Raster cellular neural network simulator for image processing applications with numerical integration algorithms

In this paper, a universal simulator for cellular neural network (CNN) is presented. This simulator is capable of performing Raster simulation for any size of input image, and thus is a powerful tool for researchers investigating potential applications of CNN. This paper reports the latency properti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 86; číslo 7; s. 1215 - 1221
Hlavní autor: Murugesh, V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.07.2009
Taylor & Francis Ltd
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a universal simulator for cellular neural network (CNN) is presented. This simulator is capable of performing Raster simulation for any size of input image, and thus is a powerful tool for researchers investigating potential applications of CNN. This paper reports the latency properties of CNNs along with popular numerical integration algorithms; results and comparisons are also presented.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160701798772