A Penalized Synthetic Control Estimator for Disaggregated Data

Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the char...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 116; číslo 536; s. 1817 - 1834
Hlavní autoři: Abadie, Alberto, L'Hour, Jérémy
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 02.10.2021
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the characteristics of the treated unit before the intervention. When disaggregated data are available, constructing separate synthetic controls for each treated unit may help avoid interpolation biases. However, the problem of finding a synthetic control that best reproduces the characteristics of a treated unit may not have a unique solution. Multiplicity of solutions is a particularly daunting challenge when the data include many treated and untreated units. To address this challenge, we propose a synthetic control estimator that penalizes the pairwise discrepancies between the characteristics of the treated units and the characteristics of the units that contribute to their synthetic controls. The penalization parameter trades off pairwise matching discrepancies with respect to the characteristics of each unit in the synthetic control against matching discrepancies with respect to the characteristics of the synthetic control unit as a whole. We study the properties of this estimator and propose data-driven choices of the penalization parameter.
AbstractList Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the characteristics of the treated unit before the intervention. When disaggregated data are available, constructing separate synthetic controls for each treated unit may help avoid interpolation biases. However, the problem of finding a synthetic control that best reproduces the characteristics of a treated unit may not have a unique solution. Multiplicity of solutions is a particularly daunting challenge when the data include many treated and untreated units. To address this challenge, we propose a synthetic control estimator that penalizes the pairwise discrepancies between the characteristics of the treated units and the characteristics of the units that contribute to their synthetic controls. The penalization parameter trades off pairwise matching discrepancies with respect to the characteristics of each unit in the synthetic control against matching discrepancies with respect to the characteristics of the synthetic control unit as a whole. We study the properties of this estimator and propose data-driven choices of the penalization parameter.
Author Abadie, Alberto
L'Hour, Jérémy
Author_xml – sequence: 1
  givenname: Alberto
  surname: Abadie
  fullname: Abadie, Alberto
  organization: NBER
– sequence: 2
  givenname: Jérémy
  surname: L'Hour
  fullname: L'Hour, Jérémy
  organization: Insee
BookMark eNqFkE1LAzEQhoNUsK3-BGHBi5etyW6yySKIpa0fUFBQwVuYptmast3UJEXqrzdL66UHHRjm8rzDzNNDncY2GqFzggcEC3yFSZERyspBhjMyICUnLGdHqBsHTzNO3zuo2zJpC52gnvdLHIsL0UU3w-RZN1Cbbz1PXrZN-NDBqGRkm-BsnUx8MCsI1iVV7LHxsFg4vYAQ6TEEOEXHFdRen-1nH73dTV5HD-n06f5xNJymimIaUpVpnuUcKKhirkslAON4HWFVqWeKkbICmJVM5JXKZ0yr2VyrsmSUAiU85zzvo8vd3rWznxvtg1wZr3RdQ6PtxsusyAsqGCla9OIAXdqNiy9GinMsSCFEEanrHaWc9d7pSioTIJj2bzC1JFi2buWvW9m6lXu3Mc0O0msXPbntv7nbXc400ecKvqyr5zLAtrauctAo42X-94ofRYWRCg
CitedBy_id crossref_primary_10_1016_j_jebo_2023_09_017
crossref_primary_10_1214_24_BA1493
crossref_primary_10_1016_j_econmod_2024_106935
crossref_primary_10_1177_00420980241270993
crossref_primary_10_1002_jae_3134
crossref_primary_10_1016_j_ejpoleco_2025_102740
crossref_primary_10_1002_soej_12660
crossref_primary_10_1016_j_econlet_2024_111976
crossref_primary_10_1080_10543406_2024_2330209
crossref_primary_10_1016_j_ejpoleco_2025_102749
crossref_primary_10_1016_j_jmacro_2025_103700
crossref_primary_10_3390_su17083474
crossref_primary_10_1016_j_ehb_2022_101195
crossref_primary_10_1016_j_jeconom_2024_105675
crossref_primary_10_1177_14624745241288185
crossref_primary_10_1016_j_envdev_2024_101091
crossref_primary_10_1177_00080683231183306
crossref_primary_10_1111_pbaf_12373
crossref_primary_10_1016_j_frl_2023_104599
crossref_primary_10_1111_lapo_12252
crossref_primary_10_1016_j_cstp_2025_101497
crossref_primary_10_1007_s11150_025_09799_w
crossref_primary_10_1111_coep_12705
crossref_primary_10_1080_23322039_2024_2330433
crossref_primary_10_1177_09622802231224638
crossref_primary_10_1007_s10602_025_09471_6
crossref_primary_10_1080_01621459_2021_1979561
crossref_primary_10_1111_1745_9133_12624
crossref_primary_10_1080_01621459_2021_1979562
crossref_primary_10_2139_ssrn_4736857
crossref_primary_10_1080_10168737_2024_2448621
crossref_primary_10_1007_s00181_023_02365_2
crossref_primary_10_1016_j_jpubeco_2025_105314
crossref_primary_10_1111_jors_12616
crossref_primary_10_1287_mksc_2022_0212
crossref_primary_10_1111_twec_13388
crossref_primary_10_1007_s00181_021_02161_w
crossref_primary_10_1093_biomtc_ujae055
crossref_primary_10_1016_j_qref_2022_09_005
crossref_primary_10_1073_pnas_2503413122
crossref_primary_10_1016_j_jebo_2023_12_012
crossref_primary_10_2139_ssrn_4218907
crossref_primary_10_1007_s13209_021_00242_8
crossref_primary_10_1093_jrsssa_qnae032
crossref_primary_10_2139_ssrn_5255701
crossref_primary_10_1080_08965803_2024_2391213
crossref_primary_10_1590_0103_6351_7658
crossref_primary_10_2139_ssrn_3928948
crossref_primary_10_1016_j_ejpoleco_2023_102446
crossref_primary_10_1016_j_nucengdes_2025_114272
crossref_primary_10_1016_j_regsciurbeco_2022_103847
crossref_primary_10_1257_aer_20202045
crossref_primary_10_1016_j_irle_2025_106301
crossref_primary_10_1002_hec_70032
crossref_primary_10_1080_01621459_2021_2002600
crossref_primary_10_3982_ECTA21248
crossref_primary_10_1007_s11356_023_31425_4
crossref_primary_10_1007_s10260_023_00709_x
crossref_primary_10_1016_j_regsciurbeco_2024_104053
crossref_primary_10_1016_j_jtrangeo_2025_104406
crossref_primary_10_1007_s00181_023_02452_4
crossref_primary_10_1016_j_tranpol_2024_11_023
crossref_primary_10_1002_jae_3123
crossref_primary_10_1177_1536867X241297914
crossref_primary_10_1093_ectj_utab027
crossref_primary_10_1016_j_jbankfin_2023_106797
crossref_primary_10_1111_joes_12493
crossref_primary_10_1093_ectj_utae014
crossref_primary_10_1080_13504851_2024_2442484
crossref_primary_10_1080_00220388_2024_2445533
crossref_primary_10_1111_rode_13030
crossref_primary_10_1002_pam_22414
crossref_primary_10_1007_s10797_023_09791_z
crossref_primary_10_1016_j_jeconom_2024_105684
crossref_primary_10_1007_s00181_024_02676_y
crossref_primary_10_1016_j_eap_2025_07_004
crossref_primary_10_1057_s41294_022_00193_4
crossref_primary_10_1016_j_resourpol_2024_105033
crossref_primary_10_1016_j_jhealeco_2023_102741
crossref_primary_10_1080_07474938_2024_2393547
crossref_primary_10_1111_1475_6773_14156
Cites_doi 10.1111/1468-0262.00442
10.1111/j.1468-0262.2006.00655.x
10.1017/CBO9781139172998
10.2307/2529685
10.1016/j.jeconom.2004.04.011
10.1073/pnas.1510489113
10.1257/aer.20130758
10.3386/w22791
10.1093/restud/rdx065
10.1080/01621459.2021.1929245
10.1162/REST_a_00429
10.1162/003465302317331982
10.1162/REST_a_00537
10.1002/hec.3258
10.2139/ssrn.2589786
10.1093/biomet/70.1.41
10.1037/h0037350
10.2307/j.ctvcm4j72
10.1198/jbes.2009.07333
10.1080/01621459.1999.10473858
10.3386/w25532
10.1257/aer.103.5.1892
10.1198/jasa.2009.ap08746
10.3386/w26624
10.1515/jci-2016-0026
10.1016/j.jeconom.2020.10.012
10.1257/000282803321455188
10.1080/01621459.2021.1891924
10.1007/BF02574375
10.1016/j.jfineco.2015.10.001
10.1111/ajps.12116
10.1002/9780470317013
10.1080/01621459.2021.1920957
10.1017/CBO9781139025751
ContentType Journal Article
Copyright 2021 American Statistical Association 2021
2021 American Statistical Association
Copyright_xml – notice: 2021 American Statistical Association 2021
– notice: 2021 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2021.1971535
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1834
ExternalDocumentID 10_1080_01621459_2021_1971535
1971535
Genre Research Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c404t-c2e7237a4ac6de9c8a0015315f9ebc519faab9583fc3b5ecbdec99544a4173773
IEDL.DBID TFW
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714814700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Fri Oct 03 00:09:24 EDT 2025
Sat Nov 08 19:44:08 EST 2025
Sat Nov 29 03:56:46 EST 2025
Tue Nov 18 21:46:27 EST 2025
Mon Oct 20 23:47:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 536
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-c2e7237a4ac6de9c8a0015315f9ebc519faab9583fc3b5ecbdec99544a4173773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2770816886
PQPubID 41715
PageCount 18
ParticipantIDs crossref_citationtrail_10_1080_01621459_2021_1971535
proquest_miscellaneous_2636485167
informaworld_taylorfrancis_310_1080_01621459_2021_1971535
proquest_journals_2770816886
crossref_primary_10_1080_01621459_2021_1971535
PublicationCentury 2000
PublicationDate 2021-10-02
PublicationDateYYYYMMDD 2021-10-02
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Devillers O. (CIT0024) 2003
CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Amjad M. (CIT0008) 2018; 19
CIT0014
CIT0036
CIT0013
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0039
Boissonnat J.-D. (CIT0017) 2009
CIT0019
CIT0041
CIT0040
CIT0021
CIT0020
CIT0023
CIT0022
Abadie A. (CIT0001) 2020
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
LaLonde R. J. (CIT0035) 1986; 76
CIT0006
CIT0028
CIT0009
References_xml – ident: CIT0030
  doi: 10.1111/1468-0262.00442
– ident: CIT0005
  doi: 10.1111/j.1468-0262.2006.00655.x
– ident: CIT0018
  doi: 10.1017/CBO9781139172998
– ident: CIT0039
  doi: 10.2307/2529685
– ident: CIT0041
  doi: 10.1016/j.jeconom.2004.04.011
– ident: CIT0012
  doi: 10.1073/pnas.1510489113
– ident: CIT0029
  doi: 10.1257/aer.20130758
– ident: CIT0025
  doi: 10.3386/w22791
– ident: CIT0021
  doi: 10.1093/restud/rdx065
– ident: CIT0015
  doi: 10.1080/01621459.2021.1929245
– ident: CIT0016
  doi: 10.1162/REST_a_00429
– ident: CIT0022
  doi: 10.1162/003465302317331982
– ident: CIT0028
  doi: 10.1162/REST_a_00537
– start-page: 208
  volume-title: Annual Symposium on Computational Geometry
  year: 2009
  ident: CIT0017
– ident: CIT0034
  doi: 10.1002/hec.3258
– start-page: 313
  volume-title:
  year: 2003
  ident: CIT0024
– ident: CIT0026
  doi: 10.2139/ssrn.2589786
– ident: CIT0038
  doi: 10.1093/biomet/70.1.41
– ident: CIT0040
  doi: 10.1037/h0037350
– ident: CIT0009
  doi: 10.2307/j.ctvcm4j72
– ident: CIT0006
  doi: 10.1198/jbes.2009.07333
– ident: CIT0023
  doi: 10.1080/01621459.1999.10473858
– ident: CIT0010
  doi: 10.3386/w25532
– ident: CIT0033
  doi: 10.1257/aer.103.5.1892
– ident: CIT0002
  doi: 10.1198/jasa.2009.ap08746
– ident: CIT0014
– year: 2020
  ident: CIT0001
  publication-title: Journal of Economic Literature
– ident: CIT0032
  doi: 10.3386/w26624
– ident: CIT0027
  doi: 10.1515/jci-2016-0026
– ident: CIT0013
  doi: 10.1016/j.jeconom.2020.10.012
– ident: CIT0004
  doi: 10.1257/000282803321455188
– ident: CIT0011
  doi: 10.1080/01621459.2021.1891924
– volume: 76
  start-page: 604
  year: 1986
  ident: CIT0035
  publication-title: The American Economic Review
– ident: CIT0037
  doi: 10.1007/BF02574375
– ident: CIT0007
  doi: 10.1016/j.jfineco.2015.10.001
– ident: CIT0003
  doi: 10.1111/ajps.12116
– ident: CIT0019
– ident: CIT0036
  doi: 10.1002/9780470317013
– volume: 19
  start-page: 1
  year: 2018
  ident: CIT0008
  publication-title: Journal of Machine Learning Research
– ident: CIT0020
  doi: 10.1080/01621459.2021.1920957
– ident: CIT0031
  doi: 10.1017/CBO9781139025751
SSID ssj0000788
Score 2.611163
Snippet Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1817
SubjectTerms Americans
Causal inference
Control methods
Data
Discrepancies
empirical research
Interpolation
Intervention
Matching
Observational studies
Parameters
Property
Regression analysis
Research methodology
solutions
Statistical methods
Statistics
trade
Treatment effects
Treatment methods
Title A Penalized Synthetic Control Estimator for Disaggregated Data
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1971535
https://www.proquest.com/docview/2770816886
https://www.proquest.com/docview/2636485167
Volume 116
WOSCitedRecordID wos000714814700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXEbx2bR7bJBdh2QceRARfeytpOhVBu7JdBf31ZvpYXUQ86LFNpg2TTOZLMvmGkOPImAwSFQWWd3QgMwaB8X4jsFpZF-rU8DIY8_ZcXVzo0chc1tGERR1WiWvorCKKKOdqNG6bFE1E3IlHKcivjddMOGszo7zV4jVz7_rRNK-Hd59zsSozT6JEgCLNHZ6fvjLnnea4S7_N1aUDGq7-Q9PXyEqNPmm3Gi7rZAHyDbKMgLPia94kp116CQjO3yGlV2-5x4e-gPaqiHY68NWecJ1OfZtp_6Gw937BjltxKe3bqd0iN8PBde8sqHMsBE6Gcho4DooLZaV1UQrGaYsoSrBOZiBxHt5l1iamo0XmRNIBl6TgkEJOWsmUUEpsk8V8nMMOoUYLAMvAvzfSpEYnEYRguGIs46GwLSIb3cauJiDHPBiPMWt4SmvtxKiduNZOi7RnYs8VA8dvAuZrx8XTcusjq_KUxOIX2f2ml-PamIuYK1WmJ9FRixzNir0Z4tmKzWH84utEIpIevUZq9w-_3yPL-FgGC_J9sjidvMABWXKvfhRMDsuh_QFfCvGx
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-sFepLW7XFq1Yj-Lp6-dhN8iKIeiieh-BVfQvZ7KwU2lW8u0L71zezH1YpxQf7usnshkkm88vs5DcA25m1JeY6S7xITaJKjomNfiPxRvvQN4UVdTLm5VCPRub62j6-C0NplXSGLhuiiHqvJuOmYHSXErcbYQoRbNM9E8F3uNXRbNNX8DqNvpb488eDqz-7sa5rT5JIQjLdLZ5_veaJf3rCXvrXbl27oMG7_zH49_C2BaBsv1kxSzCH1TIsEuZsKJtXYG-fnSPh819YsIufVYSIsYEdNEnt7Ch2-05HdRYHzQ6_TvxNPLNTNK5gh37qP8CXwdH44DhpyywkQfXVNAkCtZDaKx-yAm0wnoCU5GlpMQ8R4ZXe5zY1sgwyTzHkBQZikVNecS21lh9hvrqtcBWYNRLRc4zPrbKFNXmGfbRCc16KvvQ9UJ1yXWg5yKkUxjfHO6rSVjuOtONa7fRg50HsriHheE7APp45N62jH2VTqsTJZ2TXu2l2rT1PnNC6rlBish5sPTRHS6TfK77C21nsk8lMRQCb6U8v-PwmvDkenw3d8GR0ugaL1FTnDop1mJ_ez_AzLIQfcUXcb9Tr_DfBsfXb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8gGMOL34ZD1Jr4unj92H68mBCOiwRyuURU3ppud2pMZCHcQQJ_vZ39QIkxPOjrTme3mc60v3anvwF4p51LWBldBFHaQiWOhcvrRhGsCXFsayfaZMwvh2Y2s8fHbt5nEy76tEraQ6eOKKKdqym4z-o0ZMS9zyiF-LXpmong29yZHLXlPVjL0FmTkx9Nv_6ajE1bepJUCtIZLvH87TW3lqdb5KV_TNbtCjR99B_6_hge9vCT7XT-8gRWsHkK64Q4O8LmZ_Bhh82R0Pk11uzTVZMBYhaw3S6lne3lZie0UWe5z2zyfRG-5R07ncXVbBKW4Tl8nu4d7X4s-iILRVRjtSyiQCOkCSpEXaOLNhCMkrxMDquY8V0KoXKllSnKqsRY1RiJQ04FxY00Rr6A1ea0wQ1gzkrEwDE_d8rVzlYax-iE4TyJsQwjUINtfewZyKkQxg_PB6LS3jqerON764xg-0btrKPguEvB_T5wftmefaSuUImXd-huDaPs-2heeGFMW5_E6hG8vRHnOKSfK6HB04vcRkutMnzVZvMfPv8GHswnU3-4Pzt4CeskaRMHxRasLs8v8BXcj5fZIc5ft17-E9aG9I0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Penalized+Synthetic+Control+Estimator+for+Disaggregated+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Abadie%2C+Alberto&rft.au=L%E2%80%99Hour%2C+J%C3%A9r%C3%A9my&rft.date=2021-10-02&rft.issn=1537-274X&rft.volume=116&rft.issue=536+p.1817-1834&rft.spage=1817&rft.epage=1834&rft_id=info:doi/10.1080%2F01621459.2021.1971535&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon