Self-Constructing Adaptive Robust Fuzzy Neural Tracking Control of Surface Vehicles With Uncertainties and Unknown Disturbances
In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy neural network (SCFNN) is employed to approximate system uncertainties and unknown disturbances, is proposed. The salient features of the SAR...
Uložené v:
| Vydané v: | IEEE transactions on control systems technology Ročník 23; číslo 3; s. 991 - 1002 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.05.2015
|
| Predmet: | |
| ISSN: | 1063-6536, 1558-0865 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy neural network (SCFNN) is employed to approximate system uncertainties and unknown disturbances, is proposed. The salient features of the SARFNC scheme are as follows: 1) unlike the predefined-structure approaches, the SCFNN is able to online self-construct dynamic-structure fuzzy neural approximator by generating and pruning fuzzy rules, and achieve accurate approximation; 2) an adaptive approximation-based controller (AAC) is designed by combining sliding-mode control with SCFNN approximation using improved projection-based adaptive laws, which avoid parameter drift and singularity in membership functions simultaneously; 3) to compensate for approximation errors, a robust supervisory controller (RSC) is presented to enhance the robustness of the overall SARFNC control system; and 4) the SARFNC consisting of AAC and RSC can achieve an excellent tracking performance, whereby tracking errors and their first derivatives are globally uniformly ultimately bounded. Simulation studies and comprehensive comparisons with traditional adaptive control schemes demonstrate remarkable performance and superiority of the SARFNC scheme in terms of tracking errors and online approximation. |
|---|---|
| AbstractList | In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy neural network (SCFNN) is employed to approximate system uncertainties and unknown disturbances, is proposed. The salient features of the SARFNC scheme are as follows: 1) unlike the predefined-structure approaches, the SCFNN is able to online self-construct dynamic-structure fuzzy neural approximator by generating and pruning fuzzy rules, and achieve accurate approximation; 2) an adaptive approximation-based controller (AAC) is designed by combining sliding-mode control with SCFNN approximation using improved projection-based adaptive laws, which avoid parameter drift and singularity in membership functions simultaneously; 3) to compensate for approximation errors, a robust supervisory controller (RSC) is presented to enhance the robustness of the overall SARFNC control system; and 4) the SARFNC consisting of AAC and RSC can achieve an excellent tracking performance, whereby tracking errors and their first derivatives are globally uniformly ultimately bounded. Simulation studies and comprehensive comparisons with traditional adaptive control schemes demonstrate remarkable performance and superiority of the SARFNC scheme in terms of tracking errors and online approximation. |
| Author | Ning Wang Meng Joo Er |
| Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0003-1745-1425 surname: Wang fullname: Wang, Ning – sequence: 2 givenname: Meng surname: Joo Er fullname: Joo Er, Meng |
| BookMark | eNp9kM9OwzAMhyMEEmPwAIhLXqAjSZt0OU7jr4RAYhscKzd1WVhJUZKCxoVXpxWIAwdOtqzfZ8vfAdl1rUNCjjmbcM706XK-WE4E49lEpFJPp2yHjLiU04RNldzte6bSRMlU7ZODEJ5Zn5QiH5HPBTZ1Mm9diL4z0bonOqvgNdo3pPdt2YVIL7qPjy29xc5DQ5cezGZI9Uj0bUPbmi46X4NB-oBraxoM9NHGNV05gz6CddH2I3BVP9m49t3RMxti50voA-GQ7NXQBDz6qWOyujhfzq-Sm7vL6_nsJjEZkzERUBuTa8XLSgA3mMla5pkyaCpQMk-FyCoNquQVCJaVmgFH5BLAqFxUXKVjwr_3Gt-G4LEuXr19Ab8tOCsGg8VgsBgMFj8Geyb_wxgbIdrhc7DNv-TJN2kR8feS0lwLrdMv1xeEBQ |
| CODEN | IETTE2 |
| CitedBy_id | crossref_primary_10_1016_j_isatra_2018_12_042 crossref_primary_10_1016_j_neucom_2016_02_042 crossref_primary_10_1109_TCST_2019_2939248 crossref_primary_10_1109_TFUZZ_2017_2737405 crossref_primary_10_1109_TSMC_2018_2834515 crossref_primary_10_1007_s11071_020_05720_5 crossref_primary_10_1109_TNNLS_2017_2738918 crossref_primary_10_1016_j_oceaneng_2019_04_051 crossref_primary_10_1016_j_isatra_2016_05_010 crossref_primary_10_1016_j_oceaneng_2020_107328 crossref_primary_10_3390_app8060862 crossref_primary_10_1109_ACCESS_2021_3135856 crossref_primary_10_1007_s12555_018_0741_2 crossref_primary_10_1007_s00521_018_3413_5 crossref_primary_10_1109_TCST_2015_2510587 crossref_primary_10_1109_TSMC_2020_3048999 crossref_primary_10_3390_jmse11020281 crossref_primary_10_1016_j_neucom_2015_09_036 crossref_primary_10_3390_axioms12040361 crossref_primary_10_1002_rnc_4956 crossref_primary_10_1002_rnc_70135 crossref_primary_10_1049_iet_cta_2018_6262 crossref_primary_10_1109_TII_2022_3162855 crossref_primary_10_1109_TFUZZ_2017_2697399 crossref_primary_10_1016_j_oceaneng_2024_117117 crossref_primary_10_1007_s12046_020_01433_y crossref_primary_10_1109_TIV_2024_3428638 crossref_primary_10_1109_TCST_2018_2836358 crossref_primary_10_1109_TCYB_2015_2451116 crossref_primary_10_1109_TSMC_2020_3010678 crossref_primary_10_1109_TNNLS_2021_3059933 crossref_primary_10_1007_s40815_017_0387_x crossref_primary_10_1109_TMECH_2021_3055450 crossref_primary_10_1007_s40815_016_0216_7 crossref_primary_10_1109_TVT_2018_2868273 crossref_primary_10_1016_j_oceaneng_2022_111129 crossref_primary_10_1109_TIV_2017_2657379 crossref_primary_10_1109_TCST_2015_2496585 crossref_primary_10_1177_1687814016680799 crossref_primary_10_1002_rnc_4628 crossref_primary_10_1016_j_neucom_2015_09_090 crossref_primary_10_1109_TCYB_2024_3371972 crossref_primary_10_1109_TMECH_2019_2906395 crossref_primary_10_1109_TNNLS_2022_3169518 crossref_primary_10_1016_j_isatra_2022_05_004 crossref_primary_10_3390_jmse12091484 crossref_primary_10_1007_s40815_017_0392_0 crossref_primary_10_1109_TIV_2024_3410381 crossref_primary_10_1109_TSMC_2016_2562502 crossref_primary_10_1109_TSMC_2018_2792139 crossref_primary_10_1177_1687814018776063 crossref_primary_10_1007_s11071_016_3196_0 crossref_primary_10_1007_s40815_022_01265_4 crossref_primary_10_1109_ACCESS_2022_3140360 crossref_primary_10_1177_17298814211011035 crossref_primary_10_1016_j_isatra_2024_07_029 crossref_primary_10_1109_ACCESS_2018_2872779 crossref_primary_10_1007_s40815_024_01885_y crossref_primary_10_1109_TPEL_2021_3120519 crossref_primary_10_1177_01423312221074181 crossref_primary_10_1016_j_neucom_2015_10_106 crossref_primary_10_1177_0142331216678312 crossref_primary_10_1109_ACCESS_2018_2851286 crossref_primary_10_1109_ACCESS_2019_2895053 crossref_primary_10_1049_iet_cta_2020_0770 crossref_primary_10_1007_s11071_017_3524_z crossref_primary_10_1177_0959651816629540 crossref_primary_10_1109_TASE_2020_3001183 crossref_primary_10_1080_17445302_2020_1737452 crossref_primary_10_1109_TCYB_2015_2423635 crossref_primary_10_1177_0142331220957516 crossref_primary_10_1016_j_neucom_2023_126316 crossref_primary_10_1016_j_neucom_2016_04_019 crossref_primary_10_1016_j_oceaneng_2017_03_048 crossref_primary_10_1109_TFUZZ_2017_2773422 crossref_primary_10_1016_j_jfranklin_2019_05_016 crossref_primary_10_1016_j_ijhydene_2017_04_130 crossref_primary_10_1109_TPEL_2019_2958051 crossref_primary_10_1016_j_oceaneng_2019_02_017 crossref_primary_10_3390_s20030832 crossref_primary_10_1109_TNNLS_2020_3009214 crossref_primary_10_1016_j_asoc_2016_05_050 crossref_primary_10_1109_TFUZZ_2020_2988844 crossref_primary_10_1007_s11768_020_9195_1 crossref_primary_10_3390_s16081335 crossref_primary_10_1007_s40815_018_0522_3 crossref_primary_10_1109_TNSE_2021_3120552 crossref_primary_10_3390_aerospace9080427 crossref_primary_10_1016_j_neucom_2015_12_075 crossref_primary_10_1109_ACCESS_2018_2881134 crossref_primary_10_1109_TIE_2020_3000098 crossref_primary_10_1016_j_oceaneng_2019_106910 crossref_primary_10_1109_TITS_2023_3235911 crossref_primary_10_1007_s42835_020_00378_w crossref_primary_10_1109_ACCESS_2018_2797084 crossref_primary_10_1016_j_apor_2021_102615 crossref_primary_10_1109_TNNLS_2018_2876685 crossref_primary_10_1109_TFUZZ_2021_3094717 crossref_primary_10_1109_JOE_2017_2768105 crossref_primary_10_1002_rnc_6577 crossref_primary_10_1007_s11071_022_07828_2 crossref_primary_10_1109_ACCESS_2020_3008399 crossref_primary_10_1016_j_fss_2016_11_005 crossref_primary_10_1007_s40435_021_00865_6 crossref_primary_10_1109_TFUZZ_2017_2785812 crossref_primary_10_1016_j_conengprac_2020_104675 crossref_primary_10_1016_j_neucom_2015_10_023 crossref_primary_10_1016_j_oceaneng_2025_122499 crossref_primary_10_1177_0959651820973558 crossref_primary_10_1016_j_ijepes_2021_107792 crossref_primary_10_1080_00207721_2021_1972354 crossref_primary_10_1109_ACCESS_2021_3104030 |
| Cites_doi | 10.1109/TNN.2008.2003290 10.1109/TNNLS.2013.2292704 10.1049/iet-cta.2011.0176 10.1109/TSMCB.2012.2196039 10.1109/TNN.2010.2042611 10.1109/3477.537311 10.1142/S0129065710002486 10.1016/S0967-0661(02)00009-6 10.1109/TFUZZ.2003.819837 10.1109/TSMCA.2009.2030164 10.1007/0-8176-4470-9_23 10.1109/ACC.2009.5160064 10.1109/48.380245 10.1109/TNNLS.2012.2225845 10.1109/TNN.2011.2159865 10.1109/TIE.2008.926778 10.1109/TSMCB.2004.824525 10.1109/87.572132 10.1109/TIE.2008.2005933 10.1109/TNN.2007.899178 10.1016/j.neucom.2013.01.062 10.1109/TFUZZ.2004.825062 10.1049/ip-cta:20040902 10.1109/TSMCB.2011.2108283 10.1016/j.neucom.2009.05.006 10.1109/TCST.2002.806465 10.1016/j.automatica.2009.03.010 10.1109/TFUZZ.2003.814845 10.1016/S0005-1098(01)00199-6 10.1109/87.852916 10.1109/37.248001 10.1007/s11063-011-9181-1 10.1049/ip-cta:19971032 10.1109/TFUZZ.2011.2136349 10.1109/TIE.2013.2258299 10.1109/72.977306 10.1109/TFUZZ.2003.814833 10.1109/TIE.2007.893056 10.1016/j.automatica.2004.10.006 10.1109/TCST.2006.872507 10.1109/TII.2012.2205584 10.1109/TFUZZ.2003.812694 10.1109/TSMCB.2003.808177 10.1109/TFUZZ.2009.2038277 10.1002/0471781819 10.1007/978-1-84882-730-1 10.1109/TFUZZ.2011.2144600 10.1109/TSMCB.2002.1018767 10.1109/TNN.2004.841786 10.1016/j.fss.2004.07.007 10.1109/TCST.2010.2045654 10.1016/j.automatica.2010.02.024 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TCST.2014.2359880 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0865 |
| EndPage | 1002 |
| ExternalDocumentID | 10_1109_TCST_2014_2359880 6919299 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Applied Basic Research Funds through the Ministry of Transport of China grantid: 2012-329-225-060 – fundername: National Natural Science Foundation of China grantid: 51009017; 51379002 funderid: 10.13039/501100001809 – fundername: Program for Liaoning Excellent Talents in University grantid: LJQ2013055 – fundername: China Post-Doctoral Science Foundation grantid: 2012M520629 funderid: 10.13039/501100002858 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 2009QN025; 2011JC002; 3132013025; 3132014206 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c405t-2afcc7961bd2a1ce45f5746cecda6573224d9a6b1da204b90a1ee15aac672d163 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353523700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6536 |
| IngestDate | Tue Nov 18 22:16:39 EST 2025 Sat Nov 29 02:44:40 EST 2025 Wed Aug 27 02:53:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | self-constructing fuzzy neural network (SCFNN) Adaptive robust tracking control surface vehicle |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c405t-2afcc7961bd2a1ce45f5746cecda6573224d9a6b1da204b90a1ee15aac672d163 |
| ORCID | 0000-0003-1745-1425 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_6919299 crossref_primary_10_1109_TCST_2014_2359880 crossref_citationtrail_10_1109_TCST_2014_2359880 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on control systems technology |
| PublicationTitleAbbrev | TCST |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref13 ref12 slotine (ref4) 1991 ref15 li (ref20) 2010; 18 liu (ref25) 2011; 22 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref51 ref50 ref46 wang (ref56) 2013; 15 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 xu (ref27) 2014; 25 ref8 ref7 ref9 ref6 ref5 ref40 khalil (ref2) 1996 ref35 ref34 ref37 ref31 fossen (ref1) 2002 ref30 ref33 ref32 ref39 ref38 fei (ref36) 2012; 42 ref24 ref23 ref26 ref22 ref21 ref28 ref29 do (ref18) 2009 kristic (ref3) 1995 |
| References_xml | – ident: ref28 doi: 10.1109/TNN.2008.2003290 – volume: 25 start-page: 635 year: 2014 ident: ref27 article-title: Reinforcement learning output feedback NN control using deterministic learning technique publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2292704 – ident: ref17 doi: 10.1049/iet-cta.2011.0176 – volume: 42 start-page: 1599 year: 2012 ident: ref36 article-title: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2012.2196039 – ident: ref24 doi: 10.1109/TNN.2010.2042611 – year: 1991 ident: ref4 publication-title: Applied nonlinear control – ident: ref35 doi: 10.1109/3477.537311 – ident: ref50 doi: 10.1142/S0129065710002486 – ident: ref38 doi: 10.1016/S0967-0661(02)00009-6 – ident: ref41 doi: 10.1109/TFUZZ.2003.819837 – ident: ref21 doi: 10.1109/TSMCA.2009.2030164 – ident: ref40 doi: 10.1007/0-8176-4470-9_23 – ident: ref13 doi: 10.1109/ACC.2009.5160064 – ident: ref39 doi: 10.1109/48.380245 – year: 1995 ident: ref3 publication-title: Nonlinear and Adaptive Control Design – ident: ref26 doi: 10.1109/TNNLS.2012.2225845 – volume: 22 start-page: 1328 year: 2011 ident: ref25 article-title: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2159865 – ident: ref54 doi: 10.1109/TIE.2008.926778 – ident: ref57 doi: 10.1109/TSMCB.2004.824525 – ident: ref8 doi: 10.1109/87.572132 – ident: ref12 doi: 10.1109/TIE.2008.2005933 – volume: 15 start-page: 182 year: 2013 ident: ref56 article-title: Intelligent adaptive law for missile guidance using fuzzy neural networks publication-title: Int J Fuzzy Syst – ident: ref53 doi: 10.1109/TNN.2007.899178 – ident: ref6 doi: 10.1016/j.neucom.2013.01.062 – ident: ref34 doi: 10.1109/TFUZZ.2004.825062 – ident: ref16 doi: 10.1049/ip-cta:20040902 – year: 1996 ident: ref2 publication-title: Nonlinear Systems – ident: ref22 doi: 10.1109/TSMCB.2011.2108283 – ident: ref49 doi: 10.1016/j.neucom.2009.05.006 – ident: ref14 doi: 10.1109/TCST.2002.806465 – ident: ref15 doi: 10.1016/j.automatica.2009.03.010 – ident: ref33 doi: 10.1109/TFUZZ.2003.814845 – ident: ref11 doi: 10.1016/S0005-1098(01)00199-6 – ident: ref10 doi: 10.1109/87.852916 – ident: ref37 doi: 10.1109/37.248001 – ident: ref51 doi: 10.1007/s11063-011-9181-1 – ident: ref7 doi: 10.1049/ip-cta:19971032 – ident: ref55 doi: 10.1109/TFUZZ.2011.2136349 – ident: ref30 doi: 10.1109/TIE.2013.2258299 – ident: ref23 doi: 10.1109/72.977306 – ident: ref52 doi: 10.1109/TFUZZ.2003.814833 – ident: ref32 doi: 10.1109/TIE.2007.893056 – ident: ref5 doi: 10.1016/j.automatica.2004.10.006 – ident: ref42 doi: 10.1109/TCST.2006.872507 – ident: ref43 doi: 10.1109/TII.2012.2205584 – ident: ref19 doi: 10.1109/TFUZZ.2003.812694 – ident: ref31 doi: 10.1109/TSMCB.2003.808177 – volume: 18 start-page: 150 year: 2010 ident: ref20 article-title: A novel robust adaptive-fuzzy-tracking control for a class of nonlinearmulti-input/multi-output systems publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2009.2038277 – ident: ref46 doi: 10.1002/0471781819 – year: 2009 ident: ref18 publication-title: Control of Ships and Underwater Vehicles Design for Underactuated and Nonlinear Marine Systems doi: 10.1007/978-1-84882-730-1 – year: 2002 ident: ref1 publication-title: Marine control systems Guidance navigation and control of ships rigs and underwater vehicles – ident: ref45 doi: 10.1109/TFUZZ.2011.2144600 – ident: ref29 doi: 10.1109/TSMCB.2002.1018767 – ident: ref47 doi: 10.1109/TNN.2004.841786 – ident: ref48 doi: 10.1016/j.fss.2004.07.007 – ident: ref9 doi: 10.1109/TCST.2010.2045654 – ident: ref44 doi: 10.1016/j.automatica.2010.02.024 |
| SSID | ssj0014527 |
| Score | 2.5126011 |
| Snippet | In this paper, a novel self-constructing adaptive robust fuzzy neural control (SARFNC) scheme for tracking surface vehicles, whereby a self-constructing fuzzy... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 991 |
| SubjectTerms | Adaptation models Adaptive robust tracking control Approximation methods Robustness Sea surface self-constructing fuzzy neural network (SCFNN) surface vehicle Uncertainty Vehicle dynamics Vehicles |
| Title | Self-Constructing Adaptive Robust Fuzzy Neural Tracking Control of Surface Vehicles With Uncertainties and Unknown Disturbances |
| URI | https://ieeexplore.ieee.org/document/6919299 |
| Volume | 23 |
| WOSCitedRecordID | wos000353523700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0865 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014527 issn: 1063-6536 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-AeNCDX2jEr_TgyTjYxtrSI0GJB0OMgHJburYTErIRYCZy8V-3r5sLB2PibWnaZdnvte_1ffweQjdtg6mSnnIYYdKW5DiCtF2HaR4ZlSG4yJF-YoNBZzLhzxV0V9bCaK1t8pluwqON5atUZuAqa1Fu7BHOq6jKGM1rtcqIQZC3ZzU3nLZDbUiyUfBptka94QiSuIKmD3x1wAC5pYO2mqpYndI_-N_XHKL9wnbE3RzsI1TRyTHa22IUrKOvoZ7HDnThzHlhk3fcVWIBZxp-SaNstcb9bLP5xEDKYd5lVJUEZznu5SnrOI3xMFvGQmr8qqc2Zw6_zdZTPDbSYbMHgIEVi0SZEXDIJfjeSEq2jEB8Vido3H8Y9R6doseCI42ptnZ8EUvJOPUi5QtP6oDEhAVUaqkEJcxs90BxQSNPCd8NIu4KT2uPCCEp85Ux5k5RLUkTfYZwRIRPZQxGpQIW-g4zB6lLBWuTOGJcN5D789dDWRCQQx-MeWgvIi4PAagQgAoLoBrotlyyyNk3_ppcB5DKiQU-578PX6Bds5jkuYuXqGZQ0VdoR36sZ6vltZWtb26Fzf8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBJrGu7JlkeZTomziFuXt5KmqROkE62VdAX_7o5aR17EMG3EpJQ-p3mnJzLdwCOaxZTrQLtccqVK8nxJK35HjcisSpDClkg3eadTv3pSdzOwOmkFsYY45LPzBk-uli-HqgcXWVVJqw9IsQszGPnrLJaaxIziIoGrfaOU_OYC0pWSkbNaq_R7WEaV3QWImMdckBOaaGptipOqzRX__c-a7BSWo_kvIB7HWZMtgHLU5yCm_DVNa-ph304C2bY7Jmca_mGpxq5GyT5aEya-efnB0FaDruXVVYK3eWkUSStk0FKuvkwlcqQB9N3WXPk8WXcJ_dWPlz-AHKwEplpO4IuuYxcWFnJhwkK0GgL7puXvUbLK7sseMoaa2MvlKlSXLAg0aEMlIloSnnElFFaMsrtDx9pIVkSaBn6USJ8GRgTUCkV46G25tw2zGWDzOwASagMmUrRrNTIQ1_n9ij1meQ1miZcmAr4P189ViUFOXbCeI3dVcQXMQIVI1BxCVQFTiZL3gr-jb8mbyJIk4klPru_Dx_BYqt3047bV53rPViyG9Eik3Ef5ixC5gAW1Pv4ZTQ8dHL2DVB_0Ug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Constructing+Adaptive+Robust+Fuzzy+Neural+Tracking+Control+of+Surface+Vehicles+With+Uncertainties+and+Unknown+Disturbances&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Wang%2C+Ning&rft.au=Joo+Er%2C+Meng&rft.date=2015-05-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=23&rft.issue=3&rft.spage=991&rft.epage=1002&rft_id=info:doi/10.1109%2FTCST.2014.2359880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2014_2359880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |