Online Smooth Backfitting for Generalized Additive Models

We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coef...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 119; číslo 546; s. 1215 - 1228
Hlavní autori: Yang, Ying, Yao, Fang, Zhao, Peng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm. Supplementary materials for this article are available online.
AbstractList We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm. Supplementary materials for this article are available online.
We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm. Supplementary materials for this article are available online.
Author Zhao, Peng
Yang, Ying
Yao, Fang
Author_xml – sequence: 1
  givenname: Ying
  surname: Yang
  fullname: Yang, Ying
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: Fang
  orcidid: 0000-0002-8562-6373
  surname: Yao
  fullname: Yao, Fang
  organization: Department of Probability and Statistics, School of Mathematical Sciences, Center for Statistical Science, Peking University
– sequence: 3
  givenname: Peng
  surname: Zhao
  fullname: Zhao, Peng
  organization: School of Mathematics and Statistics and Research Institute of Mathematical Sciences (RIMS), Jiangsu Normal University
BookMark eNqFkMtKxTAQhoMoeLw8glBw46bHpEmbFjde8AaKCxXchTGdajQn0SRH0ac35ejGhc5mYPj-YeZbI8vOOyRki9Epoy3dpaypmKi7aUUrPq1YW1WML5EJq7ksKynulslkZMoRWiVrMT7RXLJtJ6S7ctY4LK5n3qfH4hD082BSMu6hGHwoTtFhAGs-sS8O-t4k84bFpe_Rxg2yMoCNuPnd18ntyfHN0Vl5cXV6fnRwUWpBRSr1vdYgGFAhBnrPpUDQLbJWc6zZQGlby0F3fZ5qjQ3Qrmkxn98D9I0E6Pg62VnsfQn-dY4xqZmJGq0Fh34eFc9vNrLiDc_o9i_0yc-Dy9cpTiUXoumkzFS9oHTwMQYc1EswMwgfilE1ClU_QtUoVH0Lzbm9XzltEiTjXQpg7L_p_UXauCx2Bu8-2F4l-LA-DAGcNuMrf674Aq-Jj-0
CitedBy_id crossref_primary_10_1080_10618600_2024_2319684
crossref_primary_10_1007_s11222_025_10572_3
crossref_primary_10_1007_s10114_025_3305_4
crossref_primary_10_1038_s41598_025_07788_8
crossref_primary_10_1016_j_gecco_2025_e03818
crossref_primary_10_1002_sam_70016
Cites_doi 10.1080/00401706.2016.1142900
10.1111/1467-9469.00333
10.1214/aos/1034276626
10.1111/j.1369-7412.2007.00606.x
10.1080/01621459.2022.2115374
10.1111/1467-9868.00283
10.1214/009053607000000596
10.5705/ss.202020.0167
10.1016/j.ribaf.2021.101516
10.1214/009053605000000101
10.1214/aos/1176347115
10.1093/biomet/83.3.529
10.1006/jmva.1999.1868
10.2307/2171945
10.5705/ss.202015.0365
10.1080/01621459.2021.2002158
10.2307/2951582
10.1109/tsmcb.2005.847744
10.1109/SSCI.2017.8280927
10.1109/CVPR.2007.382985
10.4310/SII.2011.v4.n1.a8
10.1214/aos/1017939138
10.24251/HICSS.2018.169
10.1016/j.imavis.2009.09.010
ContentType Journal Article
Copyright 2023 American Statistical Association 2023
2023 American Statistical Association
Copyright_xml – notice: 2023 American Statistical Association 2023
– notice: 2023 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2023.2182213
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1228
ExternalDocumentID 10_1080_01621459_2023_2182213
2182213
Genre Research Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2022TQ0360; 2022M723334
– fundername: National Natural Science Foundation of China
  grantid: 12292981, 11931001, 11871080
– fundername: LMAM and the LMEQF. Peng Zhao's research is partially supported by the National Natural Science Foundation of China
  grantid: 11871252
– fundername: National Key R&D Program of China
  grantid: 2020YFE0204200; 2022YFA1003801
– fundername: Guozhi Xu Posdoctoral Research Foundation
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c404t-cbcca41a044f0b374eac8e18c3e51f00857fc9deaccce6a0968e213daad67aa93
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000962083200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Thu Oct 02 21:47:55 EDT 2025
Sat Nov 08 00:27:46 EST 2025
Sat Nov 29 07:42:57 EST 2025
Tue Nov 18 22:21:16 EST 2025
Mon Oct 20 23:46:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 546
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-cbcca41a044f0b374eac8e18c3e51f00857fc9deaccce6a0968e213daad67aa93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8562-6373
PQID 3073446977
PQPubID 41715
PageCount 14
ParticipantIDs proquest_journals_3073446977
proquest_miscellaneous_3153672363
crossref_citationtrail_10_1080_01621459_2023_2182213
informaworld_taylorfrancis_310_1080_01621459_2023_2182213
crossref_primary_10_1080_01621459_2023_2182213
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Hastie T. J. (e_1_3_2_7_1) 1990
e_1_3_2_26_1
Gu H. (e_1_3_2_6_1) 2012
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_12_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
Zhou A. (e_1_3_2_30_1) 2003
Zhang Y. (e_1_3_2_29_1) 2012; 25
Deimling K. (e_1_3_2_5_1) 2010
References_xml – ident: e_1_3_2_24_1
  doi: 10.1080/00401706.2016.1142900
– ident: e_1_3_2_9_1
  doi: 10.1111/1467-9469.00333
– ident: e_1_3_2_20_1
  doi: 10.1214/aos/1034276626
– ident: e_1_3_2_28_1
  doi: 10.1111/j.1369-7412.2007.00606.x
– ident: e_1_3_2_22_1
  doi: 10.1080/01621459.2022.2115374
– ident: e_1_3_2_23_1
  doi: 10.1111/1467-9868.00283
– start-page: 285
  volume-title: Eighth International Conference on Database Systems for Advanced Applications
  year: 2003
  ident: e_1_3_2_30_1
– ident: e_1_3_2_27_1
  doi: 10.1214/009053607000000596
– ident: e_1_3_2_25_1
  doi: 10.5705/ss.202020.0167
– ident: e_1_3_2_18_1
  doi: 10.1016/j.ribaf.2021.101516
– start-page: 387
  volume-title: Proceedings of the 29th International Coference on International Conference on Machine Learning
  year: 2012
  ident: e_1_3_2_6_1
– ident: e_1_3_2_16_1
  doi: 10.1214/009053605000000101
– ident: e_1_3_2_3_1
  doi: 10.1214/aos/1176347115
– ident: e_1_3_2_14_1
  doi: 10.1093/biomet/83.3.529
– ident: e_1_3_2_19_1
  doi: 10.1006/jmva.1999.1868
– ident: e_1_3_2_2_1
  doi: 10.2307/2171945
– volume-title: Generalized Additive Models
  year: 1990
  ident: e_1_3_2_7_1
– ident: e_1_3_2_11_1
  doi: 10.5705/ss.202015.0365
– ident: e_1_3_2_26_1
  doi: 10.1080/01621459.2021.2002158
– ident: e_1_3_2_8_1
  doi: 10.2307/2951582
– ident: e_1_3_2_21_1
  doi: 10.1109/tsmcb.2005.847744
– ident: e_1_3_2_4_1
  doi: 10.1109/SSCI.2017.8280927
– volume: 25
  year: 2012
  ident: e_1_3_2_29_1
  article-title: “Communication-Efficient Algorithms for Statistical Optimization,”
  publication-title: in Advances in Neural Information Processing Systems
– ident: e_1_3_2_10_1
  doi: 10.1109/CVPR.2007.382985
– ident: e_1_3_2_13_1
  doi: 10.4310/SII.2011.v4.n1.a8
– ident: e_1_3_2_15_1
  doi: 10.1214/aos/1017939138
– ident: e_1_3_2_17_1
  doi: 10.24251/HICSS.2018.169
– volume-title: Nonlinear Functional Analysis
  year: 2010
  ident: e_1_3_2_5_1
– ident: e_1_3_2_12_1
  doi: 10.1016/j.imavis.2009.09.010
SSID ssj0000788
Score 2.4636152
Snippet We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1215
SubjectTerms Additives
Algorithmic convergence
Algorithms
Americans
Candidates
Computation
Computational efficiency
cost effectiveness
equations
Estimation
Internet
Nonlinear equations
Online learning
Optimization
Statistical efficiency
Statistics
Streaming data
system optimization
Title Online Smooth Backfitting for Generalized Additive Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2182213
https://www.proquest.com/docview/3073446977
https://www.proquest.com/docview/3153672363
Volume 119
WOSCitedRecordID wos000962083200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOzib3E6pYLXzrVJm-Y4xeFBhuDU3Ur6ksBwbrIfHvzrfUnT6RDZQS-Ftrw2vJe8vLRfvo-Qi6jAGqIAGcYUipDhnBkKjQfQnEmgCXCn1vB0x3u9bDAQ9x5NOPOwSruGNiVRhMvVdnDLYlYh4i6xSrH82nabSUxbloI8drq1WNlbUF-_-_yVi7lTnrQWoTWp9vD89pSV2WmFu_RHrnYTUHf7H5q-Q7Z89Rl0yu6ySzb0eI_UbcFZ8jXvE1FyjwYPrxOMYXAl4cUMHTY6wFYGnqV6-KFV0FHKAY8Cq6c2mh2Qx-5N__o29PIKIbA2m4dQYPRYJNuMmXZBOcMcnOkoA6qTyDjqewNC4VUAnUpc62QaW6ukVCmXUtBDUhtPxvqIBMAkTRXVOioEk1jUKB1JI0yW0YxLSBqEVW7NwXOPWwmMUR5VFKXeMbl1TO4d0yCtpdlbSb6xzkB8j1k-d189TClRktM1ts0qwLkfx2iCGRAXzFgkN8j58jaOQPtbRY71ZGEfm9CUxzSlx394_Qmp42kJCoqbpDafLvQp2YR37ADTM9erPwHgifGF
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQYKFN6JQwEisKU3svMaCqIooXSjQLXL8kCpKikrLwK_nzklKK4Q6wJIh1jnW3fl8ds7fR8iFm0IOkUrheEymDoc104k1PKQOuZDMl6Fla3jqhN1u1O_H83dhsKwS99AmB4qwsRonNx5GlyVxl5CmIMA23jPxWB0xyD0krl1FdjrcgPVaz9_ROLTckyjioEx5i-e3bhbWpwX00h_R2i5Bra3_GPw22SwSUNrMPWaHrOhsl2xgzplDNu-ROIcfpQ-vIzAjvRLyxQxseTSFYdICqHrwqRVtKmVrjyhSqg3f98lj66Z33XYKhgVH8gafODIFA3JXNDg3jZSFHMJwpN1IMu27xqLfGxkreCulDgRsdyINo1VCqCAUImYHpJKNMn1IqOSCBYpp7aYxF5DXKO0KE5soYlEopF8lvNRrIgv4cWTBGCZuiVJaKCZBxSSFYqqkPhN7y_E3lgnE80ZLJvbgw-QsJQlbIlsrLZwUUxlEIAjCnhny5Co5nzXDJMQ_KyLToyl264PneSxgR3_4_BlZb_fuO0nntnt3TDagKa8R8mqkMhlP9QlZkx_gDONT6-JfJtr1qA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQagLb0ShQJBYU5rYiZOxPCIQVVWJAt0ixw-poqRVHwz8es6OA1QIdYAlQ6xzrLvz-bNz_g6hcy8DDJFx5vqYZy6BNdONJTy4pIRxHHBqqjU8tWmnE_X7cddmE05tWqXeQ6uCKMLEaj25x0KVGXEXgFI0v7a-ZuLjhqYg93Xd2lWAzoF27F7y_BWMqSk9qUVcLVNe4vmtm4XlaYG89EewNitQsvkPY99CGxZ-Oq3CX7bRisx3UFUjzoKweRfFBfmo8_A6AiM6l4y_qIFJjnZglI6lqR68S-G0hDCZR44uqDac7qHH5KZ3deva-gouJ00yc3kG5iMeaxKimhmmBIJwJL2IYxl4ynDfKx4LeMu5DBlsdiIJoxWMiZAyFuN9VMlHuTxADicMhwJL6WUxYYBqhPSYilUU4YgyHtQQKdWacks-rmtgDFOv5Ci1ikm1YlKrmBpqfIqNC_aNZQLxd5ulM3PsoYoaJSleIlsvDZzaiQwiEAJhxwwouYbOPpthCur_KiyXo7nuNsAh9XGID__w-VO03r1O0vZd5_4IVaGlSBDy66gym8zlMVrjb-ALkxPj4B9APPRa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Smooth+Backfitting+for+Generalized+Additive+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Yang%2C+Ying&rft.au=Yao%2C+Fang&rft.au=Zhao%2C+Peng&rft.date=2024-04-02&rft.issn=1537-274X&rft.volume=119&rft.issue=546&rft.spage=1215&rft.epage=1228&rft_id=info:doi/10.1080%2F01621459.2023.2182213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon