMC_2018_2792139
crossref_primary_10_1177_1687814018776063
crossref_primary_10_1007_s11071_016_3196_0
crossref_primary_10_1007_s40815_022_01265_4
crossref_primary_10_1109_ACCESS_2022_3140360
crossref_primary_10_1177_17298814211011035
crossref_primary_10_1016_j_isatra_2024_07_029
crossref_primary_10_1109_ACCESS_2018_2872779
crossref_primary_10_1007_s40815_024_01885_y
crossref_primary_10_1109_TPEL_2021_3120519
crossref_primary_10_1177_01423312221074181
crossref_primary_10_1016_j_neucom_2015_10_106
crossref_primary_10_1177_0142331216678312
crossref_primary_10_1109_ACCESS_2018_2851286
crossref_primary_10_1109_ACCESS_2019_2895053
crossref_primary_10_1049_iet_cta_2020_0770
crossref_primary_10_1007_s11071_017_3524_z
crossref_primary_10_1177_0959651816629540
crossref_primary_10_1109_TASE_2020_3001183
crossref_primary_10_1080_17445302_2020_1737452
crossref_primary_10_1109_TCYB_2015_2423635
crossref_primary_10_1177_0142331220957516
crossref_primary_10_1016_j_neucom_2023_126316
crossref_primary_10_1016_j_neucom_2016_04_019
crossref_primary_10_1016_j_oceaneng_2017_03_048
crossref_primary_10_1109_TFUZZ_2017_2773422
crossref_primary_10_1016_j_jfranklin_2019_05_016
crossref_primary_10_1016_j_ijhydene_2017_04_130
crossref_primary_10_1109_TPEL_2019_2958051
crossref_primary_10_1016_j_oceaneng_2019_02_017
crossref_primary_10_3390_s20030832
crossref_primary_10_1109_TNNLS_2020_3009214
crossref_primary_10_1016_j_asoc_2016_05_050
crossref_primary_10_1109_TFUZZ_2020_2988844
crossref_primary_10_1007_s11768_020_9195_1
crossref_primary_10_3390_s16081335
crossref_primary_10_1007_s40815_018_0522_3
crossref_primary_10_1109_TNSE_2021_3120552
crossref_primary_10_3390_aerospace9080427
crossref_primary_10_1016_j_neucom_2015_12_075
crossref_primary_10_1109_ACCESS_2018_2881134
crossref_primary_10_1109_TIE_2020_3000098
crossref_primary_10_1016_j_oceaneng_2019_106910
crossref_primary_10_1109_TITS_2023_3235911
crossref_primary_10_1007_s42835_020_00378_w
crossref_primary_10_1109_ACCESS_2018_2797084
crossref_primary_10_1016_j_apor_2021_102615
crossref_primary_10_1109_TNNLS_2018_2876685
crossref_primary_10_1109_TFUZZ_2021_3094717
crossref_primary_10_1109_JOE_2017_2768105
crossref_primary_10_1002_rnc_6577
crossref_primary_10_1007_s11071_022_07828_2
crossref_primary_10_1109_ACCESS_2020_3008399
crossref_primary_10_1016_j_fss_2016_11_005
crossref_primary_10_1007_s40435_021_00865_6
crossref_primary_10_1109_TFUZZ_2017_2785812
crossref_primary_10_1016_j_conengprac_2020_104675
crossref_primary_10_1016_j_neucom_2015_10_023
crossref_primary_10_1016_j_oceaneng_2025_122499
crossref_primary_10_1177_0959651820973558
crossref_primary_10_1016_j_ijepes_2021_107792
crossref_primary_10_1080_00207721_2021_1972354
crossref_primary_10_1109_ACCESS_2021_3104030
Cites_doi 10.1109/TNN.2008.2003290
10.1109/TNNLS.2013.2292704
10.1049/iet-cta.2011.0176
10.1109/TSMCB.2012.2196039
10.1109/TNN.2010.2042611
10.1109/3477.537311
10.1142/S0129065710002486
10.1016/S0967-0661(02)00009-6
10.1109/TFUZZ.2003.819837
10.1109/TSMCA.2009.2030164
10.1007/0-8176-4470-9_23
10.1109/ACC.2009.5160064
10.1109/48.380245
10.1109/TNNLS.2012.2225845
10.1109/TNN.2011.2159865
10.1109/TIE.2008.926778
10.1109/TSMCB.2004.824525
10.1109/87.572132
10.1109/TIE.2008.2005933
10.1109/TNN.2007.899178
10.1016/j.neucom.2013.01.062
10.1109/TFUZZ.2004.825062
10.1049/ip-cta:20040902
10.1109/TSMCB.2011.2108283
10.1016/j.neucom.2009.05.006
10.1109/TCST.2002.806465
10.1016/j.automatica.2009.03.010
10.1109/TFUZZ.2003.814845
10.1016/S0005-1098(01)00199-6
10.1109/87.852916
10.1109/37.248001
10.1007/s11063-011-9181-1
10.1049/ip-cta:19971032
10.1109/TFUZZ.2011.2136349
10.1109/TIE.2013.2258299
10.1109/72.977306
10.1109/TFUZZ.2003.814833
10.1109/TIE.2007.893056
10.1016/j.automatica.2004.10.006
10.1109/TCST.2006.872507
10.1109/TII.2012.2205584
10.1109/TFUZZ.2003.812694
10.1109/TSMCB.2003.808177
10.1109/TFUZZ.2009.2038277
10.1002/0471781819
10.1007/978-1-84882-730-1
10.1109/TFUZZ.2011.2144600
10.1109/TSMCB.2002.1018767
10.1109/TNN.2004.841786
10.1016/j.fss.2004.07.007
10.1109/TCST.2010.2045654
10.1016/j.automatica.2010.02.024
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCST.2014.2359880
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 1002
ExternalDocumentID 10_1109_TCST_2014_2359880
6919299
Genre orig-research
GrantInformation_xml – fundername: Applied Basic Research Funds through the Ministry of Transport of China
  grantid: 2012-329-225-060
– fundername: National Natural Science Foundation of China
  grantid: 51009017; 51379002
  funderid: 10.13039/501100001809
– fundername: Program for Liaoning Excellent Talents in University
  grantid: LJQ2013055
– fundername: China Post-Doctoral Science Foundation
  grantid: 2012M520629
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2009QN025; 2011JC002; 3132013025; 3132014206
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c405t-2afcc7961bd2a1ce45f5746cecda6573224d9a6b1da204b90a1ee15aac672d163
IEDL.DBID RIE
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353523700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6536
IngestDate Tue Nov 18 22:16:39 EST 2025
Sat Nov 29 02:44:40 EST 2025
Wed Aug 27 02:53:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords self-constructing fuzzy neural network (SCFNN)
Adaptive robust tracking control
surface vehicle
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-2afcc7961bd2a1ce45f5746cecda6573224d9a6b1da204b90a1ee15aac672d163
ORCID 0000-0003-1745-1425
PageCount 12
ParticipantIDs ieee_primary_6919299
crossref_primary_10_1109_TCST_2014_2359880
crossref_citationtrail_10_1109_TCST_2014_2359880
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref12
slotine (ref4) 1991
ref15
li (ref20) 2010; 18
liu (ref25) 2011; 22
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref51
ref50
ref46
wang (ref56) 2013; 15
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
xu (ref27) 2014; 25
ref8
ref7
ref9
ref6
ref5
ref40
khalil (ref2) 1996
ref35
ref34
ref37
ref31
fossen (ref1) 2002
ref30
ref33
ref32
ref39
ref38
fei (ref36) 2012; 42
ref24
ref23
ref26
ref22
ref21
ref28
ref29
do (ref18) 2009
kristic (ref3) 1995
References_xml – ident: ref28
  doi: 10.1109/TNN.2008.2003290
– volume: 25
  start-page: 635
  year: 2014
  ident: ref27
  article-title: Reinforcement learning output feedback NN control using deterministic learning technique
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292704
– ident: ref17
  doi: 10.1049/iet-cta.2011.0176
– volume: 42
  start-page: 1599
  year: 2012
  ident: ref36
  article-title: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2196039
– ident: ref24
  doi: 10.1109/TNN.2010.2042611
– year: 1991
  ident: ref4
  publication-title: Applied nonlinear control
– ident: ref35
  doi: 10.1109/3477.537311
– ident: ref50
  doi: 10.1142/S0129065710002486
– ident: ref38
  doi: 10.1016/S0967-0661(02)00009-6
– ident: ref41
  doi: 10.1109/TFUZZ.2003.819837
– ident: ref21
  doi: 10.1109/TSMCA.2009.2030164
– ident: ref40
  doi: 10.1007/0-8176-4470-9_23
– ident: ref13
  doi: 10.1109/ACC.2009.5160064
– ident: ref39
  doi: 10.1109/48.380245
– year: 1995
  ident: ref3
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref26
  doi: 10.1109/TNNLS.2012.2225845
– volume: 22
  start-page: 1328
  year: 2011
  ident: ref25
  article-title: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2159865
– ident: ref54
  doi: 10.1109/TIE.2008.926778
– ident: ref57
  doi: 10.1109/TSMCB.2004.824525
– ident: ref8
  doi: 10.1109/87.572132
– ident: ref12
  doi: 10.1109/TIE.2008.2005933
– volume: 15
  start-page: 182
  year: 2013
  ident: ref56
  article-title: Intelligent adaptive law for missile guidance using fuzzy neural networks
  publication-title: Int J Fuzzy Syst
– ident: ref53
  doi: 10.1109/TNN.2007.899178
– ident: ref6
  doi: 10.1016/j.neucom.2013.01.062
– ident: ref34
  doi: 10.1109/TFUZZ.2004.825062
– ident: ref16
  doi: 10.1049/ip-cta:20040902
– year: 1996
  ident: ref2
  publication-title: Nonlinear Systems
– ident: ref22
  doi: 10.1109/TSMCB.2011.2108283
– ident: ref49
  doi: 10.1016/j.neucom.2009.05.006
– ident: ref14
  doi: 10.1109/TCST.2002.806465
– ident: ref15
  doi: 10.1016/j.automatica.2009.03.010
– ident: ref33
  doi: 10.1109/TFUZZ.2003.814845
– ident: ref11
  doi: 10.1016/S0005-1098(01)00199-6
– ident: ref10
  doi: 10.1109/87.852916
– ident: ref37
  doi: 10.1109/37.248001
– ident: ref51
  doi: 10.1007/s11063-011-9181-1
– ident: ref7
  doi: 10.1049/ip-cta:19971032
– ident: ref55
  doi: 10.1109/TFUZZ.2011.2136349
– ident: ref30
  doi: 10.1109/TIE.2013.2258299
– ident: ref23
  doi: 10.1109/72.977306
– ident: ref52
  doi: 10.1109/TFUZZ.2003.814833
– ident: ref32
  doi: 10.1109/TIE.2007.893056
– ident: ref5
  doi: 10.1016/j.automatica.2004.10.006
– ident: ref42
  doi: 10.1109/TCST.2006.872507
– ident: ref43
  doi: 10.1109/TII.2012.2205584
– ident: ref19
  doi: 10.1109/TFUZZ.2003.812694
– ident: ref31
  doi: 10.1109/TSMCB.2003.808177
– volume: 18
  start-page: 150
  year: 2010
  ident: ref20
  article-title: A novel robust adaptive-fuzzy-tracking control for a class of nonlinearmulti-input/multi-output systems
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2009.2038277
– ident: ref46
  doi: 10.1002/0471781819
– year: 2009
  ident: ref18
  publication-title: Control of Ships and Underwater Vehicles Design for Underactuated and Nonlinear Marine Systems
  doi: 10.1007/978-1-84882-730-1
– year: 2002
  ident: ref1
  publication-title: Marine control systems Guidance navigation and control of ships rigs and underwater vehicles
– ident: ref45
  doi: 10.1109/TFUZZ.2011.2144600
– ident: ref29
  doi: 10.1109/TSMCB.2002.1018767
– ident: ref47
  doi: 10.1109/TNN.2004.841786
– ident: ref48
  doi: 10.1016/j.fss.2004.07.007
– ident: ref9
  doi: 10.1109/TCST.2010.2045654
– ident: ref44
  doi: 10.1016/j.automatica.2010.02.024
SSID ssj0014527
Score 2.5126011
Snippet In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 991
SubjectTerms Adaptation models
Adaptive robust tracking control
Approximation methods
Robustness
Sea surface
self-constructing fuzzy neural network (SCFNN)
surface vehicle
Uncertainty
Vehicle dynamics
Vehicles
Title Self-Constructing Adaptive Robust Fuzzy Neural Tracking Control of Surface Vehicles With Uncertainties and Unknown Disturbances
URI https://ieeexplore.ieee.org/document/6919299
Volume 23
WOSCitedRecordID wos000353523700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0865
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014527
  issn: 1063-6536
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-AeNCDX2jEr_TgyTjYxtrSI0GJB0OMgHJburYTErIRYCZy8V-3r5sLB2PibWnaZdnvte_1ffweQjdtg6mSnnIYYdKW5DiCtF2HaR4ZlSG4yJF-YoNBZzLhzxV0V9bCaK1t8pluwqON5atUZuAqa1Fu7BHOq6jKGM1rtcqIQZC3ZzU3nLZDbUiyUfBptka94QiSuIKmD3x1wAC5pYO2mqpYndI_-N_XHKL9wnbE3RzsI1TRyTHa22IUrKOvoZ7HDnThzHlhk3fcVWIBZxp-SaNstcb9bLP5xEDKYd5lVJUEZznu5SnrOI3xMFvGQmr8qqc2Zw6_zdZTPDbSYbMHgIEVi0SZEXDIJfjeSEq2jEB8Vido3H8Y9R6doseCI42ptnZ8EUvJOPUi5QtP6oDEhAVUaqkEJcxs90BxQSNPCd8NIu4KT2uPCCEp85Ux5k5RLUkTfYZwRIRPZQxGpQIW-g4zB6lLBWuTOGJcN5D789dDWRCQQx-MeWgvIi4PAagQgAoLoBrotlyyyNk3_ppcB5DKiQU-578PX6Bds5jkuYuXqGZQ0VdoR36sZ6vltZWtb26Fzf8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBJrGu7JlkeZTomziFuXt5KmqROkE62VdAX_7o5aR17EMG3EpJQ-p3mnJzLdwCOaxZTrQLtccqVK8nxJK35HjcisSpDClkg3eadTv3pSdzOwOmkFsYY45LPzBk-uli-HqgcXWVVJqw9IsQszGPnrLJaaxIziIoGrfaOU_OYC0pWSkbNaq_R7WEaV3QWImMdckBOaaGptipOqzRX__c-a7BSWo_kvIB7HWZMtgHLU5yCm_DVNa-ph304C2bY7Jmca_mGpxq5GyT5aEya-efnB0FaDruXVVYK3eWkUSStk0FKuvkwlcqQB9N3WXPk8WXcJ_dWPlz-AHKwEplpO4IuuYxcWFnJhwkK0GgL7puXvUbLK7sseMoaa2MvlKlSXLAg0aEMlIloSnnElFFaMsrtDx9pIVkSaBn6USJ8GRgTUCkV46G25tw2zGWDzOwASagMmUrRrNTIQ1_n9ij1meQ1miZcmAr4P189ViUFOXbCeI3dVcQXMQIVI1BxCVQFTiZL3gr-jb8mbyJIk4klPru_Dx_BYqt3047bV53rPViyG9Eik3Ef5ixC5gAW1Pv4ZTQ8dHL2DVB_0Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Constructing+Adaptive+Robust+Fuzzy+Neural+Tracking+Control+of+Surface+Vehicles+With+Uncertainties+and+Unknown+Disturbances&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Wang%2C+Ning&rft.au=Joo+Er%2C+Meng&rft.date=2015-05-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=23&rft.issue=3&rft.spage=991&rft.epage=1002&rft_id=info:doi/10.1109%2FTCST.2014.2359880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2014_2359880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon