On approximate solutions for nonsmooth robust multiobjective optimization problems

We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of generalized convex functions. Some examples to justify the importance of the term 'degree n' are provided. Namely, the conclus...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization Ročník 68; číslo 9; s. 1653 - 1683
Hlavní autoři: Fakhar, M., Mahyarinia, M.R., Zafarani, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Taylor & Francis 02.09.2019
Taylor & Francis LLC
Témata:
ISSN:0233-1934, 1029-4945
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of generalized convex functions. Some examples to justify the importance of the term 'degree n' are provided. Namely, the conclusions of our results may fail if this term is dropped. By applying our new definition to nonsmooth robust multiobjective optimization problems, we establish the nonsmooth robust optimality conditions and robust duality theory for robust ϵ-quasi-(weakly) efficient solutions. A robust ϵ-Mond-Weir type duality of degree n for an uncertain multi-objective optimization problem under our generalized convexity assumption is presented. Furthermore, we introduce an ϵ-approximate scalar saddle-point and an ϵ-approximate weak vector saddle-point of degree n for the robust multi-objective optimization problem. The relationships between these two concepts with robust ϵ-approximate condition and robust ϵ-weakly efficient solutions are also given.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0233-1934
1029-4945
DOI:10.1080/02331934.2019.1579212