Online Smooth Backfitting for Generalized Additive Models
We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coef...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 119; číslo 546; s. 1215 - 1228 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Alexandria
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm.
Supplementary materials
for this article are available online. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-1459 1537-274X 1537-274X |
| DOI: | 10.1080/01621459.2023.2182213 |