Online Smooth Backfitting for Generalized Additive Models
We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coef...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 119; číslo 546; s. 1215 - 1228 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Alexandria
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm.
Supplementary materials
for this article are available online. We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm. Supplementary materials for this article are available online. |
| Author | Zhao, Peng Yang, Ying Yao, Fang |
| Author_xml | – sequence: 1 givenname: Ying surname: Yang fullname: Yang, Ying organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Fang orcidid: 0000-0002-8562-6373 surname: Yao fullname: Yao, Fang organization: Department of Probability and Statistics, School of Mathematical Sciences, Center for Statistical Science, Peking University – sequence: 3 givenname: Peng surname: Zhao fullname: Zhao, Peng organization: School of Mathematics and Statistics and Research Institute of Mathematical Sciences (RIMS), Jiangsu Normal University |
| BookMark | eNqFkMtKxTAQhoMoeLw8glBw46bHpEmbFjde8AaKCxXchTGdajQn0SRH0ac35ejGhc5mYPj-YeZbI8vOOyRki9Epoy3dpaypmKi7aUUrPq1YW1WML5EJq7ksKynulslkZMoRWiVrMT7RXLJtJ6S7ctY4LK5n3qfH4hD082BSMu6hGHwoTtFhAGs-sS8O-t4k84bFpe_Rxg2yMoCNuPnd18ntyfHN0Vl5cXV6fnRwUWpBRSr1vdYgGFAhBnrPpUDQLbJWc6zZQGlby0F3fZ5qjQ3Qrmkxn98D9I0E6Pg62VnsfQn-dY4xqZmJGq0Fh34eFc9vNrLiDc_o9i_0yc-Dy9cpTiUXoumkzFS9oHTwMQYc1EswMwgfilE1ClU_QtUoVH0Lzbm9XzltEiTjXQpg7L_p_UXauCx2Bu8-2F4l-LA-DAGcNuMrf674Aq-Jj-0 |
| CitedBy_id | crossref_primary_10_1080_10618600_2024_2319684 crossref_primary_10_1007_s11222_025_10572_3 crossref_primary_10_1007_s10114_025_3305_4 crossref_primary_10_1038_s41598_025_07788_8 crossref_primary_10_1016_j_gecco_2025_e03818 crossref_primary_10_1002_sam_70016 |
| Cites_doi | 10.1080/00401706.2016.1142900 10.1111/1467-9469.00333 10.1214/aos/1034276626 10.1111/j.1369-7412.2007.00606.x 10.1080/01621459.2022.2115374 10.1111/1467-9868.00283 10.1214/009053607000000596 10.5705/ss.202020.0167 10.1016/j.ribaf.2021.101516 10.1214/009053605000000101 10.1214/aos/1176347115 10.1093/biomet/83.3.529 10.1006/jmva.1999.1868 10.2307/2171945 10.5705/ss.202015.0365 10.1080/01621459.2021.2002158 10.2307/2951582 10.1109/tsmcb.2005.847744 10.1109/SSCI.2017.8280927 10.1109/CVPR.2007.382985 10.4310/SII.2011.v4.n1.a8 10.1214/aos/1017939138 10.24251/HICSS.2018.169 10.1016/j.imavis.2009.09.010 |
| ContentType | Journal Article |
| Copyright | 2023 American Statistical Association 2023 2023 American Statistical Association |
| Copyright_xml | – notice: 2023 American Statistical Association 2023 – notice: 2023 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2023.2182213 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 1228 |
| ExternalDocumentID | 10_1080_01621459_2023_2182213 2182213 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2022TQ0360; 2022M723334 – fundername: National Natural Science Foundation of China grantid: 12292981, 11931001, 11871080 – fundername: LMAM and the LMEQF. Peng Zhao's research is partially supported by the National Natural Science Foundation of China grantid: 11871252 – fundername: National Key R&D Program of China grantid: 2020YFE0204200; 2022YFA1003801 – fundername: Guozhi Xu Posdoctoral Research Foundation |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABUFD ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-cbcca41a044f0b374eac8e18c3e51f00857fc9deaccce6a0968e213daad67aa93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000962083200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Thu Oct 02 21:47:55 EDT 2025 Sat Nov 08 00:27:46 EST 2025 Sat Nov 29 07:42:57 EST 2025 Tue Nov 18 22:21:16 EST 2025 Mon Oct 20 23:46:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 546 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-cbcca41a044f0b374eac8e18c3e51f00857fc9deaccce6a0968e213daad67aa93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8562-6373 |
| PQID | 3073446977 |
| PQPubID | 41715 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3073446977 proquest_miscellaneous_3153672363 crossref_citationtrail_10_1080_01621459_2023_2182213 informaworld_taylorfrancis_310_1080_01621459_2023_2182213 crossref_primary_10_1080_01621459_2023_2182213 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-02 |
| PublicationDateYYYYMMDD | 2024-04-02 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 Hastie T. J. (e_1_3_2_7_1) 1990 e_1_3_2_26_1 Gu H. (e_1_3_2_6_1) 2012 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_10_1 e_1_3_2_11_1 e_1_3_2_12_1 e_1_3_2_13_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_3_1 e_1_3_2_15_1 Zhou A. (e_1_3_2_30_1) 2003 Zhang Y. (e_1_3_2_29_1) 2012; 25 Deimling K. (e_1_3_2_5_1) 2010 |
| References_xml | – ident: e_1_3_2_24_1 doi: 10.1080/00401706.2016.1142900 – ident: e_1_3_2_9_1 doi: 10.1111/1467-9469.00333 – ident: e_1_3_2_20_1 doi: 10.1214/aos/1034276626 – ident: e_1_3_2_28_1 doi: 10.1111/j.1369-7412.2007.00606.x – ident: e_1_3_2_22_1 doi: 10.1080/01621459.2022.2115374 – ident: e_1_3_2_23_1 doi: 10.1111/1467-9868.00283 – start-page: 285 volume-title: Eighth International Conference on Database Systems for Advanced Applications year: 2003 ident: e_1_3_2_30_1 – ident: e_1_3_2_27_1 doi: 10.1214/009053607000000596 – ident: e_1_3_2_25_1 doi: 10.5705/ss.202020.0167 – ident: e_1_3_2_18_1 doi: 10.1016/j.ribaf.2021.101516 – start-page: 387 volume-title: Proceedings of the 29th International Coference on International Conference on Machine Learning year: 2012 ident: e_1_3_2_6_1 – ident: e_1_3_2_16_1 doi: 10.1214/009053605000000101 – ident: e_1_3_2_3_1 doi: 10.1214/aos/1176347115 – ident: e_1_3_2_14_1 doi: 10.1093/biomet/83.3.529 – ident: e_1_3_2_19_1 doi: 10.1006/jmva.1999.1868 – ident: e_1_3_2_2_1 doi: 10.2307/2171945 – volume-title: Generalized Additive Models year: 1990 ident: e_1_3_2_7_1 – ident: e_1_3_2_11_1 doi: 10.5705/ss.202015.0365 – ident: e_1_3_2_26_1 doi: 10.1080/01621459.2021.2002158 – ident: e_1_3_2_8_1 doi: 10.2307/2951582 – ident: e_1_3_2_21_1 doi: 10.1109/tsmcb.2005.847744 – ident: e_1_3_2_4_1 doi: 10.1109/SSCI.2017.8280927 – volume: 25 year: 2012 ident: e_1_3_2_29_1 article-title: “Communication-Efficient Algorithms for Statistical Optimization,” publication-title: in Advances in Neural Information Processing Systems – ident: e_1_3_2_10_1 doi: 10.1109/CVPR.2007.382985 – ident: e_1_3_2_13_1 doi: 10.4310/SII.2011.v4.n1.a8 – ident: e_1_3_2_15_1 doi: 10.1214/aos/1017939138 – ident: e_1_3_2_17_1 doi: 10.24251/HICSS.2018.169 – volume-title: Nonlinear Functional Analysis year: 2010 ident: e_1_3_2_5_1 – ident: e_1_3_2_12_1 doi: 10.1016/j.imavis.2009.09.010 |
| SSID | ssj0000788 |
| Score | 2.4636152 |
| Snippet | We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1215 |
| SubjectTerms | Additives Algorithmic convergence Algorithms Americans Candidates Computation Computational efficiency cost effectiveness equations Estimation Internet Nonlinear equations Online learning Optimization Statistical efficiency Statistics Streaming data system optimization |
| Title | Online Smooth Backfitting for Generalized Additive Models |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2182213 https://www.proquest.com/docview/3073446977 https://www.proquest.com/docview/3153672363 |
| Volume | 119 |
| WOSCitedRecordID | wos000962083200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOzib3E6pYLXzrVJm-Y4xeFBhuDU3Ur6ksBwbrIfHvzrfUnT6RDZQS-Ftrw2vJe8vLRfvo-Qi6jAGqIAGcYUipDhnBkKjQfQnEmgCXCn1vB0x3u9bDAQ9x5NOPOwSruGNiVRhMvVdnDLYlYh4i6xSrH82nabSUxbloI8drq1WNlbUF-_-_yVi7lTnrQWoTWp9vD89pSV2WmFu_RHrnYTUHf7H5q-Q7Z89Rl0yu6ySzb0eI_UbcFZ8jXvE1FyjwYPrxOMYXAl4cUMHTY6wFYGnqV6-KFV0FHKAY8Cq6c2mh2Qx-5N__o29PIKIbA2m4dQYPRYJNuMmXZBOcMcnOkoA6qTyDjqewNC4VUAnUpc62QaW6ukVCmXUtBDUhtPxvqIBMAkTRXVOioEk1jUKB1JI0yW0YxLSBqEVW7NwXOPWwmMUR5VFKXeMbl1TO4d0yCtpdlbSb6xzkB8j1k-d189TClRktM1ts0qwLkfx2iCGRAXzFgkN8j58jaOQPtbRY71ZGEfm9CUxzSlx394_Qmp42kJCoqbpDafLvQp2YR37ADTM9erPwHgifGF |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQYKFN6JQwEisKU3svMaCqIooXSjQLXL8kCpKikrLwK_nzklKK4Q6wJIh1jnW3fl8ds7fR8iFm0IOkUrheEymDoc104k1PKQOuZDMl6Fla3jqhN1u1O_H83dhsKwS99AmB4qwsRonNx5GlyVxl5CmIMA23jPxWB0xyD0krl1FdjrcgPVaz9_ROLTckyjioEx5i-e3bhbWpwX00h_R2i5Bra3_GPw22SwSUNrMPWaHrOhsl2xgzplDNu-ROIcfpQ-vIzAjvRLyxQxseTSFYdICqHrwqRVtKmVrjyhSqg3f98lj66Z33XYKhgVH8gafODIFA3JXNDg3jZSFHMJwpN1IMu27xqLfGxkreCulDgRsdyINo1VCqCAUImYHpJKNMn1IqOSCBYpp7aYxF5DXKO0KE5soYlEopF8lvNRrIgv4cWTBGCZuiVJaKCZBxSSFYqqkPhN7y_E3lgnE80ZLJvbgw-QsJQlbIlsrLZwUUxlEIAjCnhny5Co5nzXDJMQ_KyLToyl264PneSxgR3_4_BlZb_fuO0nntnt3TDagKa8R8mqkMhlP9QlZkx_gDONT6-JfJtr1qA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQagLb0ShQJBYU5rYiZOxPCIQVVWJAt0ixw-poqRVHwz8es6OA1QIdYAlQ6xzrLvz-bNz_g6hcy8DDJFx5vqYZy6BNdONJTy4pIRxHHBqqjU8tWmnE_X7cddmE05tWqXeQ6uCKMLEaj25x0KVGXEXgFI0v7a-ZuLjhqYg93Xd2lWAzoF27F7y_BWMqSk9qUVcLVNe4vmtm4XlaYG89EewNitQsvkPY99CGxZ-Oq3CX7bRisx3UFUjzoKweRfFBfmo8_A6AiM6l4y_qIFJjnZglI6lqR68S-G0hDCZR44uqDac7qHH5KZ3deva-gouJ00yc3kG5iMeaxKimhmmBIJwJL2IYxl4ynDfKx4LeMu5DBlsdiIJoxWMiZAyFuN9VMlHuTxADicMhwJL6WUxYYBqhPSYilUU4YgyHtQQKdWacks-rmtgDFOv5Ci1ikm1YlKrmBpqfIqNC_aNZQLxd5ulM3PsoYoaJSleIlsvDZzaiQwiEAJhxwwouYbOPpthCur_KiyXo7nuNsAh9XGID__w-VO03r1O0vZd5_4IVaGlSBDy66gym8zlMVrjb-ALkxPj4B9APPRa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Smooth+Backfitting+for+Generalized+Additive+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Yang%2C+Ying&rft.au=Yao%2C+Fang&rft.au=Zhao%2C+Peng&rft.date=2024-04-02&rft.issn=1537-274X&rft.volume=119&rft.issue=546&rft.spage=1215&rft.epage=1228&rft_id=info:doi/10.1080%2F01621459.2023.2182213&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |