On approximate solutions for nonsmooth robust multiobjective optimization problems

We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of generalized convex functions. Some examples to justify the importance of the term 'degree n' are provided. Namely, the conclus...

Full description

Saved in:
Bibliographic Details
Published in:Optimization Vol. 68; no. 9; pp. 1653 - 1683
Main Authors: Fakhar, M., Mahyarinia, M.R., Zafarani, J.
Format: Journal Article
Language:English
Published: Philadelphia Taylor & Francis 02.09.2019
Taylor & Francis LLC
Subjects:
ISSN:0233-1934, 1029-4945
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of generalized convex functions. Some examples to justify the importance of the term 'degree n' are provided. Namely, the conclusions of our results may fail if this term is dropped. By applying our new definition to nonsmooth robust multiobjective optimization problems, we establish the nonsmooth robust optimality conditions and robust duality theory for robust ϵ-quasi-(weakly) efficient solutions. A robust ϵ-Mond-Weir type duality of degree n for an uncertain multi-objective optimization problem under our generalized convexity assumption is presented. Furthermore, we introduce an ϵ-approximate scalar saddle-point and an ϵ-approximate weak vector saddle-point of degree n for the robust multi-objective optimization problem. The relationships between these two concepts with robust ϵ-approximate condition and robust ϵ-weakly efficient solutions are also given.
AbstractList We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of generalized convex functions. Some examples to justify the importance of the term 'degree n' are provided. Namely, the conclusions of our results may fail if this term is dropped. By applying our new definition to nonsmooth robust multiobjective optimization problems, we establish the nonsmooth robust optimality conditions and robust duality theory for robust [GREEK LUNATE EPSILON SYMBOL]-quasi-(weakly) efficient solutions. A robust [GREEK LUNATE EPSILON SYMBOL]-Mond-Weir type duality of degree n for an uncertain multi-objective optimization problem under our generalized convexity assumption is presented. Furthermore, we introduce an [GREEK LUNATE EPSILON SYMBOL]-approximate scalar saddle-point and an [GREEK LUNATE EPSILON SYMBOL]-approximate weak vector saddle-point of degree n for the robust multi-objective optimization problem. The relationships between these two concepts with robust [GREEK LUNATE EPSILON SYMBOL]-approximate [Formula omitted.] condition and robust [GREEK LUNATE EPSILON SYMBOL]-weakly efficient solutions are also given.
We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of generalized convex functions. Some examples to justify the importance of the term 'degree n' are provided. Namely, the conclusions of our results may fail if this term is dropped. By applying our new definition to nonsmooth robust multiobjective optimization problems, we establish the nonsmooth robust optimality conditions and robust duality theory for robust ϵ-quasi-(weakly) efficient solutions. A robust ϵ-Mond-Weir type duality of degree n for an uncertain multi-objective optimization problem under our generalized convexity assumption is presented. Furthermore, we introduce an ϵ-approximate scalar saddle-point and an ϵ-approximate weak vector saddle-point of degree n for the robust multi-objective optimization problem. The relationships between these two concepts with robust ϵ-approximate condition and robust ϵ-weakly efficient solutions are also given.
Author Zafarani, J.
Mahyarinia, M.R.
Fakhar, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Fakhar
  fullname: Fakhar, M.
  organization: Department of Mathematics, University of Isfahan
– sequence: 2
  givenname: M.R.
  surname: Mahyarinia
  fullname: Mahyarinia, M.R.
  organization: Department of Mathematics, Khomeinishar Branch, Islamic Azad University
– sequence: 3
  givenname: J.
  orcidid: 0000-0002-8893-4902
  surname: Zafarani
  fullname: Zafarani, J.
  email: jzaf@zafarani.ir
  organization: Department of Applied Mathematics, Sheikhbahaee University
BookMark eNqFkM1LwzAchoMouE3_BKHguTOfbYMXZfgFg4HsHtI0wYy2mUmqzr_e1M2LBz3lkPd5X37PFBz3rtcAXCA4R7CCVxATgjihcwwRnyNWcozwEZggiHlOOWXHYDJm8jF0CqYhbCDEqMB0Ap5XfSa3W-8-bCejzoJrh2hdHzLjfJaGQudcfMm8q4cQs25o02-90SraN525bbSd_ZQjkaWSutVdOAMnRrZBnx_eGVjf360Xj_ly9fC0uF3mikIacyUZrhrIFTS0MowYhnQpeVU0DBOKoNYlV6RqKJaIlA1ENS4boqTGpsKUkxm43Nem3ddBhyg2bvB9WhQYVwzSghcopdg-pbwLwWsjtj5d6ncCQTHaEz_2xGhPHOwl7voXp2z8vjN6adt_6Zs9bfuksZPvzreNiHLXOm-87JUNgvxd8QUJNouS
CitedBy_id crossref_primary_10_1007_s11117_024_01032_9
crossref_primary_10_1007_s10957_025_02638_z
crossref_primary_10_1080_02331934_2020_1763990
crossref_primary_10_1080_00036811_2022_2027385
crossref_primary_10_1007_s40305_023_00489_x
crossref_primary_10_1007_s11117_023_00971_z
crossref_primary_10_1007_s40305_022_00423_7
crossref_primary_10_1007_s40324_021_00276_9
crossref_primary_10_1080_02331934_2022_2045986
crossref_primary_10_1080_02331934_2022_2105214
crossref_primary_10_1080_02331934_2025_2466043
crossref_primary_10_1007_s13160_024_00679_x
crossref_primary_10_1080_02331934_2021_1871730
crossref_primary_10_1007_s10957_021_01938_4
crossref_primary_10_1007_s11117_024_01046_3
crossref_primary_10_1007_s40305_023_00514_z
Cites_doi 10.1016/j.na.2010.02.012
10.1016/S0167-6377(99)00016-4
10.1016/j.ejor.2014.03.013
10.1016/0022-247X(74)90025-0
10.1007/BFb0120986
10.1007/978-3-540-31880-4_11
10.1016/j.na.2011.04.006
10.4134/BKMS.2014.51.1.287
10.1007/PL00011380
10.1080/01630560802099274
10.1186/1687-1812-2014-83
10.1016/S0377-2217(03)00206-6
10.1162/evco.2006.14.4.463
10.1016/j.na.2016.01.002
10.1007/s11117-015-0350-8
10.1137/090754571
10.1080/01630560500538789
10.1007/s11117-012-0186-4
10.1515/9781400831050
10.4134/CKMS.2013.28.3.597
10.1287/moor.23.4.769
10.1287/opre.21.5.1154
10.1016/j.ejor.2017.08.003
10.1287/educ.2016.0153
10.1007/BF02578991
10.1007/BF00940466
10.1006/jmaa.1995.1003
10.1016/j.ejor.2013.10.028
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2019.1579212
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1683
ExternalDocumentID 10_1080_02331934_2019_1579212
1579212
Genre Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c404t-ca528d09c0f48f53f51e7a986d523410ee79c38d42a137d01b27d3cae2f82493
IEDL.DBID TFW
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490345200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0233-1934
IngestDate Mon Nov 10 03:06:32 EST 2025
Sat Nov 29 06:01:40 EST 2025
Tue Nov 18 22:34:16 EST 2025
Mon Oct 20 23:49:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-ca528d09c0f48f53f51e7a986d523410ee79c38d42a137d01b27d3cae2f82493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8893-4902
PQID 2285046961
PQPubID 27961
PageCount 31
ParticipantIDs proquest_journals_2285046961
crossref_primary_10_1080_02331934_2019_1579212
informaworld_taylorfrancis_310_1080_02331934_2019_1579212
crossref_citationtrail_10_1080_02331934_2019_1579212
PublicationCentury 2000
PublicationDate 2019-09-02
PublicationDateYYYYMMDD 2019-09-02
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-02
  day: 02
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References CIT0030
CIT0010
CIT0032
CIT0011
CIT0033
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Lee J (CIT0027) 2016
Kuroiwa D (CIT0012) 2012; 40
Lee G (CIT0031) 2015; 16
CIT0003
CIT0025
CIT0002
CIT0024
Clarke FH (CIT0028) 1998
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0009
CIT0008
References_xml – ident: CIT0020
  doi: 10.1016/j.na.2010.02.012
– year: 2016
  ident: CIT0027
  publication-title: J Optim Lett
– ident: CIT0007
  doi: 10.1016/S0167-6377(99)00016-4
– ident: CIT0011
  doi: 10.1016/j.ejor.2014.03.013
– ident: CIT0024
  doi: 10.1016/0022-247X(74)90025-0
– ident: CIT0025
  doi: 10.1007/BFb0120986
– ident: CIT0009
  doi: 10.1007/978-3-540-31880-4_11
– volume-title: Nonsmooth analysis and control theory
  year: 1998
  ident: CIT0028
– ident: CIT0003
  doi: 10.1016/j.na.2011.04.006
– ident: CIT0032
  doi: 10.4134/BKMS.2014.51.1.287
– ident: CIT0008
  doi: 10.1007/PL00011380
– ident: CIT0022
  doi: 10.1080/01630560802099274
– ident: CIT0015
  doi: 10.1186/1687-1812-2014-83
– ident: CIT0021
  doi: 10.1016/S0377-2217(03)00206-6
– ident: CIT0010
  doi: 10.1162/evco.2006.14.4.463
– ident: CIT0001
  doi: 10.1016/j.na.2016.01.002
– ident: CIT0017
  doi: 10.1007/s11117-015-0350-8
– ident: CIT0030
  doi: 10.1137/090754571
– volume: 16
  start-page: 2039
  year: 2015
  ident: CIT0031
  publication-title: J Nonlinear Convex Anal
– ident: CIT0019
  doi: 10.1080/01630560500538789
– ident: CIT0014
– ident: CIT0026
  doi: 10.1007/s11117-012-0186-4
– ident: CIT0005
  doi: 10.1515/9781400831050
– ident: CIT0033
  doi: 10.4134/CKMS.2013.28.3.597
– ident: CIT0006
  doi: 10.1287/moor.23.4.769
– ident: CIT0004
  doi: 10.1287/opre.21.5.1154
– ident: CIT0002
  doi: 10.1016/j.ejor.2017.08.003
– ident: CIT0016
  doi: 10.1287/educ.2016.0153
– ident: CIT0018
  doi: 10.1007/BF02578991
– volume: 40
  start-page: 305
  year: 2012
  ident: CIT0012
  publication-title: Vietnam J Math
– ident: CIT0023
  doi: 10.1007/BF00940466
– ident: CIT0029
  doi: 10.1006/jmaa.1995.1003
– ident: CIT0013
  doi: 10.1016/j.ejor.2013.10.028
SSID ssj0021624
Score 2.300829
Snippet We introduce a new concept of generalized convexity of 'degree n' for a multiobjective optimization problem and is compared it to the previous notions of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1653
SubjectTerms condition of degree n
Convexity
Generalized convexity of degree n
Mathematical programming
Multiple objective analysis
Nonlinear programming
Optimization
robust optimality
robust ϵ-Mond-Weir type duality of degree n
robust ϵ-quasi-(weakly) efficient solutions
Robustness
Saddle points
ϵ-approximate
ϵ-approximate weak vector saddle-point of degree n
ϵ-vector duality of degree n
Title On approximate solutions for nonsmooth robust multiobjective optimization problems
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2019.1579212
https://www.proquest.com/docview/2285046961
Volume 68
WOSCitedRecordID wos000490345200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4945
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021624
  issn: 0233-1934
  databaseCode: TFW
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3E6JQevnU2atslRxOFBpsjQ3Uo-YeJWWTvxzzdJ0-EQ2UFv7eGFx8v75uX3ALjUgmYmEzxKFc8iQoWOrM9zuiwo4RwT43ELnu_z4ZCOx-wxTBNWYazS1dCmAYrwvtoZNxdVOxF3ZcOMVZzEdUQQ66M0Z9jvGbah35nmaPCyLLlQ5tfaOorIkbRveH47ZSU6rWCX_vDVPgANdv-B9T2wE7JPeN2oyz7Y0LMDsP0Nk_AQPD3MoAca_5zYZFbDpW5CyyWc2Y9paW8XzkuxqGroBxJL8dr4TVhaDzQNTzthWFZTHYHR4HZ0cxeFxQuRJDGpI8lTTFXMZGwINWliUqRzzmimbNlKUKx1zmRCFcEcJbmKkcC5SiTX2FBbziXHoGPZ0ScA2nxQpEwyoxUnItZCIK0YVlnOlUZEdAFp5V3IAErudmO8FajFLg0SK5zEiiCxLugvyd4bVI51BOz7ZRa1b4eYZndJkayh7bU3XwQDrwqMaepaCxk6_cPRZ2DL_fqZNdwDnXq-0OdgU37Uk2p-4VX5CzPe8DM
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-igvrgtzidmgdfO5s0aZNHEYfinCBDfQtJk8DEbbJ14p9vkrZjQ8QHfSuUC8flcl_c_Q6Ac6NYalMlI6plGhGmTORsntdlxYiUmNiAW_DUybpd9vLC52dhfFulz6FtCRQRbLV_3L4YXbfEXTg_4zQn8SURxFuIZhz7RcMrlCfUa3mv_TxLulAaFtt6ksjT1FM8Px2z4J8W0Eu_Wevggtpb_8H8NtisAlB4WWrMDlgyw12wMQdLuAceH4YwYI1_9l08a-BMPaFjEw7dx2DkLhiOR2o6KWDoSRyp19J0wpEzQoNquhNW-2om-6DXvu5d3UTV7oUoJzEpolxSzHTM89gSZmliKTKZ5CzVLnMlKDYm43nCNMESJZmOkcKZTnJpsGUuo0sOwLJjxxwC6EJCRXnOrdGSqNgohYzmWKeZ1AYR1QCkFrjIK1xyvx7jTaAavrSSmPASE5XEGqA1I3svgTl-I-DztymKUBGx5foSkfxC26yvXlRvfCIwZtRXF1J09Iejz8DaTe--Izq33btjsO5_hRY23ATLxXhqTsBq_lH0J-PToNdfcW70XQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA-iIvrgtzg_8-BrtUnTNnkUdSiOKTJ0byFpElB0G2sn_vkmaTomIj7oW6FcOO4u98XldwCcaEkzk0kRpUpkEaFSR9bnOVuWlAiBifG4BY-dvNul_T67D9OEZRirdDW0qYEivK92l3ukTDMRd2bDjDWcxHVEEDtFac6w2zO8YFNn4qa6eu2nac2FMr_X1pFEjqZ5xPPTMV_C0xfw0m_O2keg9to_8L4OVkP6Cc9re9kAc3qwCVZmQAm3wMPdAHqk8Y9nm81qODVOaLmEA_vxNrTqheOhnJQV9BOJQ_lSO044tC7oLbzthGFbTbkNeu2r3sV1FDYvRAWJSRUVIsVUxayIDaEmTUyKdC4YzZStWwmKtc5ZkVBFsEBJrmIkca6SQmhsqK3nkh0wb9nRuwDahFCmrGBGK0FkrKVEWjGsslwojYhsAdLImxcBldwtx3jlqAEvDRLjTmI8SKwFTqdkoxqW4zcCNqtMXvl-iKmXl_DkF9qDRvM83PCSY0xT11vI0N4fjj4GS_eXbd656d7ug2X3x8-v4QMwX40n-hAsFu_Vczk-8lb9CZXv8w8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+approximate+solutions+for+nonsmooth+robust+multiobjective+optimization+problems&rft.jtitle=Optimization&rft.au=Fakhar%2C+M.&rft.au=Mahyarinia%2C+M.R.&rft.au=Zafarani%2C+J.&rft.date=2019-09-02&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=68&rft.issue=9&rft.spage=1653&rft.epage=1683&rft_id=info:doi/10.1080%2F02331934.2019.1579212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2019_1579212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon