Recursive least-squares backpropagation algorithm for stop-and-go decision-directed blind equalization

Stop-and-go decision-directed (S&G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 13; číslo 6; s. 1472 - 1481
Hlavní autoři: Abrar, S., Zerguine, A., Bettayeb, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.11.2002
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stop-and-go decision-directed (S&G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean-square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS)-based complex-valued backpropagation learning algorithm is derived for S&G-DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.
AbstractList Stop-and-go decision-directed (S-and-G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean-square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS)-based complex-valued backpropagation learning algorithm is derived for S-and-G-DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.
Stop-and-go decision-directed (S&G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean-square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS)-based complex-valued backpropagation learning algorithm is derived for S&G-DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.
Stop-and-go decision-directed (S-and-G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean-square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS)-based complex-valued backpropagation learning algorithm is derived for S-and-G-DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.Stop-and-go decision-directed (S-and-G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data communication systems. Recently, this scheme has been applied to complex-valued multilayer feedforward neural network, giving robust results with a lower mean-square error at the expense of slow convergence. To overcome this problem, in this work, a fast converging recursive least squares (RLS)-based complex-valued backpropagation learning algorithm is derived for S-and-G-DD blind equalization. Simulation results show the effectiveness of the proposed algorithm in terms of initial convergence.
Author Zerguine, A.
Bettayeb, M.
Abrar, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Abrar
  fullname: Abrar, S.
  organization: Dept. of Comput. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia
– sequence: 2
  givenname: A.
  surname: Zerguine
  fullname: Zerguine, A.
– sequence: 3
  givenname: M.
  surname: Bettayeb
  fullname: Bettayeb, M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18244542$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhrOo9EvXLgSZla7mNieTTJKlFK1CqVDadcgkZ67RuZPbJCPor29ubxURtKsDh-d5OZz3hBzMcUZCXgJdAVB9dnN1tWKUspWinCl2QI6BctFqxuQROcn5K6XABe0PyREoxrng7JiM1-iWlMN3bCa0ubT5brEJczNY922b4taubQlxbuy0jimUL5tmjKnJJW5bO_t2HRuPLuSKtD4kdAV9M0xh9g3WpCn8fNCfk2ejnTK-eJyn5PbD-5vzj-3l54tP5-8uW8cpL-3YC431Lml7DxbkyEBQBAba9gN3g8fdTqneWwCwjiraodJagholG2x3St7uc-vpdwvmYjYhO5wmO2NcstFUat1pTp8kZccZV0zwSr75L8mU6KTsWAVfP4LLsEFvtilsbPphfn27AmIPuBRzTjgaF8rDf0qyYTJAza5JU5s0uybNvsnqnf3l_Y7-p_FqbwRE_IMWiiro7gGY8qrb
CODEN ITNNEP
CitedBy_id crossref_primary_10_1177_0954406211423470
crossref_primary_10_1007_s00170_023_11602_y
crossref_primary_10_1109_TNN_2005_845145
crossref_primary_10_1007_s11082_017_0980_0
crossref_primary_10_1109_LCOMM_2024_3417473
crossref_primary_10_1016_j_mcm_2013_02_011
Cites_doi 10.1109/82.686696
10.1109/TCOM.1984.1096163
10.1109/TCOM.1975.1092854
10.1109/TCOM.1987.1096877
10.1109/TIT.1984.1056896
10.1109/78.124956
10.1109/72.728394
10.1109/TCOM.1980.1094608
10.1049/ip-i-2.1990.0012
10.1109/29.1536
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
DOI 10.1109/TNN.2002.804282
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
EndPage 1481
ExternalDocumentID 18244542
10_1109_TNN_2002_804282
1058081
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
7SP
F28
FR3
ID FETCH-LOGICAL-c404t-f659e5427a6d1a17f2150e1219a6b4cbde17f2886da111ac0803e899718f72ba3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000179415900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Fri Sep 05 12:46:14 EDT 2025
Fri Sep 05 00:03:36 EDT 2025
Fri Sep 05 12:40:01 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
Sat Nov 29 08:04:31 EST 2025
Tue Nov 18 22:43:53 EST 2025
Tue Aug 26 20:56:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-f659e5427a6d1a17f2150e1219a6b4cbde17f2886da111ac0803e899718f72ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18244542
PQID 28537732
PQPubID 23500
PageCount 10
ParticipantIDs ieee_primary_1058081
proquest_miscellaneous_734248254
crossref_citationtrail_10_1109_TNN_2002_804282
crossref_primary_10_1109_TNN_2002_804282
proquest_miscellaneous_28537732
pubmed_primary_18244542
proquest_miscellaneous_907993940
PublicationCentury 2000
PublicationDate 2002-11-01
PublicationDateYYYYMMDD 2002-11-01
PublicationDate_xml – month: 11
  year: 2002
  text: 2002-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2002
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref11
ref10
ref2
ref1
Haykin (ref7) 1996
ref8
ref9
ref3
Duda (ref5) 1973
ref6
Proakis (ref4) 2001
References_xml – volume-title: Pattern Classification and Scene Analysis
  year: 1973
  ident: ref5
– ident: ref11
  doi: 10.1109/82.686696
– ident: ref2
  doi: 10.1109/TCOM.1984.1096163
– ident: ref8
  doi: 10.1109/TCOM.1975.1092854
– volume-title: Adaptive Filter Theory
  year: 1996
  ident: ref7
– ident: ref3
  doi: 10.1109/TCOM.1987.1096877
– ident: ref9
  doi: 10.1109/TIT.1984.1056896
– ident: ref10
  doi: 10.1109/78.124956
– ident: ref6
  doi: 10.1109/72.728394
– ident: ref1
  doi: 10.1109/TCOM.1980.1094608
– ident: ref12
  doi: 10.1049/ip-i-2.1990.0012
– volume-title: Digital Commun.
  year: 2001
  ident: ref4
– ident: ref13
  doi: 10.1109/29.1536
SSID ssj0014506
Score 1.7338704
Snippet Stop-and-go decision-directed (S&G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in data...
Stop-and-go decision-directed (S-and-G-DD) equalization is the most primitive blind equalization (BE) method for the cancelling of intersymbol-interference in...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1472
SubjectTerms Algorithms
Backpropagation algorithms
Blind equalizers
Blinds
Computer simulation
Convergence
Data communication
Decision feedback equalizers
Equalization
Feedforward neural networks
Least squares method
Least squares methods
Multi-layer neural network
Neural networks
Recursive
Robustness
Title Recursive least-squares backpropagation algorithm for stop-and-go decision-directed blind equalization
URI https://ieeexplore.ieee.org/document/1058081
https://www.ncbi.nlm.nih.gov/pubmed/18244542
https://www.proquest.com/docview/28537732
https://www.proquest.com/docview/734248254
https://www.proquest.com/docview/907993940
Volume 13
WOSCitedRecordID wos000179415900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  customDbUrl:
  isFulltext: true
  dateEnd: 20111231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014506
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4UNjlsTyKDwhxwEtix7FzrBAVB7RCqKC9RXZstxXbBPaBxL9nxskuRWIP3KJoIo0yHs839sx8AC9z6RppnEP_bjzHeKy4idJxEVyMuL68SsN0vn7Us5mZz6tPB_Bm1wsTQkjFZ2FKj-ku33fNho7K0MMVEUUcwqHWZd-rtbsxKFTi0cTsQvFKCD2M8cmz6u35bJZqEaaGEgTxVwRKlCr70WWKMmfH_6ffPbg7oEl22pv_PhyEdgTj0xYz6etf7BVL9Z3p4HwEx1sCBzb48wju3JhGOIb4mc7eqZydLYjRh69-bKg7iTnbfEPNcetJZmR2cdEtr9aX1wwRL6PRBNy2nl90zA-MPbyPlMEzhzDWs5B6N_uOzwfw5ez9-bsPfKBh4E2RFWseS1UFVQhtS5_bXEdECVnIcauzpSsa5wO9M6b0FjdOS6PLZcA0DqNe1MJZ-RCO2q4Nj4FplUtTRi29pbmE0YhglBEul2XAtWQmMN2apm6GGeVElbGoU66SVTXakpgzRd3bcgKvdx9878dz7Bcdk8VuiCVjTeDF1vY1ehZdl9g2dJtVLRDJaC3xQ7ZHQstCFJRi7xepMo0IsCqyCTzqF9YfBQxCK_yvT_6t2FO43TPP0HHPMzhaLzfhOdxqfq6vVssTdIG5OUku8BuJrgOw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQII9bHA32DFgeUCIB3K0SdukjxNiGuKoEDrQ3qqkScfErYX7QOK_x057x5C4B96qypWs2o4_YvsH8DyWtpLaWrTvynH0xynXtbRceFvXqF8uDct0vkxUUeiLi_zjDrzazMJ470PzmR_TY7jLd221olIZWnhKQBG34DYhZ_XTWps7gyQNSJqYX6Q8F0L1i3ziKH89LYrQjTDWlCKIv3xQAFXZHl8GP3N28H8c3of9Pp5kp50CPIAd3wxgeNpgLn39i71gocMzlM4HcLCGcGC9RQ9g78Y-wiHUn6j6Tg3tbEaYPnzxY0XzScya6htyjodPECQzs8t2frX8es0w5mW0nICbxvHLlrkes4d3vtI7ZjGQdcyH6c1u5vMQPp-9nb455z0QA6-SKFnyOktznyZCmczFJlY1xgmRj_GwM5lNKus8vdM6cwaPTkPLy6XHRA79Xq2ENfIh7DZt44-AqTSWOquVdIY2E9ZaeJ1qYWOZedQmPYLxWjRl1W8pJ7CMWRmylSgvUZaEnSnKTpYjeLn54Hu3oGM76ZAkdoMsCGsEJ2vZl2hbdGFiGt-uFqXAWEYpiR-yLRRKJiKhJHs7SR4pjAHzJBrBo06x_jCgMbjC__r434ydwN3z6YdJOXlXvD-Gex0ODRV_nsDucr7yT-FO9XN5tZg_C4bwGw-RBhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+least-squares+backpropagation+algorithm+for+stop-and-go+decision-directed+blind+equalization&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Abrar%2C+S&rft.au=Zerguine%2C+A&rft.au=Bettayeb%2C+M&rft.date=2002-11-01&rft.issn=1045-9227&rft.volume=13&rft.issue=6&rft.spage=1472&rft_id=info:doi/10.1109%2FTNN.2002.804282&rft_id=info%3Apmid%2F18244542&rft.externalDocID=18244542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon