Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polyn...
Uloženo v:
| Vydáno v: | Frontiers in neuroinformatics Ročník 10; s. 49 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Research Foundation
22.11.2016
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1662-5196, 1662-5196 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. |
|---|---|
| AbstractList | In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. |
| Author | Gallant, Jack L. Bilenko, Natalia Y. |
| AuthorAffiliation | 1 Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA 2 Department of Psychology, University of California, Berkeley Berkeley, CA, USA |
| AuthorAffiliation_xml | – name: 1 Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA – name: 2 Department of Psychology, University of California, Berkeley Berkeley, CA, USA |
| Author_xml | – sequence: 1 givenname: Natalia Y. surname: Bilenko fullname: Bilenko, Natalia Y. – sequence: 2 givenname: Jack L. surname: Gallant fullname: Gallant, Jack L. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27920675$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ktuLEzEUxgdZcS_67pMM-OJLay6TdOKDUIqX4qKL6HM4kzlpU9KkJjNC_etN213ZXfAph-R3vvOR811WZyEGrKqXlEw5b9VbG1ywU0aonBJCGvWkuqBSsomgSp7dq8-ry5w3hEgmxexZdc5mihE5ExfV-mafjIF39XdcjR6S-4N9_QVTQF8voIxzBkoVU0IPg4uhngfw--xy7UJ9sx_W5QpCXy-HXM93O1_4A5brIdZfcUzRbWHlwup59dSCz_ji9ryqfn788GPxeXL97dNyMb-emIYINWGdYSiopWIGjAjRm7Y3iK0Fzo3pwHIOjPYSG0EISgmKU6k6pD2xqkXFr6rlSbePsNG7VManvY7g9PEippWGNDjjUfO27zmZUUsYNrxR0BlrDXDS8paSri1a709au7HbYvERhgT-gejDl-DWehV_a0Fp28iDmTe3Ain-GjEPeuuyQe8hYByzPlBcStWQgr5-hG7imMpfZ82YEg0VshWFenXf0T8rdwstgDwBJsWcE1pt3HDcSDHovKZEH5Kjj8nRh-ToY3JKI3nUeKf935a_ZBrIZQ |
| CitedBy_id | crossref_primary_10_1007_s11042_020_09859_6 crossref_primary_10_7554_eLife_52984 crossref_primary_10_7554_eLife_56601 crossref_primary_10_1016_j_neunet_2023_11_024 crossref_primary_10_1109_JETCAS_2023_3290418 crossref_primary_10_1016_j_cmpb_2023_107826 crossref_primary_10_1109_TSP_2021_3109375 crossref_primary_10_1109_TNSRE_2022_3215695 crossref_primary_10_3389_fncom_2020_580632 crossref_primary_10_1038_s41467_022_33429_z crossref_primary_10_1016_j_jneumeth_2019_108319 crossref_primary_10_3389_fimmu_2021_809937 crossref_primary_10_3389_fnins_2018_00437 crossref_primary_10_1016_j_neuroimage_2023_120007 crossref_primary_10_1111_cogs_13226 crossref_primary_10_1186_s13062_019_0246_9 crossref_primary_10_1038_s41467_021_22653_8 crossref_primary_10_1016_j_neuroimage_2025_121439 crossref_primary_10_1016_j_neuron_2019_10_019 crossref_primary_10_3390_agriculture14111950 crossref_primary_10_1016_j_jhydrol_2021_126903 crossref_primary_10_1093_scan_nsaa061 crossref_primary_10_1007_s00500_020_04906_8 crossref_primary_10_1007_s11042_023_16926_1 crossref_primary_10_1016_j_biopsych_2022_10_016 crossref_primary_10_1007_s11042_022_12435_9 crossref_primary_10_1155_2019_4506876 crossref_primary_10_1038_s41467_019_13599_z crossref_primary_10_3390_sym12101612 crossref_primary_10_1109_LSENS_2022_3148910 crossref_primary_10_1007_s12311_023_01645_y crossref_primary_10_1186_s12993_024_00228_z crossref_primary_10_1371_journal_pcbi_1009542 crossref_primary_10_3389_fgene_2021_652623 crossref_primary_10_1016_j_neuroimage_2021_118683 crossref_primary_10_3389_fnhum_2019_00032 crossref_primary_10_3389_fnins_2024_1480735 crossref_primary_10_1109_TIM_2024_3376009 crossref_primary_10_1145_3326065 |
| Cites_doi | 10.1016/j.neuroimage.2012.01.021 10.1162/jocn_a_00189 10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2 10.1016/j.neuroimage.2007.06.017 10.1109/MCSE.2007.53 10.1109/MCSE.2011.37 10.1093/bioinformatics/btg1045 10.1093/biomet/28.3-4.321 10.1016/j.neuron.2011.08.026 10.1016/S1361-8415(01)00036-6 10.1162/0899766042321814 10.1016/j.cub.2011.08.031 10.1016/B978-012372560-8/50002-4 10.1016/j.neuroimage.2015.01.006 10.1109/MSP.2010.936725 10.1016/j.neuroimage.2009.06.060 10.1093/biomet/58.3.433 10.1006/nimg.2002.1132 10.3389/fninf.2015.00023 10.1016/j.neuroimage.2013.05.009 10.1016/j.neuroimage.2010.02.010 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Bilenko and Gallant. 2016 Bilenko and Gallant |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Bilenko and Gallant. 2016 Bilenko and Gallant |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fninf.2016.00049 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5196 |
| ExternalDocumentID | oai_doaj_org_article_38dd3071f02e4349abcffca3083810b8 PMC5118469 27920675 10_3389_fninf_2016_00049 |
| Genre | Journal Article |
| GeographicLocations | United States--US California |
| GeographicLocations_xml | – name: United States--US – name: California |
| GrantInformation_xml | – fundername: National Eye Institute |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c4059-2bc2e51f157a2055dc8dcee8fa33ccbaf33a21d6e4500e66a93169be1d0f98e93 |
| IEDL.DBID | DOA |
| ISSN | 1662-5196 |
| IngestDate | Mon Nov 10 04:29:53 EST 2025 Tue Nov 04 01:53:03 EST 2025 Sun Nov 09 10:39:49 EST 2025 Fri Jul 25 11:43:51 EDT 2025 Sat Sep 28 07:59:34 EDT 2024 Sat Nov 29 02:31:28 EST 2025 Tue Nov 18 22:02:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | fMRI covariance analysis cross-subject alignment partial least squares regression canonical correlation analysis Python |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4059-2bc2e51f157a2055dc8dcee8fa33ccbaf33a21d6e4500e66a93169be1d0f98e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Sergey M. Plis, Mind Research Network, USA; Li Dong, University of Science and Technology of China, China Edited by: Pedro Antonio Valdes-Sosa, Joint China Cuba Lab for Frontiers Research in Translational Neurotechnology, Cuba |
| OpenAccessLink | https://doaj.org/article/38dd3071f02e4349abcffca3083810b8 |
| PMID | 27920675 |
| PQID | 2295415685 |
| PQPubID | 4424404 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_38dd3071f02e4349abcffca3083810b8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5118469 proquest_miscellaneous_1846366940 proquest_journals_2295415685 pubmed_primary_27920675 crossref_citationtrail_10_3389_fninf_2016_00049 crossref_primary_10_3389_fninf_2016_00049 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-22 |
| PublicationDateYYYYMMDD | 2016-11-22 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationTitleAlternate | Front Neuroinform |
| PublicationYear | 2016 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Haxby (B12) 2011; 72 Pedregosa (B20) 2011; 12 Gao (B8) 2015; 9 Hardoon (B11) 2004; 16 Hardoon (B10) 2007; 37 Greve (B9) 2009; 48 Jenkinson (B15) 2001; 5 Kettenring (B17) 1971; 58 Jenkinson (B14) 2002; 17 Collette (B2) 2013 Van Der Walt (B23) 2011; 13 Varoquaux (B24) 2010; 51 Nishimoto (B19) 2014 Correa (B4) 2010; 27 Friston (B7) 2007 Fischl (B6) 2012; 62 Yamanishi (B25) 2003; 19 Pérez (B21) 2007; 9 Barnett (B1) 1987; 115 Jones (B16) 2001 Dong (B5) 2015; 109 Nishimoto (B18) 2011; 21 Raizada (B22) 2012; 24 Conroy (B3) 2013; 81 Hotelling (B13) 1936; 28 22017997 - Neuron. 2011 Oct 20;72(2):404-16 20706554 - IEEE Signal Process Mag. 2010;27(4):39-50 11516708 - Med Image Anal. 2001 Jun;5(2):143-56 12377157 - Neuroimage. 2002 Oct;17(2):825-41 22248573 - Neuroimage. 2012 Aug 15;62(2):774-81 20153834 - Neuroimage. 2010 May 15;51(1):288-99 23685161 - Neuroimage. 2013 Nov 1;81:400-11 17686634 - Neuroimage. 2007 Oct 1;37(4):1250-9 15516276 - Neural Comput. 2004 Dec;16(12):2639-64 21945275 - Curr Biol. 2011 Oct 11;21(19):1641-6 12855477 - Bioinformatics. 2003;19 Suppl 1:i323-30 25592998 - Neuroimage. 2015 Apr 1;109:388-401 22220728 - J Cogn Neurosci. 2012 Apr;24(4):868-77 19573611 - Neuroimage. 2009 Oct 15;48(1):63-72 26483666 - Front Neuroinform. 2015 Sep 29;9:23 |
| References_xml | – volume: 62 start-page: 774 year: 2012 ident: B6 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – year: 2014 ident: B19 publication-title: Gallant Lab Natural Movie 4T fMRI Data. CRCNS.org – volume: 24 start-page: 868 year: 2012 ident: B22 article-title: What makes different people's representations alike: neural similarity space solves the problem of across-subject fMRI decoding publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00189 – volume: 115 start-page: 1825 year: 1987 ident: B1 article-title: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis publication-title: Monthly Weather Rev. doi: 10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2 – volume: 37 start-page: 1250 year: 2007 ident: B10 article-title: Unsupervised analysis of fMRI data using kernel canonical correlation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.06.017 – volume: 9 start-page: 21 year: 2007 ident: B21 article-title: IPython: a system for interactive scientific computing publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.53 – year: 2001 ident: B16 publication-title: SciPy: Open Source Scientific Tools for Python – volume: 13 start-page: 22 year: 2011 ident: B23 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.37 – volume: 19 start-page: i323 year: 2003 ident: B25 article-title: Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1045 – volume: 28 start-page: 321 year: 1936 ident: B13 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – volume: 72 start-page: 404 year: 2011 ident: B12 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 5 start-page: 143 year: 2001 ident: B15 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)00036-6 – volume: 16 start-page: 2639 year: 2004 ident: B11 article-title: Canonical correlation analysis: an overview with application to learning methods publication-title: Neural Comput. doi: 10.1162/0899766042321814 – volume: 21 start-page: 1641 year: 2011 ident: B18 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.031 – volume-title: Statistical Parametric Mapping: the Analysis of Functional Brain Images year: 2007 ident: B7 doi: 10.1016/B978-012372560-8/50002-4 – volume: 12 start-page: 2825 year: 2011 ident: B20 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res – volume-title: Python and HDF5 year: 2013 ident: B2 – volume: 109 start-page: 388 year: 2015 ident: B5 article-title: Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.006 – volume: 27 start-page: 39 year: 2010 ident: B4 article-title: Canonical correlation analysis for data fusion and group inferences publication-title: IEEE Signal Proc. Magazine doi: 10.1109/MSP.2010.936725 – volume: 48 start-page: 63 year: 2009 ident: B9 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 58 start-page: 433 year: 1971 ident: B17 article-title: Canonical analysis of several sets of variables publication-title: Biometrika doi: 10.1093/biomet/58.3.433 – volume: 17 start-page: 825 year: 2002 ident: B14 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 9 start-page: 23 year: 2015 ident: B8 article-title: Pycortex: an interactive surface visualizer for fMRI publication-title: Front. Neuroinform. doi: 10.3389/fninf.2015.00023 – volume: 81 start-page: 400 year: 2013 ident: B3 article-title: Inter-subject alignment of human cortical anatomy using functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.009 – volume: 51 start-page: 288 year: 2010 ident: B24 article-title: A group model for stable multi-subject ICA on fMRI datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.010 – reference: 26483666 - Front Neuroinform. 2015 Sep 29;9:23 – reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41 – reference: 23685161 - Neuroimage. 2013 Nov 1;81:400-11 – reference: 20153834 - Neuroimage. 2010 May 15;51(1):288-99 – reference: 20706554 - IEEE Signal Process Mag. 2010;27(4):39-50 – reference: 17686634 - Neuroimage. 2007 Oct 1;37(4):1250-9 – reference: 12855477 - Bioinformatics. 2003;19 Suppl 1:i323-30 – reference: 25592998 - Neuroimage. 2015 Apr 1;109:388-401 – reference: 15516276 - Neural Comput. 2004 Dec;16(12):2639-64 – reference: 21945275 - Curr Biol. 2011 Oct 11;21(19):1641-6 – reference: 19573611 - Neuroimage. 2009 Oct 15;48(1):63-72 – reference: 11516708 - Med Image Anal. 2001 Jun;5(2):143-56 – reference: 22017997 - Neuron. 2011 Oct 20;72(2):404-16 – reference: 22220728 - J Cogn Neurosci. 2012 Apr;24(4):868-77 – reference: 22248573 - Neuroimage. 2012 Aug 15;62(2):774-81 |
| SSID | ssj0062657 |
| Score | 2.3898265 |
| Snippet | In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 49 |
| SubjectTerms | Analysis of covariance Bioinformatics Brain architecture Brain mapping canonical correlation analysis Correlation analysis covariance analysis cross-subject alignment Datasets Eigenvalues fMRI Functional magnetic resonance imaging Medical imaging Methods Multivariate analysis Neuroimaging Neuroscience partial least squares regression Principal components analysis python Registration Retina |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOAChfIRaJGREBKHaJ3YcWIu1XZFBQJVKwRSb5Y_aaQ2KckWafn1eJxk6SLUC9fEkUZ-4_E8e_IGode2CJ7CDUmF0zplTJSpqkqWek1z4jOiMxV1Zj-XJyfV6alYjgdu_VhWOcXEGKhta-CMfAZtp4FsVMXh5Y8UukbB7erYQuM2ugMqCTSW7i2nSBxy9aIcriYDERMz3wTQoJqLR41OsbUVRcX-f6WZf1dLXtt-jh_8r-G76P6YeOL54CkP0S3XPEJ78yaQ7os1foNjKWg8Y99DZ8t1F-b8Hf4SO9V39S9n8SfXNe4cL1TTxn8p8QIaewyldHjSNsF1g5dr0CPAqrH446rH82tX5HjV4igHUl_E7kiP0bfj918XH9KxJUNqQmYn0lyb3BWZz4pS5aQorKnCvLjKK0qN0cpTqvLMcscKQhznSgRPENpllnhROUGfoJ1gpXuGsNKMQjhQjnGmmQ3ES7FMBX5GqSU2T9BsQkeaUa8c2macy8BbAE8Z8ZSAp4x4Jujt5ovLQavjhrFHAPhmHKhsxwdt912Oi1bSytoQAzNPcscoE0ob742iIW2tghtXCdqfIJfj0u_lH7wT9GrzOixauIlRjWuvehloNaecC0YS9HTwro0loOgINC5B5ZbfbZm6_aapz6IwOLBFxsXzm816ge7BPMAPlXm-j3ZW3ZU7QHfNz1Xddy_jCvoNHTkn5g priority: 102 providerName: ProQuest |
| Title | Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27920675 https://www.proquest.com/docview/2295415685 https://www.proquest.com/docview/1846366940 https://pubmed.ncbi.nlm.nih.gov/PMC5118469 https://doaj.org/article/38dd3071f02e4349abcffca3083810b8 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5196 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6evAi6vpRXYcIIngomyZp2njblVkU3KGIwngK-WSLux3pzArjwb_dl7QzzIjoxUsOSVqS916a92tefg-hl64ESxGW5NIbk3Muq1zXFc-DYZSEgphCJ57ZD9VsVs_nstlJ9RVjwgZ64EFwx6x2DuywCIR6zrjUxoZgNQPXoYZXpWu-4PVswNTwDQYvvayGQ0mAYPI4dKCuGMclEjun3NuEElf_nxzM3-Mkdzaes3vo7ugx4pNhpPfRDd89QIcnHaDlqzV-hVMMZ_o5fogumnUPwnqD-5Rivm9_eIe_-r7zlxhkuEiXILGNGTmGGDisR1IS3Ha4WUciAahyuF0t8e7ZNl4tcKK-bK9SWqOH6PPZ9NPbd_mYSyG34JLJnBpLfVmEoqw0JWXpbA3T8nXQjFlrdGBM08IJz0tCvBBaggql8YUjQdZeskfoAEbpnyCsDWdxHWvPBTfcAWLSvNAArBhzxNEMHW-Eq-xINB7zXVwqABxRHSqpQ0V1qKSODL3ePvFtINn4S9_TqK9tv0iPnSrAaNRoNOpfRpOho4221bhmlyomNo9wti4z9GLbDKstHqHozi-ulwrwsGBCSE4y9Hgwju1IIhVjxF8ZqvbMZm-o-y1de5EYvSPM40I-_R9ze4buRGnF-5KUHqGDVX_tn6Pb9vuqXfYTdLOa1xN063Q6az5O0qKB8pw2saxS-XMK7c378-bLL7DoIgg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmgQQvDBgfGQOMBEg8RE1sJ7GRECqFaVVLVaEh7c1zbGertCWjzUDlR_Eb8XWSsiK0tz3wGieSnRwf3xNfn4vQS5M4pKQ6CoXN85AxkYWKZywsckqiIo7yWHmf2XE2mfDDQzHdQL-6szCQVtlxoidqU2n4R96DstMgNnjy_vxbCFWjYHe1K6HRwGJklz-cZFu8G3503_cVIXufDgb7YVtVINQuOBEhyTWxSVzESaZIlCRGc-NWCl4oSrXOVUGpIrFJLUuiyKapEm4wIrexiQrBLZgvOcq_4cIIwn2q4LRjfqcNkqzZCnXCT_SK0oEEssdS7wkq1pY-XyHgX2Ht39mZl5a7va3_7UXdRXfawBr3m5lwD23Y8j7a7peqrs6W-DX2qa5-D2EbnUyXc4ept_iLPYY03NlPa_DIzkt7igeqrPxZUTyAwiVNqiDuvFvwrMTTJfgtYFUaPKwXuH8pBQDXFfZ2J7MzX_3pAfp6LWN-iDZdL-1jhFXOKNCdsixlOTNOWCoWK6c_KTWRIQHqdWiQuvVjh7Igp9LpMsCP9PiRgB_p8ROgN6snzhsvkivu_QAAW90HLuL-QjU_li0pScqNcRwfFxGxjDKhcl0UWlEXlnM3TXmAdjuIyZbaFvIPvgL0YtXsSAl2mlRpq4uFjDn40KWCRQF61KB51RNwrASZGqBsDedrXV1vKWcn3vgc1DBLxc7V3XqObu0ffB7L8XAyeoJuwzuBw6OE7KLNen5hn6Kb-ns9W8yf-dmL0dF1z4LfQXKF6A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwGLWmgRAv3AYjMMBIgMRD1MR2LkZCqHRUVJ2qCoG0N-P4slXaktFkoPLT-HX4c5KyIrS3PfAaO5LtHH_2iY_Ph9ALnTikpCoKuSmKkDGehTLPWGgLSiIbR0Usvc_sQTab5YeHfL6FfvV3YUBW2cdEH6h1peAf-QDSTgPZyJOB7WQR8_3xu7NvIWSQgpPWPp1GC5GpWf1w9K1-O9l33_olIeMPn0cfwy7DQKjcRoWHpFDEJLGNk0ySKEm0yrVbNXIrKVWqkJZSSWKdGpZEkUlTyV3HeGFiHVmeGzBicuH_Wgam5V42OO9XAccTkqw9FnUkkA9s6QADSrLU-4PyjWXQZwv41xb3b6XmhaVvfPt_HrQ76Fa34cbDdobcRVumvId2hqVsqtMVfoW9BNafLeyg4_lq6bD2Bn8yRyDPXfw0Gk_NsjQneCTLyt8hxSNIaNJKCHHv6YIXJZ6vwIcBy1LjSVPj4QVpAG4q7G1QFqc-K9R99OVK-vwAbbtWmocIy4JRCIPSsJQVTDvCKVksHS-lVEeaBGjQI0Oozqcd0oWcCMfXAEvCY0kAloTHUoBer984az1KLqn7HsC2rgfu4v5BtTwSXbASNNfaxf7YRsQwyrgslLVKUrddz930zQO018NNdCGvFn-wFqDn62IXrOAESpamOq9FnIM_XcpZFKDdFtnrloCTJdDXAGUbmN9o6mZJuTj2hujAklnKH13erGfohgO_OJjMpo_RTRgSuFNKyB7abpbn5gm6rr43i3r51E9kjL5e9ST4DQuljqU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrcca%3A+regularized+kernel+canonical+correlation+analysis+in+Python+and+its+applications+to+neuroimaging&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Natalia+Y+Bilenko&rft.au=Jack+L+Gallant&rft.au=Jack+L+Gallant&rft.date=2016-11-22&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=10&rft_id=info:doi/10.3389%2Ffninf.2016.00049&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38dd3071f02e4349abcffca3083810b8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |