Asynchronous Branch-Parallel Simulation of Detailed Neuron Models

Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic currents and biochemical processes within branching topological representations of the neurons. Accelera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroinformatics Jg. 13; S. 54
Hauptverfasser: Magalhães, Bruno R. C., Sterling, Thomas, Hines, Michael, Schürmann, Felix
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 23.07.2019
Frontiers Media S.A
Schlagworte:
ISSN:1662-5196, 1662-5196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic currents and biochemical processes within branching topological representations of the neurons. Acceleration of such simulation is possible in the weak scaling limit by modeling neurons as indivisible computation units and increasing the computing power. Strong scaling and simulations close to biological time are difficult, yet required, for the study of synaptic plasticity and other use cases requiring simulation of neurons for long periods of time. Current methods rely on parallel Gaussian Elimination, computing triangulation and substitution of many branches simultaneously. Existing limitations are: (a) high heterogeneity of compute time per neuron leads to high computational load imbalance; and (b) difficulty in providing a computation model that fully utilizes the computing resources on distributed multi-core architectures with Single Instruction Multiple Data (SIMD) capabilities. To address these issues, we present a strategy that extracts flow-dependencies between parameters of the ODEs and the algebraic solver of individual neurons. Based on the resulting map of dependencies, we provide three techniques for memory, communication, and computation reorganization that yield a load-balanced distributed asynchronous execution. The new computation model distributes datasets and balances computational workload across a distributed memory space, exposing a tree-based parallelism of neuron topological structure, an embarrassingly parallel execution model of neuron subtrees, and a SIMD acceleration of subtree state updates. The capabilities of our methods are demonstrated on a prototype implementation developed on the core compute kernel of the NEURON scientific application, built on the HPX runtime system for the ParalleX execution model. Our implementation yields an asynchronous distributed and parallel simulation that accelerates single neuron to medium-sized neural networks. Benchmark results display better strong scaling properties, finer-grained parallelism, and lower time to solution compared to the state of the art, on a wide range of distributed multi-core compute architectures.
AbstractList Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic currents and biochemical processes within branching topological representations of the neurons. Acceleration of such simulation is possible in the weak scaling limit by modeling neurons as indivisible computation units and increasing the computing power. Strong scaling and simulations close to biological time are difficult, yet required, for the study of synaptic plasticity and other use cases requiring simulation of neurons for long periods of time. Current methods rely on parallel Gaussian Elimination, computing triangulation and substitution of many branches simultaneously. Existing limitations are: (a) high heterogeneity of compute time per neuron leads to high computational load imbalance; and (b) difficulty in providing a computation model that fully utilizes the computing resources on distributed multi-core architectures with Single Instruction Multiple Data (SIMD) capabilities. To address these issues, we present a strategy that extracts flow-dependencies between parameters of the ODEs and the algebraic solver of individual neurons. Based on the resulting map of dependencies, we provide three techniques for memory, communication, and computation reorganization that yield a load-balanced distributed asynchronous execution. The new computation model distributes datasets and balances computational workload across a distributed memory space, exposing a tree-based parallelism of neuron topological structure, an embarrassingly parallel execution model of neuron subtrees, and a SIMD acceleration of subtree state updates. The capabilities of our methods are demonstrated on a prototype implementation developed on the core compute kernel of the NEURON scientific application, built on the HPX runtime system for the ParalleX execution model. Our implementation yields an asynchronous distributed and parallel simulation that accelerates single neuron to medium-sized neural networks. Benchmark results display better strong scaling properties, finer-grained parallelism, and lower time to solution compared to the state of the art, on a wide range of distributed multi-core compute architectures.
Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic currents and biochemical processes within branching topological representations of the neurons. Acceleration of such simulation is possible in the weak scaling limit by modeling neurons as indivisible computation units and increasing the computing power. Strong scaling and simulations close to biological time are difficult, yet required, for the study of synaptic plasticity and other use cases requiring simulation of neurons for long periods of time. Current methods rely on parallel Gaussian Elimination, computing triangulation and substitution of many branches simultaneously. Existing limitations are: (a) high heterogeneity of compute time per neuron leads to high computational load imbalance; and (b) difficulty in providing a computation model that fully utilizes the computing resources on distributed multi-core architectures with Single Instruction Multiple Data (SIMD) capabilities. To address these issues, we present a strategy that extracts flow-dependencies between parameters of the ODEs and the algebraic solver of individual neurons. Based on the resulting map of dependencies, we provide three techniques for memory, communication, and computation reorganization that yield a load-balanced distributed asynchronous execution. The new computation model distributes datasets and balances computational workload across a distributed memory space, exposing a tree-based parallelism of neuron topological structure, an embarrassingly parallel execution model of neuron subtrees, and a SIMD acceleration of subtree state updates. The capabilities of our methods are demonstrated on a prototype implementation developed on the core compute kernel of the NEURON scientific application, built on the HPX runtime system for the ParalleX execution model. Our implementation yields an asynchronous distributed and parallel simulation that accelerates single neuron to medium-sized neural networks. Benchmark results display better strong scaling properties, finer-grained parallelism, and lower time to solution compared to the state of the art, on a wide range of distributed multi-core compute architectures.Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic currents and biochemical processes within branching topological representations of the neurons. Acceleration of such simulation is possible in the weak scaling limit by modeling neurons as indivisible computation units and increasing the computing power. Strong scaling and simulations close to biological time are difficult, yet required, for the study of synaptic plasticity and other use cases requiring simulation of neurons for long periods of time. Current methods rely on parallel Gaussian Elimination, computing triangulation and substitution of many branches simultaneously. Existing limitations are: (a) high heterogeneity of compute time per neuron leads to high computational load imbalance; and (b) difficulty in providing a computation model that fully utilizes the computing resources on distributed multi-core architectures with Single Instruction Multiple Data (SIMD) capabilities. To address these issues, we present a strategy that extracts flow-dependencies between parameters of the ODEs and the algebraic solver of individual neurons. Based on the resulting map of dependencies, we provide three techniques for memory, communication, and computation reorganization that yield a load-balanced distributed asynchronous execution. The new computation model distributes datasets and balances computational workload across a distributed memory space, exposing a tree-based parallelism of neuron topological structure, an embarrassingly parallel execution model of neuron subtrees, and a SIMD acceleration of subtree state updates. The capabilities of our methods are demonstrated on a prototype implementation developed on the core compute kernel of the NEURON scientific application, built on the HPX runtime system for the ParalleX execution model. Our implementation yields an asynchronous distributed and parallel simulation that accelerates single neuron to medium-sized neural networks. Benchmark results display better strong scaling properties, finer-grained parallelism, and lower time to solution compared to the state of the art, on a wide range of distributed multi-core compute architectures.
Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic currents and biochemical processes within branching topological representations of the neurons. Acceleration of such simulation is possible in the weak scaling limit by modelling neurons as indivisible computation units and increasing the computing power. Strong scaling and simulations close to biological time are difficult, yet required for the study of synaptic plasticity and other use cases requiring simulation of neurons for long periods of time. Current methods rely on parallel Gaussian elimination, computing triangulation and substitution of many branches simultaneously. Existing limitations are: (a) high heterogeneity of compute time per neuron leads to high computational load imbalance; and (b) difficulty in providing a computation model that fully utilises the computing resources on distributed multi-core architectures with Single Instruction Multiple Data (SIMD) capabilities. To address these issues, we present a strategy that extracts flow-dependencies between parameters of the ODEs and the algebraic solver of individual neurons. Based on the resulting dependencies map, we provide three techniques for memory, communication, and computation reorganization that yield a load-balanced distributed asynchronous execution. The new computation model distributes datasets and balances computational workload across a distributed memory space, exposing a tree-based parallelism of neuron topological structure, an embarrassingly parallel execution model of neuron subtrees, and a SIMD acceleration of subtree state updates. The capabilities of our methods are demonstrated on a prototype implementation developed on the core compute kernel of the NEURON scientific application, built on the HPX runtime system for the ParalleX execution model. Our implementation yields a fully-asynchronous distributed and parallel simulation that accelerates single neuron to medium-sized neural networks. Benchmark results display better strong scaling properties, finer-grained parallelism, and lower time to solution compared to the state of the art, on a wide range of distributed multi-core compute architectures.
Author Sterling, Thomas
Magalhães, Bruno R. C.
Hines, Michael
Schürmann, Felix
AuthorAffiliation 2 Department of Intelligent Systems Engineering, CCA Laboratory, Indiana University , Bloomington, IN , United States
1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Biotech , Geneva , Switzerland
3 Department of Neuroscience, Yale University , New Haven, CT , United States
AuthorAffiliation_xml – name: 1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Biotech , Geneva , Switzerland
– name: 3 Department of Neuroscience, Yale University , New Haven, CT , United States
– name: 2 Department of Intelligent Systems Engineering, CCA Laboratory, Indiana University , Bloomington, IN , United States
Author_xml – sequence: 1
  givenname: Bruno R. C.
  surname: Magalhães
  fullname: Magalhães, Bruno R. C.
– sequence: 2
  givenname: Thomas
  surname: Sterling
  fullname: Sterling, Thomas
– sequence: 3
  givenname: Michael
  surname: Hines
  fullname: Hines, Michael
– sequence: 4
  givenname: Felix
  surname: Schürmann
  fullname: Schürmann, Felix
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31396069$$D View this record in MEDLINE/PubMed
BookMark eNp1UstuFDEQtFAQSRbunNBIXLjM4md7fEFaQoBI4SEBZ8vj8SReee3EnkHK38e7m6AkEqf2o6pU3V3H6CCm6BB6TfCSsU69H6OP45JiopYYY8GfoSMCQFtBFBw8OB-i41LWGAMFIV-gQ0aYAgzqCK1W5Sbay5ximkvzMZt6aX-abEJwofnlN3Mwk0-xSWPzyU3GBzc0391cCc23NLhQXqLnownFvbqrC_Tn8-nvk6_t-Y8vZyer89by6qy1RFkFllorqRWd62CUUmBpBgAxKDbgnkulDO9FLwlw23MQlhOuuIBOdmyBzva6QzJrfZX9xuQbnYzXu4eUL7TJk7fBadmZgfa18V5ZrjppRuoE5WJ0lkoBuGp92Gtdzf3GDdbFqXb8SPTxT_SX-iL91QDAMWzNvLsTyOl6dmXSG1-sC8FEVwepKZUYE84xr9C3T6DrNOdYR7VFMca4rGWB3jx09M_K_aYqAPYAm1Mp2Y3a-mm3mmrQB02w3kZC7yKht5HQu0hUIn5CvNf-L-UWVGO4OQ
CitedBy_id crossref_primary_10_1007_s12021_019_09451_w
crossref_primary_10_1016_j_jneumeth_2021_109400
crossref_primary_10_1016_j_pbiomolbio_2021_05_005
Cites_doi 10.3389/fninf.2011.00015
10.1145/2907294.2907320
10.1016/j.cell.2015.09.029
10.1109/HOTCHIPS.2015.7477467
10.1016/0020-7101(84)90008-4
10.3389/fninf.2014.00076
10.1038/nrn3578
10.1016/0165-0270(92)90086-S
10.1109/IPDPS.2010.5470407
10.1007/s10827-008-0087-5
10.1142/S0129626411000151
10.1016/S0004-3702(98)00086-1
10.1007/978-3-319-41321-1_5
10.4249/scholarpedia.2674
10.3389/978-2-88919-043-0
10.4249/scholarpedia.1430
10.3389/fncom.2011.00049
10.3389/neuro.01.026.2009
10.1162/neco.1997.9.6.1179
10.1109/IPDPSW.2016.120
10.1109/ICPPW.2009.14
10.1109/HiPC.2017.00051
10.1007/978-3-319-41321-1_19
10.1162/NECO_a_00123
10.1113/jphysiol.1952.sp004764
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Magalhães, Sterling, Hines and Schürmann. 2019 Magalhães, Sterling, Hines and Schürmann
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Magalhães, Sterling, Hines and Schürmann. 2019 Magalhães, Sterling, Hines and Schürmann
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2019.00054
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_78ad2b519b9c4987af2e5245fec27560
PMC6664068
31396069
10_3389_fninf_2019_00054
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4054-c19c96c2cc72c58e86f77507ad665d93d0b4799a4b5b7164cb465c41494568783
IEDL.DBID M2P
ISSN 1662-5196
IngestDate Tue Oct 14 19:04:08 EDT 2025
Tue Nov 04 01:57:39 EST 2025
Thu Sep 04 15:49:44 EDT 2025
Fri Jul 25 11:45:08 EDT 2025
Thu Apr 03 06:52:03 EDT 2025
Tue Nov 18 22:23:15 EST 2025
Sat Nov 29 02:31:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HPX
neurosimulation
asynchronous runtime systems
branch-parallelism
neural networks
ParalleX
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4054-c19c96c2cc72c58e86f77507ad665d93d0b4799a4b5b7164cb465c41494568783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Sharon Crook, Arizona State University, United States
Reviewed by: Susanne Kunkel, Norwegian University of Life Sciences, Norway; Mikael Djurfeldt, Royal Institute of Technology, Sweden
OpenAccessLink https://www.proquest.com/docview/2273334727?pq-origsite=%requestingapplication%
PMID 31396069
PQID 2273334727
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_78ad2b519b9c4987af2e5245fec27560
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6664068
proquest_miscellaneous_2270014404
proquest_journals_2273334727
pubmed_primary_31396069
crossref_citationtrail_10_3389_fninf_2019_00054
crossref_primary_10_3389_fninf_2019_00054
PublicationCentury 2000
PublicationDate 2019-07-23
PublicationDateYYYYMMDD 2019-07-23
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-23
  day: 23
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References B25
Sterling (B30) 2014
Gewaltig (B6) 2007; 2
Hines (B11) 2008; 25
Kumbhar (B22) 2019
Korf (B18) 1998; 106
Walker (B32) 1996; 12
Brette (B2) 2011; 23
Duran (B5) 2011; 21
Kumar (B21) 2010
Markram (B26) 2012; 4
Kandel (B15) 2013; 14
Markram (B27) 2015; 163
Hodgkin (B12) 1952; 117
Kumbhar (B23) 2016
Kissel (B16) 2016
Kulkarni (B20) 2016
Hines (B8) 1984; 15
Hines (B9) 2011; 5
Magalhães (B24) 2016
Hines (B10) 1997; 9
Chindemi (B4) 2018
B1
Zenke (B33) 2014; 8
Goodman (B7) 2008; 3
Sodani (B29) 2015
Carnevale (B3) 1992; 41
Kale (B14) 1996
Kozloski (B19) 2011; 5
Niebur (B28) 2008; 3
Kaiser (B13) 2009
Klijn (B17) 2017
Vooturi (B31) 2017
References_xml – year: 2019
  ident: B22
  article-title: CoreNEURON: an optimized compute engine for the NEURON simulator
  publication-title: arXiv preprint. arXiv:1901.10975.
– volume: 5
  start-page: 10
  year: 2011
  ident: B19
  article-title: An ultrascalable solution to large-scale neural tissue simulation
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2011.00015
– volume-title: 26th Computational Neuroscience Meeting
  year: 2017
  ident: B17
  article-title: Arbor: A morphologically detailed neural network simulator for modern high performance computer architectures,
– start-page: 15
  volume-title: Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing
  year: 2016
  ident: B20
  article-title: Network-managed virtual global address space for message-driven runtimes,
  doi: 10.1145/2907294.2907320
– volume: 163
  start-page: 456
  year: 2015
  ident: B27
  article-title: Reconstruction and simulation of neocortical microcircuitry
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.029
– start-page: 175
  volume-title: Charm++: Parallel Programming with Message-Driven Objects
  year: 1996
  ident: B14
  article-title: Parallel Programming using C++,
– start-page: 1
  volume-title: IEEE Hot Chips 27 Symposium (HCS)
  year: 2015
  ident: B29
  article-title: Knights landing (KNL): 2nd generation Intel Xeon Phi processor,
  doi: 10.1109/HOTCHIPS.2015.7477467
– volume: 15
  start-page: 69
  year: 1984
  ident: B8
  article-title: Efficient computation of branched nerve equations
  publication-title: Int. J. Biomed. Comput.
  doi: 10.1016/0020-7101(84)90008-4
– volume: 8
  start-page: 76
  year: 2014
  ident: B33
  article-title: Limits to high-speed simulations of spiking neural networks using general-purpose computers
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00076
– ident: B1
– volume: 14
  start-page: 659
  year: 2013
  ident: B15
  article-title: Neuroscience thinks big (and collaboratively)
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3578
– volume: 41
  start-page: 205
  year: 1992
  ident: B3
  article-title: Kinetics of diffusion in a spherical cell. I. No solute buffering
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(92)90086-S
– ident: B25
– volume-title: International Conference on Parallel and Distributed Processing Symposium, Vol. 2010
  year: 2010
  ident: B21
  article-title: Optimization of applications with non-blocking neighborhood collectives via multisends on the blue gene/p supercomputer,
  doi: 10.1109/IPDPS.2010.5470407
– volume: 25
  start-page: 439
  year: 2008
  ident: B11
  article-title: Fully implicit parallel simulation of single neurons
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-008-0087-5
– volume: 21
  start-page: 173
  year: 2011
  ident: B5
  article-title: Ompss: a proposal for programming heterogeneous multi-core architectures
  publication-title: Parallel Process. Lett.
  doi: 10.1142/S0129626411000151
– volume: 106
  start-page: 181
  year: 1998
  ident: B18
  article-title: A complete anytime algorithm for number partitioning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(98)00086-1
– start-page: 81
  volume-title: International Conference on High Performance Computing
  year: 2016
  ident: B24
  article-title: An efficient parallel load-balancing framework for orthogonal decomposition of geometrical data,
  doi: 10.1007/978-3-319-41321-1_5
– volume: 3
  start-page: 2674
  year: 2008
  ident: B28
  article-title: Neuronal cable theory
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.2674
– volume: 4
  start-page: 2
  year: 2012
  ident: B26
  article-title: Spike-timing-dependent plasticity: a comprehensive overview
  publication-title: Front. Synapt. Neurosci.
  doi: 10.3389/978-2-88919-043-0
– volume-title: Towards a Unified Understanding of Synaptic Plasticity Parsimonious Modeling and Simulation of the Glutamatergic Synapse Life-Cycle.
  year: 2018
  ident: B4
– volume: 12
  start-page: 56
  year: 1996
  ident: B32
  article-title: MPI: a standard message passing interface
  publication-title: Supercomputer
– volume: 2
  start-page: 1430
  year: 2007
  ident: B6
  article-title: NEST (NEural Simulation Tool)
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1430
– volume: 5
  start-page: 49
  year: 2011
  ident: B9
  article-title: Comparison of neuronal spike exchange methods on a blue gene/p supercomputer
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2011.00049
– volume: 3
  start-page: 26
  year: 2008
  ident: B7
  article-title: The brian simulator
  publication-title: Front. Neurosci.
  doi: 10.3389/neuro.01.026.2009
– volume-title: Exascale Applications and Software Conference
  year: 2014
  ident: B30
  article-title: Towards exascale co-design in a runtime system,
– volume: 9
  start-page: 1179
  year: 1997
  ident: B10
  article-title: The neuron simulation environment
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.6.1179
– start-page: 1736
  volume-title: IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
  year: 2016
  ident: B16
  article-title: Photon: remote memory access middleware for high-performance runtime systems,
  doi: 10.1109/IPDPSW.2016.120
– start-page: 394
  volume-title: International Conference on Parallel Processing Workshops, 2009. ICPPW'09
  year: 2009
  ident: B13
  article-title: Parallex an advanced parallel execution model for scaling-impaired applications,
  doi: 10.1109/ICPPW.2009.14
– start-page: 388
  volume-title: IEEE 24th International Conference on High Performance Computing (HiPC)
  year: 2017
  ident: B31
  article-title: Parallelizing Hines matrix solver in neuron simulations on GPU,
  doi: 10.1109/HiPC.2017.00051
– start-page: 363
  volume-title: International Conference on High Performance Computing
  year: 2016
  ident: B23
  article-title: Leveraging a cluster-booster architecture for brain-scale simulations,
  doi: 10.1007/978-3-319-41321-1_19
– volume: 23
  start-page: 1503
  year: 2011
  ident: B2
  article-title: Vectorized algorithms for spiking neural network simulation
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00123
– volume: 117
  start-page: 500
  year: 1952
  ident: B12
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1952.sp004764
SSID ssj0062657
Score 2.1926715
Snippet Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 54
SubjectTerms asynchronous runtime systems
branch-parallelism
Branches
Communication
Computational neuroscience
Decomposition
HPX
International conferences
Neural networks
Neurons
Neuroscience
Neurosciences
neurosimulation
ParalleX
Scaling
Supercomputers
Synaptic plasticity
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEB1C6CGX0jZp6zQtKpRAD2a9smRJx03b0EMJgaSQm7DGMlnYKGE3LeTvOyN7l2wp7aVXS4bxzMh6zxq_AfhQIe3btpdlsE4SQeGflWmbLE1r1RQ7o_pBXf-bOTuzV1fu_FGrL64JG-SBB8dNjG07GQhnBIeKCHLby6il0n1EVi7PbL0ybk2mhncwoXRthkNJomBu0icKF9dxsThlpdXWJpS1-v8EMH-vk3y08Zw-g6cjYhSzwdLnsBPTC9ifJWLLNw_iWOQazvxxfB9ms9VDQta7JUIvTrhpxnV53i65YcpCXMxvxmZd4rYXn3PxaOxE1udIgruiLVYH8P30y-Wnr-XYJKFEwlqqxKlD16BENBK1jbbpDaEA03ZNoztXd1VQxrlWBR2YG2FQjUZFxIigkzW2fgm76TbF1yBCo52dmsbJiCp00bmgbB8YMzTcm6aAydprHkcFcW5ksfDEJNjPPvvZs5999nMBHzd33A3qGX-Ze8KB2Mxj3et8gbLBj9ng_5UNBRytw-jHxbjykiBaXStKwQLeb4ZpGfHZSJsiRYTnMFtUFdnxaoj6xpKaUDI5wBVgtvJhy9TtkTS_zlLdRA4JMdnD__Fsb2CPvcUflmV9BLv3yx_xLTzBn_fz1fJdzv9fhfUI4w
  priority: 102
  providerName: Directory of Open Access Journals
Title Asynchronous Branch-Parallel Simulation of Detailed Neuron Models
URI https://www.ncbi.nlm.nih.gov/pubmed/31396069
https://www.proquest.com/docview/2273334727
https://www.proquest.com/docview/2270014404
https://pubmed.ncbi.nlm.nih.gov/PMC6664068
https://doaj.org/article/78ad2b519b9c4987af2e5245fec27560
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXKJRHoF0ZCSFxiDbrOLF9QrvtViDRVcRDWk5R7Dh0pW1SNi1SL_x2ZpzswiLUCxcfYicaeWzPN-PJNwCvIot2W1U8NEpzdFDoZ2U0k6EslBjZUoqqY9f_IGczNZ_rrA-4tX1a5fpM9Ad12ViKkQ852tk4Fvidt5ffQ6oaRberfQmNHdhDZDOilK4znq1PYsTqieyuJtER08OqRqVRNhdRVEaJ2DJFnrH_XzDz72zJP8zP6YP_FXwf7vfAk427lfIQ7rj6ERyMa3S6L27Ya-ZTQX2M_QDG4_amtkSb21y3bEK1N87DrFhR3ZUl-7S46Gt-saZiJz4H1ZXM03zUjIqrLdvH8OV0-vn4XdjXWggtQjYR2pG2OrXcWsltopxKK4lgQhZlmialjsvICKl1IUxiyMWyRqSJFehfIQJTUsVPYLduavcMmEkTrUYy1dxZYUqntRGqMgQ9UipxE8BwPe257YnIqR7GMkeHhBSVe0XlpKjcKyqAN5s3LjsSjlvGTkiTm3FEn-0fNKtveb8bc6mKkhsEr0ZboZUsKu4SLpLKWaLDjwI4XOsy7_d0m_9WZAAvN924G-mKpagdaoTGkNMpIpTjabdsNpLECLZxAnQAcmtBbYm63VMvzj3jN_qYCLzU89vFegH3aB4o8szjQ9i9Wl27I7hrf1wt2tUAduRcDWBvMp1lHwc-9jDw24Va6dufU-zP3p9lX38BUyoeYQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgle-DVghQFGAiQeoqaOE9sPCHWMadW6qhJDGk8hdpytUpeMpgP1n-Jv5C4_CkVob3vgNXEix_5yd599vg_glW_Rb6uMe0ZpjgSFDiujm_RkokTfplJkdXX9kRyP1cmJnmzAz_YsDKVVtjaxMtRpYWmNvMfRzwaBwPe8v_jmkWoU7a62Eho1LA7d8gdStvLdcA_n9zXn-x-PPxx4jaqAZzE4EZ7ta6sjy62V3IbKqSiT6DZlkkZRmOog9Y2QWifChIbIhDUiCq1AJoGxhpIqwPfegE2BYPc7sDkZHk2-tLYf2UEo681QpH66l-UIE8ofo6KYfijWnF-lEfCvwPbv_Mw_HN7-3f9tqO7BnSa0ZoP6X7gPGy5_AFuDPFkU50v2hlXJrtUuwhYMBuUyt1QYuLgs2S6pi5x5k2ROyjIz9ml63qiasSJje1WWrUtZVcgkZyQfNysfwudr-ZhH0MmL3G0DM1GoVV9GmjsrTOq0NkJlhoKriER8utBrpzm2Tal1UvyYxUi5CBhxBYyYgBFXwOjC29UTF3WZkSva7hJyVu2oQHh1oZifxo29iaVKUm4wPDfaCq1kknEXchFmzlLBf78LOy124sZqlfFv4HTh5eo22hvaREpyhzNCbYhWCx_78biG6aonAdIJHADdBbkG4LWurt_Jp2dVTXNk0RhaqidXd-sF3Do4PhrFo-H48CncpjGhdXYe7EBnMb90z-Cm_b6YlvPnzY_J4Ot1A_wXISpyEA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUK8cBuwwgAjARIPUVPHie0HhFq6imlTVXGR9pbFjsMqdcnWdKD-NX4d5-RSKEJ72wOviRM59pdzzmcfnw_glW_Rb6uMe0ZpjgSFDiujm_RkokTfplJkdXX9IzmZqONjPd2Cn-1ZGEqrbG1iZajTwtIaeY-jnw0Cge_pZU1axHQ0fn9-4ZGCFO20tnIaNUQO3eoH0rfy3cEI5_o15-P9Lx8-eo3CgGcxUBGe7WurI8utldyGyqkok-hCZZJGUZjqIPWNkFonwoSGiIU1IgqtQFaBcYeSKsD33oBtGSDp6cD2cH8y_dT6AWQKoaw3RpEG6l6WI2Qol4wKZPqh2HCElV7Av4Lcv3M1_3B-47v_87DdgztNyM0G9T9yH7Zc_gB2BnmyLM5W7A2rkmCr3YUdGAzKVW6pYHBxWbIhqY6cetNkQYozc_Z5dtaonbEiY6Mq-9alrCpwkjOSlZuXD-HrtXzMI-jkRe52gZko1KovI82dFSZ1WhuhMkNBV0TiPl3otVMe26YEOymBzGOkYgSSuAJJTCCJK5B04e36ifO6_MgVbYeEonU7KhxeXSgW3-LGDsVSJSk3GLYbbYVWMsm4C7kIM2dJCMDvwl6Lo7ixZmX8G0RdeLm-jXaINpeS3OGMUBui28LHfjyuIbvuSYA0AwdAd0FugHmjq5t38tlpVesc2TWGnOrJ1d16AbcQ1fHRweTwKdymIaHldx7sQWe5uHTP4Kb9vpyVi-fNP8rg5Lrx_QtnNnqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+Branch-Parallel+Simulation+of+Detailed+Neuron+Models&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Magalh%C3%A3es%2C+Bruno+R.+C.&rft.au=Sterling%2C+Thomas&rft.au=Hines%2C+Michael&rft.au=Sch%C3%BCrmann%2C+Felix&rft.date=2019-07-23&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=13&rft_id=info:doi/10.3389%2Ffninf.2019.00054&rft_id=info%3Apmid%2F31396069&rft.externalDocID=PMC6664068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon