A fast algorithm for Bayesian multi-locus model in genome-wide association studies

Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substanti...

Full description

Saved in:
Bibliographic Details
Published in:Molecular genetics and genomics : MGG Vol. 292; no. 4; pp. 923 - 934
Main Authors: Duan, Weiwei, Zhao, Yang, Wei, Yongyue, Yang, Sheng, Bai, Jianling, Shen, Sipeng, Du, Mulong, Huang, Lihong, Hu, Zhibin, Chen, Feng
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2017
Springer Nature B.V
Subjects:
ISSN:1617-4615, 1617-4623, 1617-4623
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.
AbstractList Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.
Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.
Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BAL-VI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with ~3400 subjects and ~570,000 SNPs in about half a day.
Author Duan, Weiwei
Yang, Sheng
Huang, Lihong
Du, Mulong
Hu, Zhibin
Zhao, Yang
Chen, Feng
Shen, Sipeng
Wei, Yongyue
Bai, Jianling
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Duan
  fullname: Duan, Weiwei
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 2
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 3
  givenname: Yongyue
  surname: Wei
  fullname: Wei, Yongyue
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 4
  givenname: Sheng
  surname: Yang
  fullname: Yang, Sheng
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 5
  givenname: Jianling
  surname: Bai
  fullname: Bai, Jianling
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 6
  givenname: Sipeng
  surname: Shen
  fullname: Shen, Sipeng
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 7
  givenname: Mulong
  surname: Du
  fullname: Du, Mulong
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 8
  givenname: Lihong
  surname: Huang
  fullname: Huang, Lihong
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
– sequence: 9
  givenname: Zhibin
  surname: Hu
  fullname: Hu, Zhibin
  organization: The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Department of Epidemiology, School of Public Health, Nanjing Medical University, Section of Clinical Epidemiology, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University
– sequence: 10
  givenname: Feng
  surname: Chen
  fullname: Chen, Feng
  email: fengchen@njmu.edu.cn
  organization: Department of Biostatistics, School of Public Health, Nanjing Medical University, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health/Harvard School of Public Health, Key Laboratory of Biomedical Big Data, Nanjing Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28534238$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtrFTEUhYNU7EV_gC8S8MWX0VwnM4-1eIOCIPocMpOdY8pMUrMzlP57czytSEF9SgLfWtl7rVNylHICQp5z9pozZt4gY0oOHeOm41KITj0iJ7xvL9ULefT7zvUxOUW8Yg3shXlCjsWgpRJyOCFfzmlwWKlbdrnE-n2lIRf61t0CRpfoui01dkueN6Rr9rDQmOgOUl6hu4keqEPMc3Q15kSxbj4CPiWPg1sQnt2dZ-Tb-3dfLz52l58_fLo4v-xmxXRtE5tBTVIxFriZQq8VGO8HmIKQ0jjOlNLOswlcUJPRECa_30dpHbwJQy_PyKuD73XJPzbAateIMyyLS5A3tIIxppv9OP4X5WOLxjA-qoa-fIBe5a2ktkij-CDGYeSmUS_uqG1awdvrEldXbu19sA0wB2AuGbFAsHOsv2KqxcXFcmb3FdpDhbZ9b_cV2v0A_IHy3vxfGnHQYGPTDsofQ_9V9BPdQ6uX
CitedBy_id crossref_primary_10_1080_21655979_2020_1860479
crossref_primary_10_1002_ijc_32079
crossref_primary_10_3390_jpm9030038
crossref_primary_10_1186_s40246_018_0179_x
Cites_doi 10.1002/gepi.21772
10.1038/nature08494
10.1038/hdy.2009.180
10.1016/j.ajhg.2016.07.022
10.1080/01621459.1993.10476353
10.1371/journal.pgen.1004969
10.1111/j.1467-9868.2011.00771.x
10.2147/DDDT.S87197
10.1038/ng.875
10.1214/11-AOAS455
10.1038/sj.onc.1205405
10.1002/ijc.27426
10.1371/journal.pgen.1003264
10.1158/0008-5472.CAN-08-1083
10.1093/bioinformatics/btq688
10.1038/nrg2809
10.1038/sj.onc.1210183
10.1073/pnas.1419064111
10.1158/1541-7786.MCR-07-0142
10.1038/nmeth.1681
10.1186/s12711-014-0082-4
10.1198/016214506000000735
10.1214/09-BA403
10.1534/genetics.110.114280
10.1534/genetics.111.134866
10.1086/519795
10.1101/gr.169375.113
10.1002/ijc.30447
10.1038/ng.3190
10.1002/gepi.21809
10.1111/j.1467-9868.2005.00503.x
10.1023/A:1008932416310
10.1214/12-BA703
10.1371/journal.pone.0083745
10.1097/MPA.0000000000000542
10.1186/1471-2105-11-58
10.2307/2986138
10.1016/j.ajhg.2010.11.011
10.1038/ng.2310
10.1186/1471-2105-14-34
10.1198/016214508000000337
10.1534/genetics.115.182444
10.1111/j.1467-9868.2005.00532.x
10.1172/JCI73093
10.1534/genetics.108.099556
10.1056/NEJM200007133430201
10.1093/bioinformatics/bts261
10.1534/genetics.111.130278
10.1038/ng.546
10.1016/j.ajhg.2011.02.002
10.1534/g3.113.007096
10.1080/00031305.1992.10475878
10.1093/genetics/163.2.789
10.1111/j.2517-6161.1974.tb00989.x
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Molecular Genetics and Genomics is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Molecular Genetics and Genomics is a copyright of Springer, 2017.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7SS
7TK
7TM
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
DOI 10.1007/s00438-017-1322-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1617-4623
EndPage 934
ExternalDocumentID 28534238
10_1007_s00438_017_1322_4
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81402764; 81473070; 81530088
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Research and Innovation Project for College Graduates of Jiangsu Province of China
  grantid: KYLX16_1123
– fundername: National Natural Science Foundation of China (CN)
  grantid: 81373102
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.55
.86
.GJ
06C
06D
0R~
0VY
199
1N0
2.D
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5RE
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L7B
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
PF-
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOR
QOS
R89
R9I
RHV
RIG
RNS
ROL
RPX
RRX
RSV
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
X7M
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z87
Z8O
Z8P
Z8Q
Z8S
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
ESTFP
FR3
GNUQQ
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c405t-13784b3400f17bf654e7dd8ebf2337a10445ad0beaf4b75efbd1617455fd7f863
IEDL.DBID M7P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405521400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-4615
1617-4623
IngestDate Thu Oct 02 06:25:35 EDT 2025
Mon Sep 08 17:39:47 EDT 2025
Tue Nov 04 22:06:32 EST 2025
Thu Apr 03 07:08:54 EDT 2025
Sat Nov 29 06:46:16 EST 2025
Tue Nov 18 22:41:12 EST 2025
Fri Feb 21 02:26:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bayesian adaptive lasso
Genome-wide association studies
Multi-locus model
Variational inference
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c405t-13784b3400f17bf654e7dd8ebf2337a10445ad0beaf4b75efbd1617455fd7f863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28534238
PQID 1918298917
PQPubID 55367
PageCount 12
ParticipantIDs proquest_miscellaneous_2000540099
proquest_miscellaneous_1901770194
proquest_journals_1918298917
pubmed_primary_28534238
crossref_citationtrail_10_1007_s00438_017_1322_4
crossref_primary_10_1007_s00438_017_1322_4
springer_journals_10_1007_s00438_017_1322_4
PublicationCentury 2000
PublicationDate 20170800
2017-8-00
2017-Aug
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 8
  year: 2017
  text: 20170800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Molecular genetics and genomics : MGG
PublicationTitleAbbrev Mol Genet Genomics
PublicationTitleAlternate Mol Genet Genomics
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Andrews, Mallows (CR1) 1974; 36
Singh, Arcaroli, Orlicky, Chen, Messersmith, Bagby, Purkey, Quackenbush, Thompson, Vasiliou (CR42) 2016; 45
Zhou, Carbonetto, Stephens (CR56) 2013; 9
Tibshirani (CR45) 1996; 58
Nagai, Sugito, Matsubara, Tatematsu, Hida, Sekido, Nagino, Nimura, Takahashi, Osada (CR38) 2007; 26
Jaakkola, Jordan (CR20) 2000; 10
Wang, Chen, Goddard, Meuwissen, Kemper, Hayes (CR47) 2015; 47
Fish, Capra, Bush (CR12) 2016; 99
Karkkainen, Sillanpää (CR22) 2013; 3
Kim, Lee, Jang, Kim, Noh, Song, Cho, Jeong, Kim, Yoo, Kim (CR24) 2008; 6
Carbonetto, Stephens (CR4) 2012; 7
Li, Sillanpää (CR27) 2012; 190
Lichtenstein, Holm, Verkasalo, Iliadou, Kaprio, Koskenvuo, Pukkala, Skytthe, Hemminki (CR29) 2000; 343
Hayashi, Iwata (CR18) 2013; 14
Gilks, Tan (CR15) 1995; 44
Lippert, Listgarten, Liu, Kadie, Davidson, Heckerman (CR30) 2011; 8
Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender, Maller, Sklar, de Bakker, Daly, Sham (CR41) 2007; 81
Zhang, Ersoz, Lai, Todhunter, Tiwari, Gore, Bradbury, Yu, Arnett, Ordovas, Buckler (CR54) 2010; 42
George, McCulloch (CR14) 1993; 88
Carlin, Louis (CR5) 2009; 149
Casella, George (CR6) 1992; 46
Moser, Lee, Hayes, Goddard, Wray, Visscher (CR36) 2015; 11
Beal (CR2) 2003
Park, Casella (CR40) 2008; 103
de Maturana, Ye, Calle, Rothman, Urrea, Kogevinas, Petrus, Chanock, Tardon, Garcia-Closas, Gonzalez-Neira, Vellalta, Carrato, Navarro, Lorente-Galdos, Silverman, Real, Wu, Malats (CR8) 2013; 8
Golan, Lander, Rosset (CR16) 2014; 111
Sun, Ibrahim, Zou (CR44) 2010; 185
Speed, Balding (CR43) 2014; 24
Guan, Stephens (CR17) 2011; 5
Logsdon, Hoffman, Mezey (CR31) 2010; 11
Eichler, Flint, Gibson, Kong, Leal, Moore, Nadeau (CR10) 2010; 11
Lee, Wray, Goddard, Visscher (CR26) 2011; 88
Xu (CR48) 2003; 163
Yi, Banerjee (CR51) 2009; 181
Frullanti, Colombo, Falvella, Galvan, Noci, De Cecco, Incarbone, Alloisio, Santambrogio, Nosotti, Tosi, Pastorino, Dragani (CR13) 2012; 131
Hu, Wu, Shi, Guo, Zhao, Yin, Yang, Dai, Hu, Tan, Li, Deng, Wang, Wu, Jin, Jiang, Yu, Zhou, Chen, Guan, Chen, Shu, Xu, Liu, Liu, Xu, Han, Bai, Zhao, Zhang, Yan, Ma, Chen, Chu, Lu, Zhang, Chen, Wang, Jin, Lu, Zhou, Lu, Wu, Lin, Shen (CR19) 2011; 43
de Maturana, Chanok, Picornell, Rothman, Herranz, Calle, Garcia-Closas, Marenne, Brand, Tardon, Carrato, Silverman, Kogevinas, Gianola, Real, Malats (CR9) 2014; 38
Zou, Hastie (CR58) 2005; 67
Mutshinda, Sillanpää (CR37) 2012; 192
Logsdon, Dai, Auer, Johnsen, Ganesh, Smith, Wilson, Tracy, Lange, Jiao, Rich, Lettre, Carlson, Jackson, O’Donnell, Wurfel, Nickerson, Tang, Reiner, Kooperberg (CR33) 2014; 38
O’Hara (CR39) 2009; 4
You, Guo, Xu (CR52) 2015; 9
Zhou, Stephens (CR55) 2012; 44
Logsdon, Carty, Reiner, Dai, Kooperberg (CR32) 2012; 28
Yang, Lee, Goddard, Visscher (CR50) 2011; 88
Bishop (CR3) 2006
Jeon, Dracheva, Yang, Meerzaman, Fukuoka, Shakoori, Shilo, Travis, Jen (CR21) 2008; 68
Feng, Lopez, Kim, Alvarez, Duncan, Nishikawa, Nagane, Su, Auron, Hedberg, Wang, Raizer, Kessler, Parsa, Gao, Kim, Minata, Nakano, Grandis, McLendon, Bigner, Lin, Furnari, Cavenee, Hu, Yan, Cheng (CR11) 2014; 124
Zou (CR57) 2006; 101
Karkkainen, Li, Sillanpää (CR23) 2015; 201
Tibshirani (CR46) 2011; 73
Yuan, Lin (CR53) 2006; 68
Dai, Shen, Wen, Chang, Wang, Chen, Jin, Ma, Wu, Li, Song, Zeng, Jiang, Chen, Wang, Zhu, Zhou, Du, Xiang, Shu, Hu, Zhou, Chen, Xu, Jia, Lin, Zheng, Shen (CR7) 2016; 140
Xu (CR49) 2010; 105
Manolio, Collins, Cox, Goldstein, Hindorff, Hunter, McCarthy, Ramos, Cardon, Chakravarti, Cho, Guttmacher, Kong, Kruglyak, Mardis, Rotimi, Slatkin, Valle, Whittemore, Boehnke, Clark, Eichler, Gibson, Haines, Mackay, McCarroll, Visscher (CR35) 2009; 461
Koshikawa, Osada, Kozaki, Konishi, Masuda, Tatematsu, Mitsudomi, Nakao, Takahashi (CR25) 2002; 21
Loh, Tucker, Bulik-Sullivan, Vilhjalmsson, Finucane, Salem, Chasman, Ridker, Neale, Berger, Patterson, Price (CR34) 2015; 47
Li, Das, Fu, Li, Wu (CR28) 2011; 27
BA Logsdon (1322_CR32) 2012; 28
MJ Beal (1322_CR2) 2003
M Yuan (1322_CR53) 2006; 68
HP Karkkainen (1322_CR22) 2013; 3
HP Karkkainen (1322_CR23) 2015; 201
P Carbonetto (1322_CR4) 2012; 7
X Zhou (1322_CR55) 2012; 44
M Kim (1322_CR24) 2008; 6
EI George (1322_CR14) 1993; 88
Y Guan (1322_CR17) 2011; 5
Z Hu (1322_CR19) 2011; 43
J Li (1322_CR28) 2011; 27
TA Manolio (1322_CR35) 2009; 461
P Lichtenstein (1322_CR29) 2000; 343
N Yi (1322_CR51) 2009; 181
G Casella (1322_CR6) 1992; 46
SH Lee (1322_CR26) 2011; 88
BA Logsdon (1322_CR33) 2014; 38
EL Maturana de (1322_CR8) 2013; 8
G Moser (1322_CR36) 2015; 11
WR Gilks (1322_CR15) 1995; 44
R Tibshirani (1322_CR46) 2011; 73
X Zhou (1322_CR56) 2013; 9
D Golan (1322_CR16) 2014; 111
CM Mutshinda (1322_CR37) 2012; 192
PR Loh (1322_CR34) 2015; 47
H Nagai (1322_CR38) 2007; 26
EL Maturana de (1322_CR9) 2014; 38
EE Eichler (1322_CR10) 2010; 11
W Sun (1322_CR44) 2010; 185
K Koshikawa (1322_CR25) 2002; 21
Q You (1322_CR52) 2015; 9
S Xu (1322_CR49) 2010; 105
H Zou (1322_CR58) 2005; 67
BP Carlin (1322_CR5) 2009; 149
T Park (1322_CR40) 2008; 103
CM Bishop (1322_CR3) 2006
H Zou (1322_CR57) 2006; 101
RB O’Hara (1322_CR39) 2009; 4
E Frullanti (1322_CR13) 2012; 131
C Lippert (1322_CR30) 2011; 8
R Tibshirani (1322_CR45) 1996; 58
Z Li (1322_CR27) 2012; 190
H Feng (1322_CR11) 2014; 124
J Dai (1322_CR7) 2016; 140
Z Zhang (1322_CR54) 2010; 42
S Singh (1322_CR42) 2016; 45
J Yang (1322_CR50) 2011; 88
DF Andrews (1322_CR1) 1974; 36
S Xu (1322_CR48) 2003; 163
TS Jaakkola (1322_CR20) 2000; 10
T Hayashi (1322_CR18) 2013; 14
S Purcell (1322_CR41) 2007; 81
HS Jeon (1322_CR21) 2008; 68
BA Logsdon (1322_CR31) 2010; 11
D Speed (1322_CR43) 2014; 24
T Wang (1322_CR47) 2015; 47
AE Fish (1322_CR12) 2016; 99
19047146 - Cancer Res. 2008 Dec 1;68(23):9686-92
23363272 - BMC Bioinformatics. 2013 Jan 31;14:34
11973641 - Oncogene. 2002 Apr 25;21(18):2822-8
20105321 - BMC Bioinformatics. 2010 Jan 27;11:58
19812666 - Nature. 2009 Oct 8;461(7265):747-53
25849665 - PLoS Genet. 2015 Apr 07;11(4):e1004969
23408905 - PLoS Genet. 2013;9(2):e1003264
25642633 - Nat Genet. 2015 Mar;47(3):284-90
21167468 - Am J Hum Genet. 2011 Jan 7;88(1):76-82
22042575 - Genetics. 2012 Jan;190(1):231-49
17213806 - Oncogene. 2007 Jun 7;26(27):4025-31
17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
24482836 - Genet Epidemiol. 2014 Jan;38(1):21-30
24796258 - Genet Epidemiol. 2014 Jul;38(5):467-76
22223368 - Int J Cancer. 2012 Sep 1;131(5):E643-8
26405029 - Genetics. 2015 Nov;201(3):865-70
21156729 - Bioinformatics. 2011 Feb 15;27(4):516-23
22982577 - Genetics. 2012 Dec;192(4):1483-91
27640306 - Am J Hum Genet. 2016 Oct 6;99(4):817-830
23821618 - G3 (Bethesda). 2013 Sep 04;3(9):1511-23
25061874 - J Clin Invest. 2014 Sep;124(9):3741-56
27668986 - Int J Cancer. 2017 Jan 15;140(2):329-336
10891514 - N Engl J Med. 2000 Jul 13;343(2):78-85
12618414 - Genetics. 2003 Feb;163(2):789-801
25422463 - Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5272-81
24391818 - PLoS One. 2013 Dec 31;8(12):e83745
25926276 - Genet Sel Evol. 2015 Apr 30;47:34
21892150 - Nat Methods. 2011 Sep 04;8(10):833-5
21725308 - Nat Genet. 2011 Jul 03;43(8):792-6
22563072 - Bioinformatics. 2012 Jul 1;28(13):1738-44
24963154 - Genome Res. 2014 Sep;24(9):1550-7
20157003 - Genetics. 2010 May;185(1):349-59
26366059 - Drug Des Devel Ther. 2015 Sep 03;9:5087-97
20479774 - Nat Rev Genet. 2010 Jun;11(6):446-50
22706312 - Nat Genet. 2012 Jun 17;44(7):821-4
19139143 - Genetics. 2009 Mar;181(3):1101-13
20208535 - Nat Genet. 2010 Apr;42(4):355-60
20051978 - Heredity (Edinb). 2010 Nov;105(5):483-94
21376301 - Am J Hum Genet. 2011 Mar 11;88(3):294-305
18314483 - Mol Cancer Res. 2008 Feb;6(2):222-30
26566217 - Pancreas. 2016 Jan;45(1):117-22
References_xml – volume: 38
  start-page: 21
  year: 2014
  end-page: 30
  ident: CR33
  article-title: A variational Bayes discrete mixture test for rare variant association
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21772
– volume: 461
  start-page: 747
  year: 2009
  end-page: 753
  ident: CR35
  article-title: Finding the missing heritability of complex diseases
  publication-title: Nature
  doi: 10.1038/nature08494
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR45
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat Soc
– volume: 105
  start-page: 483
  year: 2010
  end-page: 494
  ident: CR49
  article-title: An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects
  publication-title: Heredity (Edinb)
  doi: 10.1038/hdy.2009.180
– volume: 163
  start-page: 789
  year: 2003
  end-page: 801
  ident: CR48
  article-title: Estimating polygenic effects using markers of the entire genome
  publication-title: Genetics
– volume: 99
  start-page: 817
  year: 2016
  end-page: 830
  ident: CR12
  article-title: Are interactions between cis-regulatory variants evidence for biological epistasis or statistical artifacts?
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.07.022
– volume: 88
  start-page: 881
  year: 1993
  end-page: 889
  ident: CR14
  article-title: Variable selection via gibbs sampling
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10476353
– volume: 11
  start-page: e1004969
  year: 2015
  ident: CR36
  article-title: Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004969
– volume: 73
  start-page: 273
  year: 2011
  end-page: 282
  ident: CR46
  article-title: Regression shrinkage and selection via the lasso: a retrospective
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 9
  start-page: 5087
  year: 2015
  end-page: 5097
  ident: CR52
  article-title: Distinct prognostic values and potential drug targets of ALDH1 isoenzymes in non-small-cell lung cancer
  publication-title: Drug Des Devel Ther
  doi: 10.2147/DDDT.S87197
– volume: 149
  start-page: 935
  year: 2009
  end-page: 936
  ident: CR5
  article-title: Bayesian methods for data analysis
  publication-title: J R Stat Soc
– year: 2003
  ident: CR2
  publication-title: Variational algorithms for approximate Bayesian inference
– volume: 43
  start-page: 792
  year: 2011
  end-page: 796
  ident: CR19
  article-title: A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese
  publication-title: Nat Genet
  doi: 10.1038/ng.875
– volume: 5
  start-page: 1780
  year: 2011
  end-page: 1815
  ident: CR17
  article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems
  publication-title: Ann Appl Stat
  doi: 10.1214/11-AOAS455
– volume: 21
  start-page: 2822
  year: 2002
  end-page: 2828
  ident: CR25
  article-title: Significant up-regulation of a novel gene, CLCP1, in a highly metastatic lung cancer subline as well as in lung cancers in vivo
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205405
– volume: 131
  start-page: E643
  year: 2012
  end-page: E648
  ident: CR13
  article-title: Association of lung adenocarcinoma clinical stage with gene expression pattern in noninvolved lung tissue
  publication-title: Int J Cancer
  doi: 10.1002/ijc.27426
– volume: 9
  start-page: e1003264
  year: 2013
  ident: CR56
  article-title: Polygenic modeling with Bayesian sparse linear mixed models
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003264
– volume: 68
  start-page: 9686
  year: 2008
  end-page: 9692
  ident: CR21
  article-title: SMAD6 contributes to patient survival in non-small cell lung cancer and its knockdown reestablishes TGF-beta homeostasis in lung cancer cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1083
– volume: 27
  start-page: 516
  year: 2011
  end-page: 523
  ident: CR28
  article-title: The Bayesian lasso for genome-wide association studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq688
– volume: 11
  start-page: 446
  year: 2010
  end-page: 450
  ident: CR10
  article-title: Missing heritability and strategies for finding the underlying causes of complex disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2809
– volume: 26
  start-page: 4025
  year: 2007
  end-page: 4031
  ident: CR38
  article-title: CLCP1 interacts with semaphorin 4B and regulates motility of lung cancer cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210183
– volume: 111
  start-page: E5272
  year: 2014
  end-page: E5281
  ident: CR16
  article-title: Measuring missing heritability: inferring the contribution of common variants
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1419064111
– volume: 6
  start-page: 222
  year: 2008
  end-page: 230
  ident: CR24
  article-title: Epigenetic down-regulation and suppressive role of DCBLD2 in gastric cancer cell proliferation and invasion
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-07-0142
– volume: 8
  start-page: 833
  year: 2011
  end-page: 835
  ident: CR30
  article-title: FaST linear mixed models for genome-wide association studies
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1681
– volume: 47
  start-page: 34
  year: 2015
  ident: CR47
  article-title: A computationally efficient algorithm for genomic prediction using a Bayesian model
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-014-0082-4
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: CR57
  article-title: The adaptive lasso and its oracle properties
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 4
  start-page: 85
  year: 2009
  end-page: 117
  ident: CR39
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Anal
  doi: 10.1214/09-BA403
– volume: 185
  start-page: 349
  year: 2010
  end-page: 359
  ident: CR44
  article-title: Genomewide multiple-loci mapping in experimental crosses by iterative adaptive penalized regression
  publication-title: Genetics
  doi: 10.1534/genetics.110.114280
– volume: 190
  start-page: 231
  year: 2012
  end-page: 249
  ident: CR27
  article-title: Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms
  publication-title: Genetics
  doi: 10.1534/genetics.111.134866
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  ident: CR41
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 24
  start-page: 1550
  year: 2014
  end-page: 1557
  ident: CR43
  article-title: MultiBLUP: improved SNP-based prediction for complex traits
  publication-title: Genome Res
  doi: 10.1101/gr.169375.113
– volume: 140
  start-page: 329
  year: 2016
  end-page: 336
  ident: CR7
  article-title: Estimation of heritability for nine common cancers using data from genome-wide association studies in Chinese population
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30447
– volume: 47
  start-page: 284
  year: 2015
  end-page: 290
  ident: CR34
  article-title: Efficient Bayesian mixed-model analysis increases association power in large cohorts
  publication-title: Nat Genet
  doi: 10.1038/ng.3190
– year: 2006
  ident: CR3
  publication-title: Pattern recognition and machine learning (Information Science and Statistics)
– volume: 46
  start-page: 167
  year: 1992
  end-page: 174
  ident: CR6
  article-title: Explaining the Gibbs sampler
  publication-title: Am Stat
– volume: 38
  start-page: 467
  year: 2014
  end-page: 476
  ident: CR9
  article-title: Whole genome prediction of bladder cancer risk with the Bayesian LASSO
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21809
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR58
  article-title: Regularization and variable selection via the elastic net
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 10
  start-page: 25
  year: 2000
  end-page: 37
  ident: CR20
  article-title: Bayesian parameter estimation via variational methods
  publication-title: Stat Comput
  doi: 10.1023/A:1008932416310
– volume: 7
  start-page: 73
  year: 2012
  end-page: 107
  ident: CR4
  article-title: Scalable variational inference for Bayesian variable selection in Regression, and its accuracy in genetic association studies
  publication-title: Bayesian Anal
  doi: 10.1214/12-BA703
– volume: 8
  start-page: e83745
  year: 2013
  ident: CR8
  article-title: Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083745
– volume: 45
  start-page: 117
  year: 2016
  end-page: 122
  ident: CR42
  article-title: Aldehyde dehydrogenase 1B1 as a modulator of pancreatic adenocarcinoma
  publication-title: Pancreas
  doi: 10.1097/MPA.0000000000000542
– volume: 11
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR31
  article-title: A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-58
– volume: 36
  start-page: 99
  year: 1974
  end-page: 102
  ident: CR1
  article-title: Scale mixtures of normal distributions
  publication-title: R Stat Soc Series B Stat Methodol
– volume: 44
  start-page: 455
  year: 1995
  end-page: 472
  ident: CR15
  article-title: Adaptive rejection metropolis sampling within Gibbs sampling
  publication-title: Appl Stat
  doi: 10.2307/2986138
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  ident: CR50
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 44
  start-page: 821
  year: 2012
  end-page: 824
  ident: CR55
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.2310
– volume: 14
  start-page: 34
  year: 2013
  ident: CR18
  article-title: A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-34
– volume: 103
  start-page: 681
  year: 2008
  end-page: 686
  ident: CR40
  article-title: The Bayesian Lasso
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214508000000337
– volume: 201
  start-page: 865
  year: 2015
  end-page: 870
  ident: CR23
  article-title: An efficient genome-wide multilocus epistasis search
  publication-title: Genetics
  doi: 10.1534/genetics.115.182444
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  ident: CR53
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 124
  start-page: 3741
  year: 2014
  end-page: 3756
  ident: CR11
  article-title: EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis
  publication-title: J Clin Invest
  doi: 10.1172/JCI73093
– volume: 181
  start-page: 1101
  year: 2009
  end-page: 1113
  ident: CR51
  article-title: Hierarchical generalized linear models for multiple quantitative trait locus mapping
  publication-title: Genetics
  doi: 10.1534/genetics.108.099556
– volume: 343
  start-page: 78
  year: 2000
  end-page: 85
  ident: CR29
  article-title: Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200007133430201
– volume: 28
  start-page: 1738
  year: 2012
  end-page: 1744
  ident: CR32
  article-title: A novel variational Bayes multiple locus Z-statistic for genome-wide association studies with Bayesian model averaging
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts261
– volume: 192
  start-page: 1483
  year: 2012
  end-page: 1491
  ident: CR37
  article-title: A decision rule for quantitative trait locus detection under the extended Bayesian LASSO model
  publication-title: Genetics
  doi: 10.1534/genetics.111.130278
– volume: 42
  start-page: 355
  year: 2010
  end-page: 360
  ident: CR54
  article-title: Mixed linear model approach adapted for genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.546
– volume: 88
  start-page: 294
  year: 2011
  end-page: 305
  ident: CR26
  article-title: Estimating missing heritability for disease from genome-wide association studies
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.02.002
– volume: 3
  start-page: 1511
  year: 2013
  end-page: 1523
  ident: CR22
  article-title: Fast genomic predictions via Bayesian G-BLUP and multilocus models of threshold traits including censored Gaussian data
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.113.007096
– volume: 68
  start-page: 49
  year: 2006
  ident: 1322_CR53
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 149
  start-page: 935
  year: 2009
  ident: 1322_CR5
  publication-title: J R Stat Soc
– volume: 8
  start-page: 833
  year: 2011
  ident: 1322_CR30
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1681
– volume: 4
  start-page: 85
  year: 2009
  ident: 1322_CR39
  publication-title: Bayesian Anal
  doi: 10.1214/09-BA403
– volume: 46
  start-page: 167
  year: 1992
  ident: 1322_CR6
  publication-title: Am Stat
  doi: 10.1080/00031305.1992.10475878
– volume: 163
  start-page: 789
  year: 2003
  ident: 1322_CR48
  publication-title: Genetics
  doi: 10.1093/genetics/163.2.789
– volume: 27
  start-page: 516
  year: 2011
  ident: 1322_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq688
– volume: 81
  start-page: 559
  year: 2007
  ident: 1322_CR41
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 99
  start-page: 817
  year: 2016
  ident: 1322_CR12
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.07.022
– volume: 5
  start-page: 1780
  year: 2011
  ident: 1322_CR17
  publication-title: Ann Appl Stat
  doi: 10.1214/11-AOAS455
– volume: 47
  start-page: 34
  year: 2015
  ident: 1322_CR47
  publication-title: Genet Sel Evol
  doi: 10.1186/s12711-014-0082-4
– volume: 38
  start-page: 21
  year: 2014
  ident: 1322_CR33
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21772
– volume: 43
  start-page: 792
  year: 2011
  ident: 1322_CR19
  publication-title: Nat Genet
  doi: 10.1038/ng.875
– volume: 8
  start-page: e83745
  year: 2013
  ident: 1322_CR8
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083745
– volume: 45
  start-page: 117
  year: 2016
  ident: 1322_CR42
  publication-title: Pancreas
  doi: 10.1097/MPA.0000000000000542
– volume: 103
  start-page: 681
  year: 2008
  ident: 1322_CR40
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214508000000337
– volume: 6
  start-page: 222
  year: 2008
  ident: 1322_CR24
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-07-0142
– volume: 461
  start-page: 747
  year: 2009
  ident: 1322_CR35
  publication-title: Nature
  doi: 10.1038/nature08494
– volume: 3
  start-page: 1511
  year: 2013
  ident: 1322_CR22
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.113.007096
– volume: 131
  start-page: E643
  year: 2012
  ident: 1322_CR13
  publication-title: Int J Cancer
  doi: 10.1002/ijc.27426
– volume: 21
  start-page: 2822
  year: 2002
  ident: 1322_CR25
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205405
– volume: 44
  start-page: 821
  year: 2012
  ident: 1322_CR55
  publication-title: Nat Genet
  doi: 10.1038/ng.2310
– volume: 11
  start-page: 446
  year: 2010
  ident: 1322_CR10
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2809
– volume: 24
  start-page: 1550
  year: 2014
  ident: 1322_CR43
  publication-title: Genome Res
  doi: 10.1101/gr.169375.113
– volume: 26
  start-page: 4025
  year: 2007
  ident: 1322_CR38
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210183
– volume: 124
  start-page: 3741
  year: 2014
  ident: 1322_CR11
  publication-title: J Clin Invest
  doi: 10.1172/JCI73093
– volume: 181
  start-page: 1101
  year: 2009
  ident: 1322_CR51
  publication-title: Genetics
  doi: 10.1534/genetics.108.099556
– volume: 11
  start-page: e1004969
  year: 2015
  ident: 1322_CR36
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004969
– volume: 42
  start-page: 355
  year: 2010
  ident: 1322_CR54
  publication-title: Nat Genet
  doi: 10.1038/ng.546
– volume: 9
  start-page: 5087
  year: 2015
  ident: 1322_CR52
  publication-title: Drug Des Devel Ther
  doi: 10.2147/DDDT.S87197
– volume-title: Variational algorithms for approximate Bayesian inference
  year: 2003
  ident: 1322_CR2
– volume-title: Pattern recognition and machine learning (Information Science and Statistics)
  year: 2006
  ident: 1322_CR3
– volume: 185
  start-page: 349
  year: 2010
  ident: 1322_CR44
  publication-title: Genetics
  doi: 10.1534/genetics.110.114280
– volume: 28
  start-page: 1738
  year: 2012
  ident: 1322_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts261
– volume: 47
  start-page: 284
  year: 2015
  ident: 1322_CR34
  publication-title: Nat Genet
  doi: 10.1038/ng.3190
– volume: 192
  start-page: 1483
  year: 2012
  ident: 1322_CR37
  publication-title: Genetics
  doi: 10.1534/genetics.111.130278
– volume: 9
  start-page: e1003264
  year: 2013
  ident: 1322_CR56
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003264
– volume: 36
  start-page: 99
  year: 1974
  ident: 1322_CR1
  publication-title: R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1974.tb00989.x
– volume: 201
  start-page: 865
  year: 2015
  ident: 1322_CR23
  publication-title: Genetics
  doi: 10.1534/genetics.115.182444
– volume: 38
  start-page: 467
  year: 2014
  ident: 1322_CR9
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21809
– volume: 111
  start-page: E5272
  year: 2014
  ident: 1322_CR16
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1419064111
– volume: 7
  start-page: 73
  year: 2012
  ident: 1322_CR4
  publication-title: Bayesian Anal
  doi: 10.1214/12-BA703
– volume: 105
  start-page: 483
  year: 2010
  ident: 1322_CR49
  publication-title: Heredity (Edinb)
  doi: 10.1038/hdy.2009.180
– volume: 88
  start-page: 881
  year: 1993
  ident: 1322_CR14
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10476353
– volume: 190
  start-page: 231
  year: 2012
  ident: 1322_CR27
  publication-title: Genetics
  doi: 10.1534/genetics.111.134866
– volume: 14
  start-page: 34
  year: 2013
  ident: 1322_CR18
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-34
– volume: 10
  start-page: 25
  year: 2000
  ident: 1322_CR20
  publication-title: Stat Comput
  doi: 10.1023/A:1008932416310
– volume: 67
  start-page: 301
  year: 2005
  ident: 1322_CR58
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 88
  start-page: 76
  year: 2011
  ident: 1322_CR50
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 44
  start-page: 455
  year: 1995
  ident: 1322_CR15
  publication-title: Appl Stat
  doi: 10.2307/2986138
– volume: 11
  start-page: 1
  year: 2010
  ident: 1322_CR31
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-58
– volume: 73
  start-page: 273
  year: 2011
  ident: 1322_CR46
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 68
  start-page: 9686
  year: 2008
  ident: 1322_CR21
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1083
– volume: 343
  start-page: 78
  year: 2000
  ident: 1322_CR29
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200007133430201
– volume: 88
  start-page: 294
  year: 2011
  ident: 1322_CR26
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.02.002
– volume: 101
  start-page: 1418
  year: 2006
  ident: 1322_CR57
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214506000000735
– volume: 140
  start-page: 329
  year: 2016
  ident: 1322_CR7
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30447
– volume: 58
  start-page: 267
  year: 1996
  ident: 1322_CR45
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– reference: 21156729 - Bioinformatics. 2011 Feb 15;27(4):516-23
– reference: 19047146 - Cancer Res. 2008 Dec 1;68(23):9686-92
– reference: 24963154 - Genome Res. 2014 Sep;24(9):1550-7
– reference: 23363272 - BMC Bioinformatics. 2013 Jan 31;14:34
– reference: 10891514 - N Engl J Med. 2000 Jul 13;343(2):78-85
– reference: 23408905 - PLoS Genet. 2013;9(2):e1003264
– reference: 26405029 - Genetics. 2015 Nov;201(3):865-70
– reference: 25849665 - PLoS Genet. 2015 Apr 07;11(4):e1004969
– reference: 22706312 - Nat Genet. 2012 Jun 17;44(7):821-4
– reference: 21376301 - Am J Hum Genet. 2011 Mar 11;88(3):294-305
– reference: 27640306 - Am J Hum Genet. 2016 Oct 6;99(4):817-830
– reference: 24391818 - PLoS One. 2013 Dec 31;8(12):e83745
– reference: 22042575 - Genetics. 2012 Jan;190(1):231-49
– reference: 26566217 - Pancreas. 2016 Jan;45(1):117-22
– reference: 25061874 - J Clin Invest. 2014 Sep;124(9):3741-56
– reference: 25926276 - Genet Sel Evol. 2015 Apr 30;47:34
– reference: 21892150 - Nat Methods. 2011 Sep 04;8(10):833-5
– reference: 22982577 - Genetics. 2012 Dec;192(4):1483-91
– reference: 27668986 - Int J Cancer. 2017 Jan 15;140(2):329-336
– reference: 23821618 - G3 (Bethesda). 2013 Sep 04;3(9):1511-23
– reference: 18314483 - Mol Cancer Res. 2008 Feb;6(2):222-30
– reference: 12618414 - Genetics. 2003 Feb;163(2):789-801
– reference: 20105321 - BMC Bioinformatics. 2010 Jan 27;11:58
– reference: 17213806 - Oncogene. 2007 Jun 7;26(27):4025-31
– reference: 24482836 - Genet Epidemiol. 2014 Jan;38(1):21-30
– reference: 25642633 - Nat Genet. 2015 Mar;47(3):284-90
– reference: 25422463 - Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5272-81
– reference: 26366059 - Drug Des Devel Ther. 2015 Sep 03;9:5087-97
– reference: 20157003 - Genetics. 2010 May;185(1):349-59
– reference: 19812666 - Nature. 2009 Oct 8;461(7265):747-53
– reference: 20208535 - Nat Genet. 2010 Apr;42(4):355-60
– reference: 22563072 - Bioinformatics. 2012 Jul 1;28(13):1738-44
– reference: 20479774 - Nat Rev Genet. 2010 Jun;11(6):446-50
– reference: 24796258 - Genet Epidemiol. 2014 Jul;38(5):467-76
– reference: 11973641 - Oncogene. 2002 Apr 25;21(18):2822-8
– reference: 20051978 - Heredity (Edinb). 2010 Nov;105(5):483-94
– reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
– reference: 21725308 - Nat Genet. 2011 Jul 03;43(8):792-6
– reference: 21167468 - Am J Hum Genet. 2011 Jan 7;88(1):76-82
– reference: 19139143 - Genetics. 2009 Mar;181(3):1101-13
– reference: 22223368 - Int J Cancer. 2012 Sep 1;131(5):E643-8
SSID ssj0017627
Score 2.1931567
Snippet Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 923
SubjectTerms Algorithms
Animal Genetics and Genomics
Bayes Theorem
Bayesian analysis
Biochemistry
Biomedical and Life Sciences
Computational Biology - methods
Computer Simulation
Data processing
Genome-wide association studies
genome-wide association study
Genome-Wide Association Study - methods
Genomes
Heritability
Human Genetics
Humans
Life Sciences
Lung cancer
lung neoplasms
Markov chain
Markov Chains
Mathematical models
Methods Paper
Microbial Genetics and Genomics
Models, Genetic
Monte Carlo Method
Plant Genetics and Genomics
Polymorphism
Polymorphism, Single Nucleotide - genetics
Quantitative Trait, Heritable
Single-nucleotide polymorphism
statistical models
SummonAdditionalLinks – databaseName: Springer Nature Link Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB68Ql-q9VK3XojQp5aAe5Jsdh9tUXwQEavFtyVXPaB75Ow5Fv99J9mLLV5An3c2DJOZzBdm8g3AV1sIL4wpaM4yQ7llnCpmMqq1Vdr4lHEdSVyP5clJfnlZnLbvuOuu270rScaTun_sFotWNJyq8QbFZ2Ees10e5jWc_frdlw4wuuNEFUzNlGO-7kqZzy3xfzJ6gjCfVEdj0jlcepe6y_CxxZhkv3GKTzDjqhVYbKZOPqzC2T7xqp4QdXM1Gg8n17cEgSv5oR5ceFBJYoshxRw3rUmck0OGFQlUrreO_hlaR9TjjpK6aUNcg4vDg_OfR7QdrUANIrQwgF7mXDMMYJ9K7TPBnbQ2d9oPGJMK72hcKLunnfJcS-G8tsGgXAhvpc8ztg5z1ahyG0CESwvLFCu849ymSmlhM68kQjemi9QksNfZuDQt73gYf3FT9ozJ0VQlmqoMpip5At_6X-4a0o3XhLe6jSvb-KtLvIXmgVs-lQns9p8xckI5RFVuNA0yuEhgo-cvywwaTIswOoHPjVP0Gg0Q6SAYzRP43nnAPwq8pO6XN0lvwodBcKHYcbgFc5Px1G3DgrmfDOvxTnT8v-AM-6Q
  priority: 102
  providerName: Springer Nature
Title A fast algorithm for Bayesian multi-locus model in genome-wide association studies
URI https://link.springer.com/article/10.1007/s00438-017-1322-4
https://www.ncbi.nlm.nih.gov/pubmed/28534238
https://www.proquest.com/docview/1918298917
https://www.proquest.com/docview/1901770194
https://www.proquest.com/docview/2000540099
Volume 292
WOSCitedRecordID wos000405521400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: M7P
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: 7X7
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature
  customDbUrl:
  eissn: 1617-4623
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017627
  issn: 1617-4615
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VaCUufRfS0pUr9dTK6ia24-RUQQXqoVqttg_tLfKTrgRZILsg_n3HzoNWCC69-BI7GmVmPJ89k28A3ttSeGFMSQuWG8ot41Qxk1OtrdLGp4zrSOL6TU4mxXxeTrsLt6Yrq-z3xLhR26UJd-Sf8FxRBLbwVH4-O6eha1TIrnYtNDZgK7AkZLF0bzpkEdDRY3MVjNKUY-jus5rjlkSUhTIuSeN5jP8bl26BzVuJ0hh_jp78r-RP4XGHPMl-ayrP4IGrn8Ojthfl9QuY7ROvmhVRJ8e4ePX7lCCcJQfq2oXfLEksPKQY-dYNid1zyKImgeD11NGrhXVE3eiZNG1x4kv4eXT448tX2jVcoAZxW2hLLwuuGbq1T6X2ueBOWls47TPGpMKTGxfKjrVTnmspnNc2fFsuhLfSFzl7BZv1sna7QIRLS8sUK73j3KZKaWFzryQCOqbL1CQw7j93ZTo28tAU46QaeJSjhirUUBU0VPEEPgxLzloqjvsm7_XKqDqvbKobTSTwbniM_hSSJKp2y3WYgy8JHPX87jlZi3QRXCew09rHIFGG-AchapHAx95g_hLgLnFf3y_uG9jOgqnGwsM92FxdrN1beGguV4vmYgQbci7jWIxg6-BwMp2NoiPgOPv-6w93NwsS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AASPBBWSxie04OSBUHlWrLiuEirS31M-yUpstzS7V_il-I2Nnk4Kq9tYD50yiSebz-JvMeAbgpS2FF8aUtGC5odwyThUzOdXaKm18yriOTVyHcjQqxuPy6wr87s7ChLLKzidGR22nJvwjf4txRRG6hafy_dFPGqZGhexqN0KjhcWOW5xgyNa82_6E9n2VZZufdz9u0eVUAWqQnITZ67LgmiF2fSq1zwV30trCaZ8xJhWGJ1woO9BOea6lcF7bEANwIbyVvsgZPvcKXEU_LkOwJ8d9gJeiY4nDXFCccqQKXRZ10DYtZaFsTNIY__F_98Ez5PZMYjbud5u3_rcvdRtuLpk12WiXwh1YcfVduN7O2lzcg28bxKtmRtTBPio7-3FIkK6TD2rhwjFSEgsrKe7s84bE6UBkUpPQwPbQ0ZOJdUSd4pg0bfHlffh-KS_0AFbrae0eAREuLS1TrPSOc5sqpYXNvZJIWJkuU5PAoDNvZZbd1sPQj4Oq7xMdEVEhIqqAiIon8Lq_5ahtNXKR8Hpn_GrpdZrq1PIJvOgvo78ISSBVu-k8yOBDQg9-fr5M1jJ5DB4SeNjisdcoQ36HFLxI4E0H0L8UOE_dxxer-xzWtna_DKvh9mjnCdzIwjKJRZbrsDo7nruncM38mk2a42dxwRHYu2zc_gEpxWOg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaCC8jqJnbi5IBQS7uiarVaVSD1lvoJK7XZ0uxS7V_j1zF2HgVV7a0HzrGtSfJ5_E1mMh_AW1OkLtW6oDnLNOWGcSqZzqhSRirtYsZVaOK6J8bj_OCgmKzA7-5fGF9W2fnE4KjNTPtv5OsYV-S-W3gs1l1bFjHZGn06-Um9gpTPtHZyGg1Edu3yDMO3-uPOFr7rd0ky2v76-QttFQaoRqLiddhFzhVDHLtYKJel3ApjcqtcwpiQGKrwVJqhstJxJVLrlPHxAE9TZ4TLM4br3oBVgSSDD2B1c3s82e9zGOhmgrQLTqAciUOXUx02LUyZLyITNESD_N9T8QLVvZCmDaff6N7__Nzuw92Wc5ONZpM8gBVbPYRbjQrn8hHsbxAn6zmRR9_R2PmPY4JEnmzKpfU_mJJQcknxzF_UJOgGkWlFfGvbY0vPpsYSeY5wUjdlmY_h27Xc0BMYVLPKPgOS2rgwTLLCWc5NLKVKTeakQCrLVBHrCIbdqy5124fdy4EclX0H6YCOEtFRenSUPIL3_ZSTpgnJVYPXOiCUrT-qy3MURPCmv4yexKeHZGVnCz8GF_Hd-fnlY5KG42NYEcHTBpu9RQkyPyTneQQfOrD-ZcBl5j6_2tzXcBvhWu7tjHdfwJ3E75hQfbkGg_npwr6Em_rXfFqfvmp3H4HD6wbuH3bKbcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+algorithm+for+Bayesian+multi-locus+model+in+genome-wide+association+studies&rft.jtitle=Molecular+genetics+and+genomics+%3A+MGG&rft.au=Duan%2C+Weiwei&rft.au=Zhao%2C+Yang&rft.au=Wei%2C+Yongyue&rft.au=Yang%2C+Sheng&rft.date=2017-08-01&rft.issn=1617-4615&rft.volume=292&rft.issue=4+p.923-934&rft.spage=923&rft.epage=934&rft_id=info:doi/10.1007%2Fs00438-017-1322-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4615&client=summon