Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging

In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polyn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neuroinformatics Ročník 10; s. 49
Hlavní autoři: Bilenko, Natalia Y., Gallant, Jack L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 22.11.2016
Frontiers Media S.A
Témata:
ISSN:1662-5196, 1662-5196
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.
AbstractList In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.
Author Gallant, Jack L.
Bilenko, Natalia Y.
AuthorAffiliation 1 Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA
2 Department of Psychology, University of California, Berkeley Berkeley, CA, USA
AuthorAffiliation_xml – name: 1 Helen Wills Neuroscience Institute, University of California, Berkeley Berkeley, CA, USA
– name: 2 Department of Psychology, University of California, Berkeley Berkeley, CA, USA
Author_xml – sequence: 1
  givenname: Natalia Y.
  surname: Bilenko
  fullname: Bilenko, Natalia Y.
– sequence: 2
  givenname: Jack L.
  surname: Gallant
  fullname: Gallant, Jack L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27920675$$D View this record in MEDLINE/PubMed
BookMark eNp1ktuLEzEUxgdZcS_67pMM-OJLay6TdOKDUIqX4qKL6HM4kzlpU9KkJjNC_etN213ZXfAph-R3vvOR811WZyEGrKqXlEw5b9VbG1ywU0aonBJCGvWkuqBSsomgSp7dq8-ry5w3hEgmxexZdc5mihE5ExfV-mafjIF39XdcjR6S-4N9_QVTQF8voIxzBkoVU0IPg4uhngfw--xy7UJ9sx_W5QpCXy-HXM93O1_4A5brIdZfcUzRbWHlwup59dSCz_ji9ryqfn788GPxeXL97dNyMb-emIYINWGdYSiopWIGjAjRm7Y3iK0Fzo3pwHIOjPYSG0EISgmKU6k6pD2xqkXFr6rlSbePsNG7VManvY7g9PEippWGNDjjUfO27zmZUUsYNrxR0BlrDXDS8paSri1a709au7HbYvERhgT-gejDl-DWehV_a0Fp28iDmTe3Ain-GjEPeuuyQe8hYByzPlBcStWQgr5-hG7imMpfZ82YEg0VshWFenXf0T8rdwstgDwBJsWcE1pt3HDcSDHovKZEH5Kjj8nRh-ToY3JKI3nUeKf935a_ZBrIZQ
CitedBy_id crossref_primary_10_1007_s11042_020_09859_6
crossref_primary_10_7554_eLife_52984
crossref_primary_10_7554_eLife_56601
crossref_primary_10_1016_j_neunet_2023_11_024
crossref_primary_10_1109_JETCAS_2023_3290418
crossref_primary_10_1016_j_cmpb_2023_107826
crossref_primary_10_1109_TSP_2021_3109375
crossref_primary_10_1109_TNSRE_2022_3215695
crossref_primary_10_3389_fncom_2020_580632
crossref_primary_10_1038_s41467_022_33429_z
crossref_primary_10_1016_j_jneumeth_2019_108319
crossref_primary_10_3389_fimmu_2021_809937
crossref_primary_10_3389_fnins_2018_00437
crossref_primary_10_1016_j_neuroimage_2023_120007
crossref_primary_10_1111_cogs_13226
crossref_primary_10_1186_s13062_019_0246_9
crossref_primary_10_1038_s41467_021_22653_8
crossref_primary_10_1016_j_neuroimage_2025_121439
crossref_primary_10_1016_j_neuron_2019_10_019
crossref_primary_10_3390_agriculture14111950
crossref_primary_10_1016_j_jhydrol_2021_126903
crossref_primary_10_1093_scan_nsaa061
crossref_primary_10_1007_s00500_020_04906_8
crossref_primary_10_1007_s11042_023_16926_1
crossref_primary_10_1016_j_biopsych_2022_10_016
crossref_primary_10_1007_s11042_022_12435_9
crossref_primary_10_1155_2019_4506876
crossref_primary_10_1038_s41467_019_13599_z
crossref_primary_10_3390_sym12101612
crossref_primary_10_1109_LSENS_2022_3148910
crossref_primary_10_1007_s12311_023_01645_y
crossref_primary_10_1186_s12993_024_00228_z
crossref_primary_10_1371_journal_pcbi_1009542
crossref_primary_10_3389_fgene_2021_652623
crossref_primary_10_1016_j_neuroimage_2021_118683
crossref_primary_10_3389_fnhum_2019_00032
crossref_primary_10_3389_fnins_2024_1480735
crossref_primary_10_1109_TIM_2024_3376009
crossref_primary_10_1145_3326065
Cites_doi 10.1016/j.neuroimage.2012.01.021
10.1162/jocn_a_00189
10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2
10.1016/j.neuroimage.2007.06.017
10.1109/MCSE.2007.53
10.1109/MCSE.2011.37
10.1093/bioinformatics/btg1045
10.1093/biomet/28.3-4.321
10.1016/j.neuron.2011.08.026
10.1016/S1361-8415(01)00036-6
10.1162/0899766042321814
10.1016/j.cub.2011.08.031
10.1016/B978-012372560-8/50002-4
10.1016/j.neuroimage.2015.01.006
10.1109/MSP.2010.936725
10.1016/j.neuroimage.2009.06.060
10.1093/biomet/58.3.433
10.1006/nimg.2002.1132
10.3389/fninf.2015.00023
10.1016/j.neuroimage.2013.05.009
10.1016/j.neuroimage.2010.02.010
ContentType Journal Article
Copyright 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 Bilenko and Gallant. 2016 Bilenko and Gallant
Copyright_xml – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 Bilenko and Gallant. 2016 Bilenko and Gallant
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2016.00049
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_38dd3071f02e4349abcffca3083810b8
PMC5118469
27920675
10_3389_fninf_2016_00049
Genre Journal Article
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GrantInformation_xml – fundername: National Eye Institute
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c4059-2bc2e51f157a2055dc8dcee8fa33ccbaf33a21d6e4500e66a93169be1d0f98e93
IEDL.DBID DOA
ISSN 1662-5196
IngestDate Mon Nov 10 04:29:53 EST 2025
Tue Nov 04 01:53:03 EST 2025
Sun Nov 09 10:39:49 EST 2025
Fri Jul 25 11:43:51 EDT 2025
Sat Sep 28 07:59:34 EDT 2024
Sat Nov 29 02:31:28 EST 2025
Tue Nov 18 22:02:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
covariance analysis
cross-subject alignment
partial least squares regression
canonical correlation analysis
Python
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4059-2bc2e51f157a2055dc8dcee8fa33ccbaf33a21d6e4500e66a93169be1d0f98e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Sergey M. Plis, Mind Research Network, USA; Li Dong, University of Science and Technology of China, China
Edited by: Pedro Antonio Valdes-Sosa, Joint China Cuba Lab for Frontiers Research in Translational Neurotechnology, Cuba
OpenAccessLink https://doaj.org/article/38dd3071f02e4349abcffca3083810b8
PMID 27920675
PQID 2295415685
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_38dd3071f02e4349abcffca3083810b8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5118469
proquest_miscellaneous_1846366940
proquest_journals_2295415685
pubmed_primary_27920675
crossref_citationtrail_10_3389_fninf_2016_00049
crossref_primary_10_3389_fninf_2016_00049
PublicationCentury 2000
PublicationDate 2016-11-22
PublicationDateYYYYMMDD 2016-11-22
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-22
  day: 22
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2016
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Haxby (B12) 2011; 72
Pedregosa (B20) 2011; 12
Gao (B8) 2015; 9
Hardoon (B11) 2004; 16
Hardoon (B10) 2007; 37
Greve (B9) 2009; 48
Jenkinson (B15) 2001; 5
Kettenring (B17) 1971; 58
Jenkinson (B14) 2002; 17
Collette (B2) 2013
Van Der Walt (B23) 2011; 13
Varoquaux (B24) 2010; 51
Nishimoto (B19) 2014
Correa (B4) 2010; 27
Friston (B7) 2007
Fischl (B6) 2012; 62
Yamanishi (B25) 2003; 19
Pérez (B21) 2007; 9
Barnett (B1) 1987; 115
Jones (B16) 2001
Dong (B5) 2015; 109
Nishimoto (B18) 2011; 21
Raizada (B22) 2012; 24
Conroy (B3) 2013; 81
Hotelling (B13) 1936; 28
22017997 - Neuron. 2011 Oct 20;72(2):404-16
20706554 - IEEE Signal Process Mag. 2010;27(4):39-50
11516708 - Med Image Anal. 2001 Jun;5(2):143-56
12377157 - Neuroimage. 2002 Oct;17(2):825-41
22248573 - Neuroimage. 2012 Aug 15;62(2):774-81
20153834 - Neuroimage. 2010 May 15;51(1):288-99
23685161 - Neuroimage. 2013 Nov 1;81:400-11
17686634 - Neuroimage. 2007 Oct 1;37(4):1250-9
15516276 - Neural Comput. 2004 Dec;16(12):2639-64
21945275 - Curr Biol. 2011 Oct 11;21(19):1641-6
12855477 - Bioinformatics. 2003;19 Suppl 1:i323-30
25592998 - Neuroimage. 2015 Apr 1;109:388-401
22220728 - J Cogn Neurosci. 2012 Apr;24(4):868-77
19573611 - Neuroimage. 2009 Oct 15;48(1):63-72
26483666 - Front Neuroinform. 2015 Sep 29;9:23
References_xml – volume: 62
  start-page: 774
  year: 2012
  ident: B6
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– year: 2014
  ident: B19
  publication-title: Gallant Lab Natural Movie 4T fMRI Data. CRCNS.org
– volume: 24
  start-page: 868
  year: 2012
  ident: B22
  article-title: What makes different people's representations alike: neural similarity space solves the problem of across-subject fMRI decoding
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00189
– volume: 115
  start-page: 1825
  year: 1987
  ident: B1
  article-title: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis
  publication-title: Monthly Weather Rev.
  doi: 10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2
– volume: 37
  start-page: 1250
  year: 2007
  ident: B10
  article-title: Unsupervised analysis of fMRI data using kernel canonical correlation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.017
– volume: 9
  start-page: 21
  year: 2007
  ident: B21
  article-title: IPython: a system for interactive scientific computing
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.53
– year: 2001
  ident: B16
  publication-title: SciPy: Open Source Scientific Tools for Python
– volume: 13
  start-page: 22
  year: 2011
  ident: B23
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 19
  start-page: i323
  year: 2003
  ident: B25
  article-title: Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1045
– volume: 28
  start-page: 321
  year: 1936
  ident: B13
  article-title: Relations between two sets of variates
  publication-title: Biometrika
  doi: 10.1093/biomet/28.3-4.321
– volume: 72
  start-page: 404
  year: 2011
  ident: B12
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 5
  start-page: 143
  year: 2001
  ident: B15
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)00036-6
– volume: 16
  start-page: 2639
  year: 2004
  ident: B11
  article-title: Canonical correlation analysis: an overview with application to learning methods
  publication-title: Neural Comput.
  doi: 10.1162/0899766042321814
– volume: 21
  start-page: 1641
  year: 2011
  ident: B18
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.08.031
– volume-title: Statistical Parametric Mapping: the Analysis of Functional Brain Images
  year: 2007
  ident: B7
  doi: 10.1016/B978-012372560-8/50002-4
– volume: 12
  start-page: 2825
  year: 2011
  ident: B20
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res
– volume-title: Python and HDF5
  year: 2013
  ident: B2
– volume: 109
  start-page: 388
  year: 2015
  ident: B5
  article-title: Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.006
– volume: 27
  start-page: 39
  year: 2010
  ident: B4
  article-title: Canonical correlation analysis for data fusion and group inferences
  publication-title: IEEE Signal Proc. Magazine
  doi: 10.1109/MSP.2010.936725
– volume: 48
  start-page: 63
  year: 2009
  ident: B9
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.060
– volume: 58
  start-page: 433
  year: 1971
  ident: B17
  article-title: Canonical analysis of several sets of variables
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.433
– volume: 17
  start-page: 825
  year: 2002
  ident: B14
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 9
  start-page: 23
  year: 2015
  ident: B8
  article-title: Pycortex: an interactive surface visualizer for fMRI
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2015.00023
– volume: 81
  start-page: 400
  year: 2013
  ident: B3
  article-title: Inter-subject alignment of human cortical anatomy using functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.009
– volume: 51
  start-page: 288
  year: 2010
  ident: B24
  article-title: A group model for stable multi-subject ICA on fMRI datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.010
– reference: 26483666 - Front Neuroinform. 2015 Sep 29;9:23
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 23685161 - Neuroimage. 2013 Nov 1;81:400-11
– reference: 20153834 - Neuroimage. 2010 May 15;51(1):288-99
– reference: 20706554 - IEEE Signal Process Mag. 2010;27(4):39-50
– reference: 17686634 - Neuroimage. 2007 Oct 1;37(4):1250-9
– reference: 12855477 - Bioinformatics. 2003;19 Suppl 1:i323-30
– reference: 25592998 - Neuroimage. 2015 Apr 1;109:388-401
– reference: 15516276 - Neural Comput. 2004 Dec;16(12):2639-64
– reference: 21945275 - Curr Biol. 2011 Oct 11;21(19):1641-6
– reference: 19573611 - Neuroimage. 2009 Oct 15;48(1):63-72
– reference: 11516708 - Med Image Anal. 2001 Jun;5(2):143-56
– reference: 22017997 - Neuron. 2011 Oct 20;72(2):404-16
– reference: 22220728 - J Cogn Neurosci. 2012 Apr;24(4):868-77
– reference: 22248573 - Neuroimage. 2012 Aug 15;62(2):774-81
SSID ssj0062657
Score 2.3898265
Snippet In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 49
SubjectTerms Analysis of covariance
Bioinformatics
Brain architecture
Brain mapping
canonical correlation analysis
Correlation analysis
covariance analysis
cross-subject alignment
Datasets
Eigenvalues
fMRI
Functional magnetic resonance imaging
Medical imaging
Methods
Multivariate analysis
Neuroimaging
Neuroscience
partial least squares regression
Principal components analysis
python
Registration
Retina
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcOAChfIRaJGREBKHaJ3YcWIu1XZFBQJVKwRSb5Y_aaQ2KckWafn1eJxk6SLUC9fEkUZ-4_E8e_IGode2CJ7CDUmF0zplTJSpqkqWek1z4jOiMxV1Zj-XJyfV6alYjgdu_VhWOcXEGKhta-CMfAZtp4FsVMXh5Y8UukbB7erYQuM2ugMqCTSW7i2nSBxy9aIcriYDERMz3wTQoJqLR41OsbUVRcX-f6WZf1dLXtt-jh_8r-G76P6YeOL54CkP0S3XPEJ78yaQ7os1foNjKWg8Y99DZ8t1F-b8Hf4SO9V39S9n8SfXNe4cL1TTxn8p8QIaewyldHjSNsF1g5dr0CPAqrH446rH82tX5HjV4igHUl_E7kiP0bfj918XH9KxJUNqQmYn0lyb3BWZz4pS5aQorKnCvLjKK0qN0cpTqvLMcscKQhznSgRPENpllnhROUGfoJ1gpXuGsNKMQjhQjnGmmQ3ES7FMBX5GqSU2T9BsQkeaUa8c2macy8BbAE8Z8ZSAp4x4Jujt5ovLQavjhrFHAPhmHKhsxwdt912Oi1bSytoQAzNPcscoE0ob742iIW2tghtXCdqfIJfj0u_lH7wT9GrzOixauIlRjWuvehloNaecC0YS9HTwro0loOgINC5B5ZbfbZm6_aapz6IwOLBFxsXzm816ge7BPMAPlXm-j3ZW3ZU7QHfNz1Xddy_jCvoNHTkn5g
  priority: 102
  providerName: ProQuest
Title Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python and Its Applications to Neuroimaging
URI https://www.ncbi.nlm.nih.gov/pubmed/27920675
https://www.proquest.com/docview/2295415685
https://www.proquest.com/docview/1846366940
https://pubmed.ncbi.nlm.nih.gov/PMC5118469
https://doaj.org/article/38dd3071f02e4349abcffca3083810b8
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6evAi6vpRXYcIIngomyZp2njblVkU3KGIwngK-WSLux3pzArjwb_dl7QzzIjoxUsOSVqS916a92tefg-hl64ESxGW5NIbk3Muq1zXFc-DYZSEgphCJ57ZD9VsVs_nstlJ9RVjwgZ64EFwx6x2DuywCIR6zrjUxoZgNQPXoYZXpWu-4PVswNTwDQYvvayGQ0mAYPI4dKCuGMclEjun3NuEElf_nxzM3-Mkdzaes3vo7ugx4pNhpPfRDd89QIcnHaDlqzV-hVMMZ_o5fogumnUPwnqD-5Rivm9_eIe_-r7zlxhkuEiXILGNGTmGGDisR1IS3Ha4WUciAahyuF0t8e7ZNl4tcKK-bK9SWqOH6PPZ9NPbd_mYSyG34JLJnBpLfVmEoqw0JWXpbA3T8nXQjFlrdGBM08IJz0tCvBBaggql8YUjQdZeskfoAEbpnyCsDWdxHWvPBTfcAWLSvNAArBhzxNEMHW-Eq-xINB7zXVwqABxRHSqpQ0V1qKSODL3ePvFtINn4S9_TqK9tv0iPnSrAaNRoNOpfRpOho4221bhmlyomNo9wti4z9GLbDKstHqHozi-ulwrwsGBCSE4y9Hgwju1IIhVjxF8ZqvbMZm-o-y1de5EYvSPM40I-_R9ze4buRGnF-5KUHqGDVX_tn6Pb9vuqXfYTdLOa1xN063Q6az5O0qKB8pw2saxS-XMK7c378-bLL7DoIgg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmgQQvDBgfGQOMBEg8RE1sJ7GRECqFaVVLVaEh7c1zbGertCWjzUDlR_Eb8XWSsiK0tz3wGieSnRwf3xNfn4vQS5M4pKQ6CoXN85AxkYWKZywsckqiIo7yWHmf2XE2mfDDQzHdQL-6szCQVtlxoidqU2n4R96DstMgNnjy_vxbCFWjYHe1K6HRwGJklz-cZFu8G3503_cVIXufDgb7YVtVINQuOBEhyTWxSVzESaZIlCRGc-NWCl4oSrXOVUGpIrFJLUuiyKapEm4wIrexiQrBLZgvOcq_4cIIwn2q4LRjfqcNkqzZCnXCT_SK0oEEssdS7wkq1pY-XyHgX2Ht39mZl5a7va3_7UXdRXfawBr3m5lwD23Y8j7a7peqrs6W-DX2qa5-D2EbnUyXc4ept_iLPYY03NlPa_DIzkt7igeqrPxZUTyAwiVNqiDuvFvwrMTTJfgtYFUaPKwXuH8pBQDXFfZ2J7MzX_3pAfp6LWN-iDZdL-1jhFXOKNCdsixlOTNOWCoWK6c_KTWRIQHqdWiQuvVjh7Igp9LpMsCP9PiRgB_p8ROgN6snzhsvkivu_QAAW90HLuL-QjU_li0pScqNcRwfFxGxjDKhcl0UWlEXlnM3TXmAdjuIyZbaFvIPvgL0YtXsSAl2mlRpq4uFjDn40KWCRQF61KB51RNwrASZGqBsDedrXV1vKWcn3vgc1DBLxc7V3XqObu0ffB7L8XAyeoJuwzuBw6OE7KLNen5hn6Kb-ns9W8yf-dmL0dF1z4LfQXKF6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwGLWmgRAv3AYjMMBIgMRD1MR2LkZCqHRUVJ2qCoG0N-P4slXaktFkoPLT-HX4c5KyIrS3PfAaO5LtHH_2iY_Ph9ALnTikpCoKuSmKkDGehTLPWGgLSiIbR0Usvc_sQTab5YeHfL6FfvV3YUBW2cdEH6h1peAf-QDSTgPZyJOB7WQR8_3xu7NvIWSQgpPWPp1GC5GpWf1w9K1-O9l33_olIeMPn0cfwy7DQKjcRoWHpFDEJLGNk0ySKEm0yrVbNXIrKVWqkJZSSWKdGpZEkUlTyV3HeGFiHVmeGzBicuH_Wgam5V42OO9XAccTkqw9FnUkkA9s6QADSrLU-4PyjWXQZwv41xb3b6XmhaVvfPt_HrQ76Fa34cbDdobcRVumvId2hqVsqtMVfoW9BNafLeyg4_lq6bD2Bn8yRyDPXfw0Gk_NsjQneCTLyt8hxSNIaNJKCHHv6YIXJZ6vwIcBy1LjSVPj4QVpAG4q7G1QFqc-K9R99OVK-vwAbbtWmocIy4JRCIPSsJQVTDvCKVksHS-lVEeaBGjQI0Oozqcd0oWcCMfXAEvCY0kAloTHUoBer984az1KLqn7HsC2rgfu4v5BtTwSXbASNNfaxf7YRsQwyrgslLVKUrddz930zQO018NNdCGvFn-wFqDn62IXrOAESpamOq9FnIM_XcpZFKDdFtnrloCTJdDXAGUbmN9o6mZJuTj2hujAklnKH13erGfohgO_OJjMpo_RTRgSuFNKyB7abpbn5gm6rr43i3r51E9kjL5e9ST4DQuljqU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrcca%3A+regularized+kernel+canonical+correlation+analysis+in+Python+and+its+applications+to+neuroimaging&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Natalia+Y+Bilenko&rft.au=Jack+L+Gallant&rft.au=Jack+L+Gallant&rft.date=2016-11-22&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=10&rft_id=info:doi/10.3389%2Ffninf.2016.00049&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38dd3071f02e4349abcffca3083810b8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon