A Penalized Synthetic Control Estimator for Disaggregated Data
Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the char...
Uloženo v:
| Vydáno v: | Journal of the American Statistical Association Ročník 116; číslo 536; s. 1817 - 1834 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Alexandria
Taylor & Francis
02.10.2021
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the characteristics of the treated unit before the intervention. When disaggregated data are available, constructing separate synthetic controls for each treated unit may help avoid interpolation biases. However, the problem of finding a synthetic control that best reproduces the characteristics of a treated unit may not have a unique solution. Multiplicity of solutions is a particularly daunting challenge when the data include many treated and untreated units. To address this challenge, we propose a synthetic control estimator that penalizes the pairwise discrepancies between the characteristics of the treated units and the characteristics of the units that contribute to their synthetic controls. The penalization parameter trades off pairwise matching discrepancies with respect to the characteristics of each unit in the synthetic control against matching discrepancies with respect to the characteristics of the synthetic control unit as a whole. We study the properties of this estimator and propose data-driven choices of the penalization parameter. |
|---|---|
| AbstractList | Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the characteristics of the treated unit before the intervention. When disaggregated data are available, constructing separate synthetic controls for each treated unit may help avoid interpolation biases. However, the problem of finding a synthetic control that best reproduces the characteristics of a treated unit may not have a unique solution. Multiplicity of solutions is a particularly daunting challenge when the data include many treated and untreated units. To address this challenge, we propose a synthetic control estimator that penalizes the pairwise discrepancies between the characteristics of the treated units and the characteristics of the units that contribute to their synthetic controls. The penalization parameter trades off pairwise matching discrepancies with respect to the characteristics of each unit in the synthetic control against matching discrepancies with respect to the characteristics of the synthetic control unit as a whole. We study the properties of this estimator and propose data-driven choices of the penalization parameter. |
| Author | Abadie, Alberto L'Hour, Jérémy |
| Author_xml | – sequence: 1 givenname: Alberto surname: Abadie fullname: Abadie, Alberto organization: NBER – sequence: 2 givenname: Jérémy surname: L'Hour fullname: L'Hour, Jérémy organization: Insee |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGHBi5etyW6yySKIpa0fUFBQwVuYptmast3UJEXqrzdL66UHHRjm8rzDzNNDncY2GqFzggcEC3yFSZERyspBhjMyICUnLGdHqBsHTzNO3zuo2zJpC52gnvdLHIsL0UU3w-RZN1Cbbz1PXrZN-NDBqGRkm-BsnUx8MCsI1iVV7LHxsFg4vYAQ6TEEOEXHFdRen-1nH73dTV5HD-n06f5xNJymimIaUpVpnuUcKKhirkslAON4HWFVqWeKkbICmJVM5JXKZ0yr2VyrsmSUAiU85zzvo8vd3rWznxvtg1wZr3RdQ6PtxsusyAsqGCla9OIAXdqNiy9GinMsSCFEEanrHaWc9d7pSioTIJj2bzC1JFi2buWvW9m6lXu3Mc0O0msXPbntv7nbXc400ecKvqyr5zLAtrauctAo42X-94ofRYWRCg |
| CitedBy_id | crossref_primary_10_1016_j_jebo_2023_09_017 crossref_primary_10_1214_24_BA1493 crossref_primary_10_1016_j_econmod_2024_106935 crossref_primary_10_1177_00420980241270993 crossref_primary_10_1002_jae_3134 crossref_primary_10_1016_j_ejpoleco_2025_102740 crossref_primary_10_1002_soej_12660 crossref_primary_10_1016_j_econlet_2024_111976 crossref_primary_10_1080_10543406_2024_2330209 crossref_primary_10_1016_j_ejpoleco_2025_102749 crossref_primary_10_1016_j_jmacro_2025_103700 crossref_primary_10_3390_su17083474 crossref_primary_10_1016_j_ehb_2022_101195 crossref_primary_10_1016_j_jeconom_2024_105675 crossref_primary_10_1177_14624745241288185 crossref_primary_10_1016_j_envdev_2024_101091 crossref_primary_10_1177_00080683231183306 crossref_primary_10_1111_pbaf_12373 crossref_primary_10_1016_j_frl_2023_104599 crossref_primary_10_1111_lapo_12252 crossref_primary_10_1016_j_cstp_2025_101497 crossref_primary_10_1007_s11150_025_09799_w crossref_primary_10_1111_coep_12705 crossref_primary_10_1080_23322039_2024_2330433 crossref_primary_10_1177_09622802231224638 crossref_primary_10_1007_s10602_025_09471_6 crossref_primary_10_1080_01621459_2021_1979561 crossref_primary_10_1111_1745_9133_12624 crossref_primary_10_1080_01621459_2021_1979562 crossref_primary_10_2139_ssrn_4736857 crossref_primary_10_1080_10168737_2024_2448621 crossref_primary_10_1007_s00181_023_02365_2 crossref_primary_10_1016_j_jpubeco_2025_105314 crossref_primary_10_1111_jors_12616 crossref_primary_10_1287_mksc_2022_0212 crossref_primary_10_1111_twec_13388 crossref_primary_10_1007_s00181_021_02161_w crossref_primary_10_1093_biomtc_ujae055 crossref_primary_10_1016_j_qref_2022_09_005 crossref_primary_10_1073_pnas_2503413122 crossref_primary_10_1016_j_jebo_2023_12_012 crossref_primary_10_2139_ssrn_4218907 crossref_primary_10_1007_s13209_021_00242_8 crossref_primary_10_1093_jrsssa_qnae032 crossref_primary_10_2139_ssrn_5255701 crossref_primary_10_1080_08965803_2024_2391213 crossref_primary_10_1590_0103_6351_7658 crossref_primary_10_2139_ssrn_3928948 crossref_primary_10_1016_j_ejpoleco_2023_102446 crossref_primary_10_1016_j_nucengdes_2025_114272 crossref_primary_10_1016_j_regsciurbeco_2022_103847 crossref_primary_10_1257_aer_20202045 crossref_primary_10_1016_j_irle_2025_106301 crossref_primary_10_1002_hec_70032 crossref_primary_10_1080_01621459_2021_2002600 crossref_primary_10_3982_ECTA21248 crossref_primary_10_1007_s11356_023_31425_4 crossref_primary_10_1007_s10260_023_00709_x crossref_primary_10_1016_j_regsciurbeco_2024_104053 crossref_primary_10_1016_j_jtrangeo_2025_104406 crossref_primary_10_1007_s00181_023_02452_4 crossref_primary_10_1016_j_tranpol_2024_11_023 crossref_primary_10_1002_jae_3123 crossref_primary_10_1177_1536867X241297914 crossref_primary_10_1093_ectj_utab027 crossref_primary_10_1016_j_jbankfin_2023_106797 crossref_primary_10_1111_joes_12493 crossref_primary_10_1093_ectj_utae014 crossref_primary_10_1080_13504851_2024_2442484 crossref_primary_10_1080_00220388_2024_2445533 crossref_primary_10_1111_rode_13030 crossref_primary_10_1002_pam_22414 crossref_primary_10_1007_s10797_023_09791_z crossref_primary_10_1016_j_jeconom_2024_105684 crossref_primary_10_1007_s00181_024_02676_y crossref_primary_10_1016_j_eap_2025_07_004 crossref_primary_10_1057_s41294_022_00193_4 crossref_primary_10_1016_j_resourpol_2024_105033 crossref_primary_10_1016_j_jhealeco_2023_102741 crossref_primary_10_1080_07474938_2024_2393547 crossref_primary_10_1111_1475_6773_14156 |
| Cites_doi | 10.1111/1468-0262.00442 10.1111/j.1468-0262.2006.00655.x 10.1017/CBO9781139172998 10.2307/2529685 10.1016/j.jeconom.2004.04.011 10.1073/pnas.1510489113 10.1257/aer.20130758 10.3386/w22791 10.1093/restud/rdx065 10.1080/01621459.2021.1929245 10.1162/REST_a_00429 10.1162/003465302317331982 10.1162/REST_a_00537 10.1002/hec.3258 10.2139/ssrn.2589786 10.1093/biomet/70.1.41 10.1037/h0037350 10.2307/j.ctvcm4j72 10.1198/jbes.2009.07333 10.1080/01621459.1999.10473858 10.3386/w25532 10.1257/aer.103.5.1892 10.1198/jasa.2009.ap08746 10.3386/w26624 10.1515/jci-2016-0026 10.1016/j.jeconom.2020.10.012 10.1257/000282803321455188 10.1080/01621459.2021.1891924 10.1007/BF02574375 10.1016/j.jfineco.2015.10.001 10.1111/ajps.12116 10.1002/9780470317013 10.1080/01621459.2021.1920957 10.1017/CBO9781139025751 |
| ContentType | Journal Article |
| Copyright | 2021 American Statistical Association 2021 2021 American Statistical Association |
| Copyright_xml | – notice: 2021 American Statistical Association 2021 – notice: 2021 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2021.1971535 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 1834 |
| ExternalDocumentID | 10_1080_01621459_2021_1971535 1971535 |
| Genre | Research Article |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABRLO ABTAI ABUFD ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG ADXHL AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-c2e7237a4ac6de9c8a0015315f9ebc519faab9583fc3b5ecbdec99544a4173773 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714814700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Fri Oct 03 00:09:24 EDT 2025 Sat Nov 08 19:44:08 EST 2025 Sat Nov 29 03:56:46 EST 2025 Tue Nov 18 21:46:27 EST 2025 Mon Oct 20 23:47:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 536 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-c2e7237a4ac6de9c8a0015315f9ebc519faab9583fc3b5ecbdec99544a4173773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2770816886 |
| PQPubID | 41715 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1080_01621459_2021_1971535 proquest_miscellaneous_2636485167 informaworld_taylorfrancis_310_1080_01621459_2021_1971535 proquest_journals_2770816886 crossref_primary_10_1080_01621459_2021_1971535 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-02 |
| PublicationDateYYYYMMDD | 2021-10-02 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Devillers O. (CIT0024) 2003 CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Amjad M. (CIT0008) 2018; 19 CIT0014 CIT0036 CIT0013 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0039 Boissonnat J.-D. (CIT0017) 2009 CIT0019 CIT0041 CIT0040 CIT0021 CIT0020 CIT0023 CIT0022 Abadie A. (CIT0001) 2020 CIT0003 CIT0025 CIT0002 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 LaLonde R. J. (CIT0035) 1986; 76 CIT0006 CIT0028 CIT0009 |
| References_xml | – ident: CIT0030 doi: 10.1111/1468-0262.00442 – ident: CIT0005 doi: 10.1111/j.1468-0262.2006.00655.x – ident: CIT0018 doi: 10.1017/CBO9781139172998 – ident: CIT0039 doi: 10.2307/2529685 – ident: CIT0041 doi: 10.1016/j.jeconom.2004.04.011 – ident: CIT0012 doi: 10.1073/pnas.1510489113 – ident: CIT0029 doi: 10.1257/aer.20130758 – ident: CIT0025 doi: 10.3386/w22791 – ident: CIT0021 doi: 10.1093/restud/rdx065 – ident: CIT0015 doi: 10.1080/01621459.2021.1929245 – ident: CIT0016 doi: 10.1162/REST_a_00429 – ident: CIT0022 doi: 10.1162/003465302317331982 – ident: CIT0028 doi: 10.1162/REST_a_00537 – start-page: 208 volume-title: Annual Symposium on Computational Geometry year: 2009 ident: CIT0017 – ident: CIT0034 doi: 10.1002/hec.3258 – start-page: 313 volume-title: “ year: 2003 ident: CIT0024 – ident: CIT0026 doi: 10.2139/ssrn.2589786 – ident: CIT0038 doi: 10.1093/biomet/70.1.41 – ident: CIT0040 doi: 10.1037/h0037350 – ident: CIT0009 doi: 10.2307/j.ctvcm4j72 – ident: CIT0006 doi: 10.1198/jbes.2009.07333 – ident: CIT0023 doi: 10.1080/01621459.1999.10473858 – ident: CIT0010 doi: 10.3386/w25532 – ident: CIT0033 doi: 10.1257/aer.103.5.1892 – ident: CIT0002 doi: 10.1198/jasa.2009.ap08746 – ident: CIT0014 – year: 2020 ident: CIT0001 publication-title: Journal of Economic Literature – ident: CIT0032 doi: 10.3386/w26624 – ident: CIT0027 doi: 10.1515/jci-2016-0026 – ident: CIT0013 doi: 10.1016/j.jeconom.2020.10.012 – ident: CIT0004 doi: 10.1257/000282803321455188 – ident: CIT0011 doi: 10.1080/01621459.2021.1891924 – volume: 76 start-page: 604 year: 1986 ident: CIT0035 publication-title: The American Economic Review – ident: CIT0037 doi: 10.1007/BF02574375 – ident: CIT0007 doi: 10.1016/j.jfineco.2015.10.001 – ident: CIT0003 doi: 10.1111/ajps.12116 – ident: CIT0019 – ident: CIT0036 doi: 10.1002/9780470317013 – volume: 19 start-page: 1 year: 2018 ident: CIT0008 publication-title: Journal of Machine Learning Research – ident: CIT0020 doi: 10.1080/01621459.2021.1920957 – ident: CIT0031 doi: 10.1017/CBO9781139025751 |
| SSID | ssj0000788 |
| Score | 2.611163 |
| Snippet | Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1817 |
| SubjectTerms | Americans Causal inference Control methods Data Discrepancies empirical research Interpolation Intervention Matching Observational studies Parameters Property Regression analysis Research methodology solutions Statistical methods Statistics trade Treatment effects Treatment methods |
| Title | A Penalized Synthetic Control Estimator for Disaggregated Data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2021.1971535 https://www.proquest.com/docview/2770816886 https://www.proquest.com/docview/2636485167 |
| Volume | 116 |
| WOSCitedRecordID | wos000714814700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXEbx2bR7bJBdh2QceRARfeytpOhVBu7JdBf31ZvpYXUQ86LFNpg2TTOZLMvmGkOPImAwSFQWWd3QgMwaB8X4jsFpZF-rU8DIY8_ZcXVzo0chc1tGERR1WiWvorCKKKOdqNG6bFE1E3IlHKcivjddMOGszo7zV4jVz7_rRNK-Hd59zsSozT6JEgCLNHZ6fvjLnnea4S7_N1aUDGq7-Q9PXyEqNPmm3Gi7rZAHyDbKMgLPia94kp116CQjO3yGlV2-5x4e-gPaqiHY68NWecJ1OfZtp_6Gw937BjltxKe3bqd0iN8PBde8sqHMsBE6Gcho4DooLZaV1UQrGaYsoSrBOZiBxHt5l1iamo0XmRNIBl6TgkEJOWsmUUEpsk8V8nMMOoUYLAMvAvzfSpEYnEYRguGIs46GwLSIb3cauJiDHPBiPMWt4SmvtxKiduNZOi7RnYs8VA8dvAuZrx8XTcusjq_KUxOIX2f2ml-PamIuYK1WmJ9FRixzNir0Z4tmKzWH84utEIpIevUZq9w-_3yPL-FgGC_J9sjidvMABWXKvfhRMDsuh_QFfCvGx |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-sFepLW7XFq1Yj-Lp6-dhN8iKIeiieh-BVfQvZ7KwU2lW8u0L71zezH1YpxQf7usnshkkm88vs5DcA25m1JeY6S7xITaJKjomNfiPxRvvQN4UVdTLm5VCPRub62j6-C0NplXSGLhuiiHqvJuOmYHSXErcbYQoRbNM9E8F3uNXRbNNX8DqNvpb488eDqz-7sa5rT5JIQjLdLZ5_veaJf3rCXvrXbl27oMG7_zH49_C2BaBsv1kxSzCH1TIsEuZsKJtXYG-fnSPh819YsIufVYSIsYEdNEnt7Ch2-05HdRYHzQ6_TvxNPLNTNK5gh37qP8CXwdH44DhpyywkQfXVNAkCtZDaKx-yAm0wnoCU5GlpMQ8R4ZXe5zY1sgwyTzHkBQZikVNecS21lh9hvrqtcBWYNRLRc4zPrbKFNXmGfbRCc16KvvQ9UJ1yXWg5yKkUxjfHO6rSVjuOtONa7fRg50HsriHheE7APp45N62jH2VTqsTJZ2TXu2l2rT1PnNC6rlBish5sPTRHS6TfK77C21nsk8lMRQCb6U8v-PwmvDkenw3d8GR0ugaL1FTnDop1mJ_ez_AzLIQfcUXcb9Tr_DfBsfXb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8gGMOL34ZD1Jr4unj92H68mBCOiwRyuURU3ppud2pMZCHcQQJ_vZ39QIkxPOjrTme3mc60v3anvwF4p51LWBldBFHaQiWOhcvrRhGsCXFsayfaZMwvh2Y2s8fHbt5nEy76tEraQ6eOKKKdqym4z-o0ZMS9zyiF-LXpmong29yZHLXlPVjL0FmTkx9Nv_6ajE1bepJUCtIZLvH87TW3lqdb5KV_TNbtCjR99B_6_hge9vCT7XT-8gRWsHkK64Q4O8LmZ_Bhh82R0Pk11uzTVZMBYhaw3S6lne3lZie0UWe5z2zyfRG-5R07ncXVbBKW4Tl8nu4d7X4s-iILRVRjtSyiQCOkCSpEXaOLNhCMkrxMDquY8V0KoXKllSnKqsRY1RiJQ04FxY00Rr6A1ea0wQ1gzkrEwDE_d8rVzlYax-iE4TyJsQwjUINtfewZyKkQxg_PB6LS3jqerON764xg-0btrKPguEvB_T5wftmefaSuUImXd-huDaPs-2heeGFMW5_E6hG8vRHnOKSfK6HB04vcRkutMnzVZvMfPv8GHswnU3-4Pzt4CeskaRMHxRasLs8v8BXcj5fZIc5ft17-E9aG9I0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Penalized+Synthetic+Control+Estimator+for+Disaggregated+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Abadie%2C+Alberto&rft.au=L%E2%80%99Hour%2C+J%C3%A9r%C3%A9my&rft.date=2021-10-02&rft.issn=1537-274X&rft.volume=116&rft.issue=536+p.1817-1834&rft.spage=1817&rft.epage=1834&rft_id=info:doi/10.1080%2F01621459.2021.1971535&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |