CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems
The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-...
Saved in:
| Published in: | IUCrJ Vol. 4; no. 5; pp. 575 - 587 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
International Union of Crystallography
01.09.2017
|
| Subjects: | |
| ISSN: | 2052-2525, 2052-2525 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol
−1
for pairwise energies that span a range of 3.75 MJ mol
−1
. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools. |
|---|---|
| AbstractList | The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol
for pairwise energies that span a range of 3.75 MJ mol
. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools. The accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals are extended to a broad range of crystals by calibration against density functional results for molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol−1 for pairwise energies that span a range of 3.75 MJ mol−1. The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol−1 for pairwise energies that span a range of 3.75 MJ mol−1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools. The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol-1 for pairwise energies that span a range of 3.75 MJ mol-1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools.The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol-1 for pairwise energies that span a range of 3.75 MJ mol-1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools. The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol−1 for pairwise energies that span a range of 3.75 MJ mol−1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools. The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol −1 for pairwise energies that span a range of 3.75 MJ mol −1 . The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools. |
| Audience | Academic |
| Author | Jayatilaka, Dylan Spackman, Mark A. Spackman, Peter R. Mackenzie, Campbell F. |
| Author_xml | – sequence: 1 givenname: Campbell F. orcidid: 0000-0001-7465-8989 surname: Mackenzie fullname: Mackenzie, Campbell F. – sequence: 2 givenname: Peter R. orcidid: 0000-0002-6532-8571 surname: Spackman fullname: Spackman, Peter R. – sequence: 3 givenname: Dylan orcidid: 0000-0002-3349-5834 surname: Jayatilaka fullname: Jayatilaka, Dylan – sequence: 4 givenname: Mark A. orcidid: 0000-0003-1521-2041 surname: Spackman fullname: Spackman, Mark A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28932404$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UstuFDEQHKEgEkI-gAsaiQsHNrg9Lw-HSNEqQKRIHACJ26jH7tl48diLPRuSr-CX6c0uURIk5IPd5epy2a7n2Z4PnrLsJYhjANG8-yJFJWUlK2iEUKX6_iQ72ECzDbZ3b72fHaW0FEIAyKop4Vm2L1VbyFKUB9nvebxJE7qz65ULkWI-BkMuJ09xYSnl6M22uMmHiCP9CvFHep_T9UQ-2eDzKeQjsUCuQ4jGepw2qA7jKqy9SW_zEBforc4TuonLFNwVTjvlsCI_S5fkXJ7YBo3pRfZ0QJfoaDcfZt8-nH2df5pdfP54Pj-9mGm2Pc00EKLoCQlQ1LKtCgBsKqlkIQrTEA0a6hL6QkiCpm9r2RgNJdage9BIxWF2vtU1AZfdKtoR400X0Ha3AJvuME5WO-qkbo0ixScpKrEolZISjK6VanoyOLDWyVZrte5HMpr8FNE9EH244-1ltwhXXVXzr0hggTc7gRh-rilN3WiT5ldBT2GdOmhLKBrZqA319SPqMqyj56diVsFfXJWqYtbxlrVAvoD1Q-BzNQ9Do9Wco8EyflqJWslWCckNr-5f4c7736AwAbYEHUNKkYY7Cohuk8funzxyT_OoR9vpNh_sxrr_dP4B_YDmOQ |
| CitedBy_id | crossref_primary_10_1107_S2053229618018314 crossref_primary_10_1016_j_molstruc_2023_136616 crossref_primary_10_1016_j_molstruc_2021_130513 crossref_primary_10_1038_s41467_024_46866_9 crossref_primary_10_1107_S2053229623002231 crossref_primary_10_1016_j_molstruc_2025_143953 crossref_primary_10_1080_10406638_2022_2097281 crossref_primary_10_1016_j_poly_2022_116054 crossref_primary_10_1039_D1QI01363G crossref_primary_10_1107_S2053229618009609 crossref_primary_10_3390_org5040033 crossref_primary_10_1007_s00706_019_02512_5 crossref_primary_10_1016_j_molstruc_2021_131833 crossref_primary_10_3390_cryst14060497 crossref_primary_10_1016_j_molstruc_2021_130747 crossref_primary_10_1080_10406638_2024_2407964 crossref_primary_10_3390_molecules24193496 crossref_primary_10_1515_zkri_2019_0065 crossref_primary_10_1016_j_molstruc_2025_143963 crossref_primary_10_1016_j_molstruc_2024_138080 crossref_primary_10_1515_zkri_2020_0052 crossref_primary_10_1016_j_poly_2022_116044 crossref_primary_10_1016_j_molstruc_2022_134161 crossref_primary_10_1016_j_molstruc_2017_11_094 crossref_primary_10_1038_s41467_024_45900_0 crossref_primary_10_1002_adfm_202503326 crossref_primary_10_1016_j_optmat_2018_09_004 crossref_primary_10_1016_j_molstruc_2022_134377 crossref_primary_10_1002_slct_202001567 crossref_primary_10_1016_j_synthmet_2025_117881 crossref_primary_10_3390_cryst14060483 crossref_primary_10_1016_j_molstruc_2024_138094 crossref_primary_10_1016_j_inoche_2023_111540 crossref_primary_10_3390_cryst13091375 crossref_primary_10_1016_j_molstruc_2023_135782 crossref_primary_10_1515_znb_2024_0041 crossref_primary_10_1107_S2053229617013237 crossref_primary_10_1021_acs_inorgchem_4c04959 crossref_primary_10_1016_j_molstruc_2020_129270 crossref_primary_10_1016_j_matchemphys_2022_126796 crossref_primary_10_1007_s11224_019_01329_6 crossref_primary_10_1039_D3RA04874H crossref_primary_10_1016_j_ica_2023_121471 crossref_primary_10_1016_j_comptc_2024_114552 crossref_primary_10_1016_j_jclepro_2022_131878 crossref_primary_10_1016_j_molstruc_2021_129975 crossref_primary_10_1016_j_molstruc_2024_140179 crossref_primary_10_1002_ange_202414215 crossref_primary_10_1016_j_poly_2022_116022 crossref_primary_10_3390_molecules30173593 crossref_primary_10_1007_s10870_024_01032_3 crossref_primary_10_1016_j_molstruc_2023_135773 crossref_primary_10_1107_S2053229624009318 crossref_primary_10_1016_j_molstruc_2020_129040 crossref_primary_10_1002_chem_202303483 crossref_primary_10_3390_pharmaceutics16050623 crossref_primary_10_1002_ejoc_201801870 crossref_primary_10_3390_cryst13060890 crossref_primary_10_3390_molecules27165317 crossref_primary_10_1016_j_molstruc_2024_140360 crossref_primary_10_1016_j_molstruc_2020_129045 crossref_primary_10_1007_s11164_023_05064_w crossref_primary_10_1007_s10854_025_14849_1 crossref_primary_10_1016_j_molstruc_2024_138032 crossref_primary_10_1016_j_molstruc_2025_141975 crossref_primary_10_3390_ijms26115123 crossref_primary_10_1107_S2056989024005954 crossref_primary_10_1038_s41598_023_49922_4 crossref_primary_10_1107_S2053229624005187 crossref_primary_10_1080_10426507_2021_2021523 crossref_primary_10_1002_cplu_202500474 crossref_primary_10_1007_s10854_024_13209_9 crossref_primary_10_3390_cryst14100855 crossref_primary_10_1107_S2053229620011420 crossref_primary_10_1016_j_molstruc_2021_130944 crossref_primary_10_1039_D5CC00496A crossref_primary_10_1016_j_molliq_2024_124895 crossref_primary_10_1016_j_molstruc_2024_140590 crossref_primary_10_1016_j_molstruc_2024_138285 crossref_primary_10_1016_j_molstruc_2024_139133 crossref_primary_10_1016_j_molstruc_2024_140353 crossref_primary_10_1107_S1600576723010609 crossref_primary_10_3390_molecules27051527 crossref_primary_10_1016_j_nexres_2025_100569 crossref_primary_10_1016_j_molstruc_2025_142830 crossref_primary_10_1016_j_molstruc_2024_141206 crossref_primary_10_1039_D5RA00065C crossref_primary_10_1098_rsos_241654 crossref_primary_10_1016_j_molstruc_2022_134338 crossref_primary_10_3390_M1461 crossref_primary_10_1016_j_molstruc_2023_135743 crossref_primary_10_1107_S1600576720008444 crossref_primary_10_3390_cryst13020337 crossref_primary_10_1107_S2053229623005521 crossref_primary_10_1016_j_ijbiomac_2024_134297 crossref_primary_10_1016_j_molstruc_2024_139145 crossref_primary_10_1107_S2052520620008999 crossref_primary_10_1016_j_molstruc_2023_135732 crossref_primary_10_1039_D4QM00421C crossref_primary_10_1016_j_molstruc_2020_129077 crossref_primary_10_1016_j_molstruc_2025_142854 crossref_primary_10_3390_inorganics10020020 crossref_primary_10_1016_j_molstruc_2024_140373 crossref_primary_10_1002_chem_202404586 crossref_primary_10_1016_j_molstruc_2019_04_045 crossref_primary_10_1016_j_molstruc_2022_133224 crossref_primary_10_1016_j_molstruc_2021_132098 crossref_primary_10_1016_j_molstruc_2022_134558 crossref_primary_10_1007_s13738_023_02904_9 crossref_primary_10_1039_D5CP02122G crossref_primary_10_1016_j_molstruc_2021_130910 crossref_primary_10_1107_S2052520624011909 crossref_primary_10_1016_j_molstruc_2024_138470 crossref_primary_10_3390_cryst9050242 crossref_primary_10_1016_j_inoche_2024_113821 crossref_primary_10_1016_j_molstruc_2024_138232 crossref_primary_10_1002_jhet_4573 crossref_primary_10_1007_s12039_023_02151_8 crossref_primary_10_1016_j_molstruc_2023_135913 crossref_primary_10_1016_j_inoche_2025_115275 crossref_primary_10_1038_s41467_024_49540_2 crossref_primary_10_1002_slct_202401621 crossref_primary_10_1016_j_molstruc_2019_127672 crossref_primary_10_1107_S2053229618014109 crossref_primary_10_1016_j_molstruc_2024_139334 crossref_primary_10_1016_j_molstruc_2025_141948 crossref_primary_10_1080_07391102_2023_2301512 crossref_primary_10_1017_S0885715623000192 crossref_primary_10_1002_zaac_202100012 crossref_primary_10_1007_s11243_021_00456_6 crossref_primary_10_1107_S2053229622009275 crossref_primary_10_1007_s11224_021_01732_y crossref_primary_10_1002_chem_202501777 crossref_primary_10_1002_slct_201900646 crossref_primary_10_3390_cryst14080733 crossref_primary_10_1002_adom_202400539 crossref_primary_10_1016_j_molstruc_2019_127467 crossref_primary_10_3390_bioengineering10121361 crossref_primary_10_1007_s11243_022_00518_3 crossref_primary_10_1016_j_molstruc_2024_139584 crossref_primary_10_1002_aoc_7772 crossref_primary_10_1016_j_cej_2025_163755 crossref_primary_10_1016_j_molstruc_2022_134771 crossref_primary_10_1016_j_molstruc_2024_139580 crossref_primary_10_1039_D2QI01159J crossref_primary_10_1007_s13738_021_02438_y crossref_primary_10_1016_j_mencom_2022_11_003 crossref_primary_10_1002_jhet_4359 crossref_primary_10_3390_molecules26247452 crossref_primary_10_3390_ijms21165654 crossref_primary_10_1107_S2053229619015523 crossref_primary_10_1016_j_cdc_2021_100649 crossref_primary_10_1002_chem_202401715 crossref_primary_10_1002_anie_202513288 crossref_primary_10_1039_D5RA01306B crossref_primary_10_3390_inorganics12070176 crossref_primary_10_1016_j_heliyon_2022_e10047 crossref_primary_10_1107_S1600576721002910 crossref_primary_10_1134_S1063774523020037 crossref_primary_10_1002_cplu_201900717 crossref_primary_10_1016_j_molstruc_2021_132296 crossref_primary_10_1007_s11243_024_00580_z crossref_primary_10_1002_asia_202500203 crossref_primary_10_3390_cryst10020081 crossref_primary_10_3390_cryst11070795 crossref_primary_10_1016_j_cherd_2022_07_012 crossref_primary_10_1107_S2053229625007181 crossref_primary_10_1016_j_molstruc_2024_139521 crossref_primary_10_1002_poc_4188 crossref_primary_10_3390_molecules25061436 crossref_primary_10_1016_j_molstruc_2024_140767 crossref_primary_10_3390_cryst13091313 crossref_primary_10_1007_s10534_020_00268_8 crossref_primary_10_1016_j_molstruc_2024_138206 crossref_primary_10_1002_cplu_202300692 crossref_primary_10_1016_j_bbrc_2025_152606 crossref_primary_10_3390_cryst12121807 crossref_primary_10_1016_j_molstruc_2023_137290 crossref_primary_10_1016_j_dyepig_2020_108730 crossref_primary_10_1016_j_molstruc_2024_138444 crossref_primary_10_1107_S2052252524010443 crossref_primary_10_1016_j_jics_2021_100007 crossref_primary_10_1016_j_molstruc_2024_139300 crossref_primary_10_1016_j_mseb_2020_114844 crossref_primary_10_3390_compounds5030024 crossref_primary_10_1007_s10973_020_09260_3 crossref_primary_10_1016_j_steroids_2022_109092 crossref_primary_10_1016_j_molstruc_2024_139552 crossref_primary_10_1016_j_molstruc_2020_127979 crossref_primary_10_1016_j_molstruc_2024_140531 crossref_primary_10_1016_j_chphi_2024_100559 crossref_primary_10_1016_j_molstruc_2021_132253 crossref_primary_10_1515_zkri_2018_2076 crossref_primary_10_1515_zkri_2018_2077 crossref_primary_10_1016_j_molstruc_2022_134717 crossref_primary_10_1016_j_ijpharm_2024_123939 crossref_primary_10_1080_10406638_2022_2067196 crossref_primary_10_1002_chem_202004918 crossref_primary_10_1007_s10904_021_02194_9 crossref_primary_10_1016_j_molstruc_2021_131162 crossref_primary_10_1016_j_molstruc_2022_133631 crossref_primary_10_1016_j_ijpharm_2025_125172 crossref_primary_10_1016_j_molstruc_2025_142190 crossref_primary_10_1515_zkri_2018_2067 crossref_primary_10_1016_j_molstruc_2021_131396 crossref_primary_10_1021_jacs_3c05444 crossref_primary_10_1515_zkri_2018_2069 crossref_primary_10_1007_s10904_024_03016_4 crossref_primary_10_1134_S0022476620090024 crossref_primary_10_3390_molecules26175335 crossref_primary_10_1007_s10870_022_00945_1 crossref_primary_10_1021_acs_cgd_5c00844 crossref_primary_10_1016_j_molstruc_2023_135072 crossref_primary_10_1007_s00894_024_06128_3 crossref_primary_10_1016_j_cdc_2019_100292 crossref_primary_10_1016_j_molstruc_2023_137256 crossref_primary_10_1007_s10854_024_13215_x crossref_primary_10_1016_j_inoche_2024_112590 crossref_primary_10_1016_j_molstruc_2024_139747 crossref_primary_10_1016_j_jinorgbio_2018_10_002 crossref_primary_10_1080_15421406_2024_2326337 crossref_primary_10_1093_chemle_upaf162 crossref_primary_10_1016_j_ijhydene_2021_05_091 crossref_primary_10_1080_14786419_2019_1696331 crossref_primary_10_3390_ijms22094992 crossref_primary_10_1016_j_molstruc_2022_133849 crossref_primary_10_3390_cryst8050213 crossref_primary_10_1016_j_molstruc_2024_138895 crossref_primary_10_1016_j_molstruc_2023_137048 crossref_primary_10_1016_j_chphi_2024_100467 crossref_primary_10_1016_j_molstruc_2024_138652 crossref_primary_10_1016_j_molstruc_2024_137562 crossref_primary_10_1016_j_cej_2023_144144 crossref_primary_10_1016_j_molstruc_2024_138669 crossref_primary_10_1039_D5CE00308C crossref_primary_10_1021_jacs_0c07830 crossref_primary_10_1002_aoc_5889 crossref_primary_10_1016_j_chphi_2024_100477 crossref_primary_10_1016_j_molstruc_2021_130282 crossref_primary_10_1142_S2737416524500777 crossref_primary_10_1107_S2053229625000956 crossref_primary_10_1134_S0022476620010163 crossref_primary_10_3390_cryst13040640 crossref_primary_10_1016_j_arabjc_2022_104230 crossref_primary_10_1107_S2052252520015997 crossref_primary_10_1016_j_molstruc_2020_128632 crossref_primary_10_1007_s10870_024_01026_1 crossref_primary_10_1016_j_cdc_2018_11_010 crossref_primary_10_3390_molecules27092636 crossref_primary_10_1002_anie_202311419 crossref_primary_10_1016_j_molstruc_2021_130266 crossref_primary_10_1016_j_molstruc_2021_132203 crossref_primary_10_1016_j_molstruc_2022_132742 crossref_primary_10_1016_j_molstruc_2023_136128 crossref_primary_10_1039_D5DT01086A crossref_primary_10_1016_j_molstruc_2025_143484 crossref_primary_10_1039_D2RA08101F crossref_primary_10_1016_j_poly_2022_115956 crossref_primary_10_1107_S2053229622004004 crossref_primary_10_1016_j_molstruc_2024_140911 crossref_primary_10_1021_acs_cgd_5c00807 crossref_primary_10_3390_cryst9090478 crossref_primary_10_1002_aoc_70313 crossref_primary_10_1016_j_molstruc_2023_137451 crossref_primary_10_1016_j_jpcs_2023_111536 crossref_primary_10_1016_j_tet_2024_134066 crossref_primary_10_1016_j_molstruc_2021_131588 crossref_primary_10_1016_j_molstruc_2025_143011 crossref_primary_10_1016_j_molstruc_2020_128894 crossref_primary_10_1016_j_molstruc_2020_129741 crossref_primary_10_1080_00958972_2025_2495099 crossref_primary_10_1016_j_ica_2025_122691 crossref_primary_10_1063_5_0285742 crossref_primary_10_3390_cryst12020250 crossref_primary_10_1016_j_inoche_2021_108884 crossref_primary_10_1016_j_molstruc_2025_143014 crossref_primary_10_3390_pharmaceutics13050734 crossref_primary_10_1039_D4CE01314J crossref_primary_10_1107_S205252062000373X crossref_primary_10_3390_cryst12081157 crossref_primary_10_1021_jacs_2c01469 crossref_primary_10_1016_j_jhazmat_2025_139267 crossref_primary_10_1107_S2053229624003346 crossref_primary_10_1016_j_molstruc_2019_07_107 crossref_primary_10_1016_j_molstruc_2021_130004 crossref_primary_10_3390_molecules22122238 crossref_primary_10_1016_j_colsurfa_2024_133442 crossref_primary_10_3390_cryst12081143 crossref_primary_10_1016_j_molstruc_2024_137770 crossref_primary_10_1007_s10854_021_06364_w crossref_primary_10_1134_S106378342560102X crossref_primary_10_1016_j_molstruc_2021_131560 crossref_primary_10_1039_D2RA04035B crossref_primary_10_1016_j_molstruc_2024_137704 crossref_primary_10_1107_S2053229619009896 crossref_primary_10_3390_inorganics7030040 crossref_primary_10_1107_S2052520619013271 crossref_primary_10_1016_j_molstruc_2021_131565 crossref_primary_10_2298_JSC230831079A crossref_primary_10_1134_S0036023624600941 crossref_primary_10_1002_open_202500197 crossref_primary_10_1002_cbdv_202100836 crossref_primary_10_3390_cryst13101410 crossref_primary_10_1016_j_molstruc_2023_137420 crossref_primary_10_1002_cplu_202400496 crossref_primary_10_1134_S0036023622602264 crossref_primary_10_1002_ange_202320223 crossref_primary_10_1002_slct_202000966 crossref_primary_10_3390_pharmaceutics15041196 crossref_primary_10_3390_inorganics12120305 crossref_primary_10_1016_j_molstruc_2021_130465 crossref_primary_10_1016_j_molstruc_2024_137954 crossref_primary_10_1002_ange_202308350 crossref_primary_10_1016_j_molstruc_2024_138802 crossref_primary_10_1016_j_molstruc_2024_138803 crossref_primary_10_1007_s10870_022_00930_8 crossref_primary_10_1002_adsu_202400002 crossref_primary_10_1002_adfm_202502518 crossref_primary_10_1016_j_molstruc_2025_142359 crossref_primary_10_1016_j_molstruc_2020_129537 crossref_primary_10_1080_07391102_2022_2076155 crossref_primary_10_1002_slct_202403136 crossref_primary_10_1016_j_molstruc_2023_137449 crossref_primary_10_1038_s41598_022_21894_x crossref_primary_10_1016_j_molstruc_2021_131544 crossref_primary_10_1080_07391102_2023_2226755 crossref_primary_10_1016_j_molstruc_2021_130214 crossref_primary_10_1016_j_poly_2022_115906 crossref_primary_10_1007_s10870_021_00902_4 crossref_primary_10_1016_j_molstruc_2025_143453 crossref_primary_10_1016_j_molstruc_2025_143695 crossref_primary_10_1021_acs_cgd_5c00233 crossref_primary_10_1107_S2053229620012504 crossref_primary_10_1016_j_molstruc_2025_143696 crossref_primary_10_1016_j_molstruc_2025_142124 crossref_primary_10_1016_j_jphotochem_2025_116610 crossref_primary_10_1007_s11224_024_02278_5 crossref_primary_10_1016_j_ica_2020_119472 crossref_primary_10_1016_j_molstruc_2024_137979 crossref_primary_10_1016_j_poly_2023_116293 crossref_primary_10_1007_s11224_024_02387_1 crossref_primary_10_1016_j_molstruc_2020_129313 crossref_primary_10_3390_molecules27217403 crossref_primary_10_1002_zaac_202200087 crossref_primary_10_1016_j_poly_2019_06_041 crossref_primary_10_1107_S2053229622009949 crossref_primary_10_1515_zkri_2019_0005 crossref_primary_10_1080_00268976_2020_1718224 crossref_primary_10_1016_j_molstruc_2020_129317 crossref_primary_10_1039_D5CE00618J crossref_primary_10_1515_zkri_2022_0017 crossref_primary_10_1016_j_molstruc_2023_135252 crossref_primary_10_1134_S1063774521070117 crossref_primary_10_1016_j_cdc_2025_101183 crossref_primary_10_1016_j_molstruc_2021_130435 crossref_primary_10_1007_s12596_024_02139_8 crossref_primary_10_1016_j_molstruc_2025_141698 crossref_primary_10_1016_j_molstruc_2025_142787 crossref_primary_10_1016_j_bioorg_2022_105980 crossref_primary_10_1002_chem_202201295 crossref_primary_10_1002_slct_201801590 crossref_primary_10_1080_10406638_2023_2238864 crossref_primary_10_1002_slct_202203015 crossref_primary_10_1039_D4RA07966C crossref_primary_10_1002_agt2_546 crossref_primary_10_1039_D3RA06334H crossref_primary_10_1016_j_molstruc_2023_136764 crossref_primary_10_1016_j_molstruc_2021_131757 crossref_primary_10_1016_j_molstruc_2025_142315 crossref_primary_10_1016_j_cclet_2022_108057 crossref_primary_10_1016_j_jics_2025_101843 crossref_primary_10_1016_j_ejps_2025_107281 crossref_primary_10_3390_ijms26094050 crossref_primary_10_1039_D3RA07422F crossref_primary_10_1002_ejic_202001138 crossref_primary_10_1016_j_molstruc_2021_131980 crossref_primary_10_1021_acsomega_5c02269 crossref_primary_10_1080_00268976_2024_2448566 crossref_primary_10_3390_cryst13101425 crossref_primary_10_1002_ejoc_202101574 crossref_primary_10_1016_j_molstruc_2020_129104 crossref_primary_10_1016_j_molstruc_2021_131746 crossref_primary_10_1016_j_molstruc_2020_129587 crossref_primary_10_1016_j_jics_2025_101854 crossref_primary_10_1080_15421406_2022_2056296 crossref_primary_10_1002_slct_202500863 crossref_primary_10_1016_j_jfluchem_2020_109697 crossref_primary_10_1016_j_matchemphys_2023_128031 crossref_primary_10_1016_j_molstruc_2025_142329 crossref_primary_10_1107_S2053229625006448 crossref_primary_10_1016_j_molstruc_2023_135215 crossref_primary_10_1016_j_molstruc_2021_131975 crossref_primary_10_1039_C7FD00199A crossref_primary_10_3390_cryst13040694 crossref_primary_10_1080_15421406_2021_1907053 crossref_primary_10_1016_j_molstruc_2025_142579 crossref_primary_10_1016_j_molstruc_2020_129116 crossref_primary_10_1515_zkri_2024_0120 crossref_primary_10_1021_acs_cgd_5c00669 crossref_primary_10_1016_j_ica_2020_119662 crossref_primary_10_1007_s11224_023_02222_z crossref_primary_10_3390_cryst13060974 crossref_primary_10_1016_j_inoche_2025_114474 crossref_primary_10_1016_j_ijleo_2025_172351 crossref_primary_10_1002_cplu_202500144 crossref_primary_10_1016_j_jfluchem_2020_109717 crossref_primary_10_1016_j_molstruc_2021_131721 crossref_primary_10_1016_j_molstruc_2025_142740 crossref_primary_10_1016_j_molstruc_2025_142742 crossref_primary_10_1039_D5CE00362H crossref_primary_10_1088_2515_7655_ad0d00 crossref_primary_10_1039_C7FD00072C crossref_primary_10_1039_D1RA03969E crossref_primary_10_1107_S2053229617011160 crossref_primary_10_1016_j_molstruc_2023_135633 crossref_primary_10_1107_S205322962200955X crossref_primary_10_1007_s10904_022_02448_0 crossref_primary_10_1016_j_optmat_2022_112051 crossref_primary_10_1016_j_molstruc_2025_141661 crossref_primary_10_1016_j_chempr_2020_04_009 crossref_primary_10_3103_S0027131421050023 crossref_primary_10_1007_s10854_023_11831_7 crossref_primary_10_1016_j_molstruc_2022_134281 crossref_primary_10_1002_cplu_202100259 crossref_primary_10_1107_S2053229622010300 crossref_primary_10_1107_S2053229625003523 crossref_primary_10_3390_molecules29184437 crossref_primary_10_1016_j_molstruc_2020_129388 crossref_primary_10_1016_j_saa_2018_12_021 crossref_primary_10_1016_j_molstruc_2021_131701 crossref_primary_10_1016_j_heliyon_2021_e06464 crossref_primary_10_1038_s41467_019_11657_0 crossref_primary_10_1016_j_molstruc_2023_135662 crossref_primary_10_1016_j_molstruc_2023_136751 crossref_primary_10_1007_s10870_019_00814_4 crossref_primary_10_1016_j_poly_2024_116996 crossref_primary_10_1038_s42004_021_00618_8 crossref_primary_10_1080_15421406_2021_2023398 crossref_primary_10_1107_S2053229624006375 crossref_primary_10_1080_10406638_2022_2068622 crossref_primary_10_1016_j_molstruc_2021_130601 crossref_primary_10_1016_j_molstruc_2025_141681 crossref_primary_10_1007_s42250_025_01200_8 crossref_primary_10_1080_15421406_2023_2171558 crossref_primary_10_1016_j_molliq_2021_118029 crossref_primary_10_1107_S205322962201052X crossref_primary_10_1007_s12043_021_02276_w crossref_primary_10_3390_molecules28020731 crossref_primary_10_1107_S2053229620001503 crossref_primary_10_1016_j_molstruc_2023_134996 crossref_primary_10_1016_j_molstruc_2024_140240 crossref_primary_10_1016_j_molstruc_2025_141610 crossref_primary_10_1016_j_heliyon_2022_e09608 crossref_primary_10_3390_molecules28073097 crossref_primary_10_1016_j_molstruc_2024_138398 crossref_primary_10_1107_S205322962500378X crossref_primary_10_3390_molecules29163722 crossref_primary_10_1002_jccs_202000215 crossref_primary_10_1107_S2053229622002984 crossref_primary_10_1016_j_cdc_2021_100786 crossref_primary_10_1016_j_molstruc_2024_139014 crossref_primary_10_1016_j_molstruc_2022_133391 crossref_primary_10_3390_molecules30173652 crossref_primary_10_1007_s13538_023_01290_0 crossref_primary_10_1016_j_molstruc_2025_142959 crossref_primary_10_1016_j_molstruc_2023_135867 crossref_primary_10_3390_M1587 crossref_primary_10_3390_cryst13081255 crossref_primary_10_1016_j_molstruc_2023_135623 crossref_primary_10_1007_s11224_023_02262_5 crossref_primary_10_1134_S0036024424701759 crossref_primary_10_1016_j_molstruc_2024_140023 crossref_primary_10_1016_j_molstruc_2024_139026 crossref_primary_10_3390_gels4020034 crossref_primary_10_1016_j_molstruc_2024_138176 crossref_primary_10_3390_molecules28196859 crossref_primary_10_1107_S2053229622004909 crossref_primary_10_1016_j_molstruc_2022_134226 crossref_primary_10_1007_s10870_025_01050_9 crossref_primary_10_1134_S1063774522020080 crossref_primary_10_3390_ma16041474 crossref_primary_10_1007_s11224_025_02572_w crossref_primary_10_3390_molecules27134082 crossref_primary_10_1039_D2DT02445D crossref_primary_10_1016_j_molstruc_2025_141886 crossref_primary_10_1007_s11224_024_02355_9 crossref_primary_10_1002_qua_70092 crossref_primary_10_1016_j_ijpharm_2021_120790 crossref_primary_10_1016_j_molstruc_2022_134462 crossref_primary_10_1016_j_molstruc_2025_141406 crossref_primary_10_1080_15421406_2021_2024041 crossref_primary_10_1016_j_molstruc_2022_134436 crossref_primary_10_3390_ph13110338 crossref_primary_10_1016_j_molstruc_2023_135806 crossref_primary_10_1002_smll_202402120 crossref_primary_10_3390_inorganics12100268 crossref_primary_10_1080_07391102_2020_1840443 crossref_primary_10_3390_molecules28207179 crossref_primary_10_1016_j_molstruc_2024_140204 crossref_primary_10_1016_j_molstruc_2024_140202 crossref_primary_10_1016_j_molstruc_2024_138358 crossref_primary_10_1016_j_molstruc_2022_133114 crossref_primary_10_1107_S2053229618015553 crossref_primary_10_1016_j_molstruc_2018_06_083 crossref_primary_10_1002_anie_202414215 crossref_primary_10_1016_j_molstruc_2022_133357 crossref_primary_10_1002_crat_201900136 crossref_primary_10_1016_j_molstruc_2023_134946 crossref_primary_10_2298_JSC211127112R crossref_primary_10_1016_j_molstruc_2023_134948 crossref_primary_10_1107_S2053229624006193 crossref_primary_10_1016_j_molstruc_2024_140673 crossref_primary_10_1016_j_molstruc_2024_139457 crossref_primary_10_1016_j_matchemphys_2025_131269 crossref_primary_10_1515_zkri_2023_0050 crossref_primary_10_1016_j_molstruc_2025_142919 crossref_primary_10_1016_j_molstruc_2022_134681 crossref_primary_10_1016_j_molstruc_2024_138122 crossref_primary_10_3390_cryst13040701 crossref_primary_10_1016_j_molstruc_2022_134414 crossref_primary_10_1007_s10854_023_11112_3 crossref_primary_10_1016_j_molstruc_2024_139222 crossref_primary_10_1007_s11164_025_05534_3 crossref_primary_10_1016_j_molstruc_2024_139226 crossref_primary_10_1016_j_ica_2023_121766 crossref_primary_10_1016_j_molstruc_2024_139228 crossref_primary_10_1016_j_chphi_2023_100345 crossref_primary_10_1002_chem_202200820 crossref_primary_10_1002_crat_202000100 crossref_primary_10_1039_D0SC05819J crossref_primary_10_1016_j_molstruc_2022_134427 crossref_primary_10_1007_s11224_025_02487_6 crossref_primary_10_1016_j_molstruc_2022_132489 crossref_primary_10_3390_molecules29102173 crossref_primary_10_1016_j_molstruc_2020_128901 crossref_primary_10_1002_adfm_202009854 crossref_primary_10_3390_cryst11020172 crossref_primary_10_1016_j_molstruc_2018_10_016 crossref_primary_10_1016_j_molstruc_2021_132175 crossref_primary_10_1107_S2052252518011685 crossref_primary_10_1016_j_molstruc_2024_139407 crossref_primary_10_1007_s10870_022_00929_1 crossref_primary_10_1016_j_cdc_2019_100239 crossref_primary_10_1039_D4RA03940H crossref_primary_10_1016_j_molstruc_2025_144043 crossref_primary_10_3390_inorganics11100382 crossref_primary_10_3390_cryst15020136 crossref_primary_10_1515_zkri_2023_0020 crossref_primary_10_3390_cryst11020184 crossref_primary_10_1016_j_molstruc_2020_127828 crossref_primary_10_3390_inorganics12110284 crossref_primary_10_1107_S2052520622000889 crossref_primary_10_1016_j_molstruc_2022_133317 crossref_primary_10_1002_aoc_7846 crossref_primary_10_1007_s10847_021_01048_8 crossref_primary_10_1007_s12010_022_04077_2 crossref_primary_10_1016_j_molstruc_2024_139896 crossref_primary_10_3390_cryst11020191 crossref_primary_10_1002_slct_202502211 crossref_primary_10_1016_j_molstruc_2020_128920 crossref_primary_10_1016_j_cdc_2021_100706 crossref_primary_10_1016_j_molstruc_2022_133550 crossref_primary_10_3390_cryst13010055 crossref_primary_10_1016_j_molstruc_2025_144061 crossref_primary_10_1016_j_molstruc_2022_132439 crossref_primary_10_1080_00958972_2025_2537379 crossref_primary_10_3390_cryst13010024 crossref_primary_10_3390_cryst14010017 crossref_primary_10_1007_s11224_025_02489_4 crossref_primary_10_1007_s11224_025_02467_w crossref_primary_10_1002_slct_202403906 crossref_primary_10_1007_s13738_021_02285_x crossref_primary_10_1016_j_molstruc_2024_139436 crossref_primary_10_1016_j_molstruc_2020_128942 crossref_primary_10_1039_D2SC06761G crossref_primary_10_3390_cryst13040569 crossref_primary_10_3390_M2057 crossref_primary_10_1016_j_molstruc_2022_133501 crossref_primary_10_1016_j_molstruc_2022_133500 crossref_primary_10_1002_chem_202002613 crossref_primary_10_1016_j_poly_2021_115490 crossref_primary_10_1134_S1070363224610871 crossref_primary_10_1016_j_molstruc_2020_128951 crossref_primary_10_1080_15421406_2021_1989652 crossref_primary_10_1016_j_molstruc_2024_140840 crossref_primary_10_1107_S2053229620004131 crossref_primary_10_3390_cryst11121589 crossref_primary_10_3390_cryst12050714 crossref_primary_10_1016_j_molstruc_2023_137146 crossref_primary_10_1107_S2052520620001225 crossref_primary_10_1007_s00289_025_05877_2 crossref_primary_10_1016_j_molstruc_2021_131032 crossref_primary_10_1080_15421406_2022_2060617 crossref_primary_10_1038_s41563_025_02133_w crossref_primary_10_1107_S2053229621010482 crossref_primary_10_1016_j_molstruc_2025_143161 crossref_primary_10_3390_molecules27238425 crossref_primary_10_1016_j_molstruc_2020_128727 crossref_primary_10_1039_D3RA08081A crossref_primary_10_1016_j_molstruc_2020_128721 crossref_primary_10_1016_j_poly_2024_117139 crossref_primary_10_1016_j_molstruc_2024_138762 crossref_primary_10_1016_j_molstruc_2021_130182 crossref_primary_10_1016_j_molstruc_2021_131023 crossref_primary_10_1016_j_molstruc_2021_130177 crossref_primary_10_1007_s13738_021_02237_5 crossref_primary_10_3390_ijms23137173 crossref_primary_10_3390_cryst14020151 crossref_primary_10_1016_j_molstruc_2024_139869 crossref_primary_10_1007_s10854_024_13073_7 crossref_primary_10_1007_s10870_023_00989_x crossref_primary_10_1016_j_molstruc_2020_129827 crossref_primary_10_1107_S2052252524001416 crossref_primary_10_1016_j_ica_2025_122775 crossref_primary_10_1016_j_molstruc_2025_144026 crossref_primary_10_1002_chem_202002835 crossref_primary_10_3390_cryst12050737 crossref_primary_10_3390_ijms26178684 crossref_primary_10_1016_j_cherd_2024_08_042 crossref_primary_10_1016_j_tet_2022_132671 crossref_primary_10_1039_D3RA03936F crossref_primary_10_1107_S2053229624006946 crossref_primary_10_1080_15421406_2022_2159118 crossref_primary_10_1186_s13065_025_01423_3 crossref_primary_10_1016_j_molstruc_2022_132885 crossref_primary_10_1016_j_molstruc_2022_133731 crossref_primary_10_1016_j_poly_2024_117162 crossref_primary_10_1002_poc_4247 crossref_primary_10_1016_j_molstruc_2021_131019 crossref_primary_10_3390_pharmaceutics17020152 crossref_primary_10_1016_j_molstruc_2022_133739 crossref_primary_10_1016_j_molstruc_2024_139633 crossref_primary_10_3390_molecules28155902 crossref_primary_10_1021_acsami_5c13947 crossref_primary_10_1021_jacs_5c07977 crossref_primary_10_1021_acs_cgd_5c00989 crossref_primary_10_1002_anie_202308350 crossref_primary_10_1016_j_molstruc_2024_138546 crossref_primary_10_1134_S0022476620100017 crossref_primary_10_1002_anie_202320223 crossref_primary_10_1039_D4CE01018C crossref_primary_10_1016_j_molstruc_2021_131483 crossref_primary_10_1016_j_molstruc_2021_131242 crossref_primary_10_1080_15421406_2021_1978720 crossref_primary_10_1007_s13738_022_02659_9 crossref_primary_10_1016_j_molstruc_2025_142263 crossref_primary_10_1016_j_molstruc_2025_143353 crossref_primary_10_3390_ijms231911870 crossref_primary_10_1107_S2053229623009221 crossref_primary_10_1016_j_molstruc_2022_132859 crossref_primary_10_1016_j_molstruc_2025_142028 crossref_primary_10_1107_S2052252521010678 crossref_primary_10_1002_chem_201805131 crossref_primary_10_1002_cplu_202200207 crossref_primary_10_1016_j_molstruc_2025_143597 crossref_primary_10_1002_cptc_202300209 crossref_primary_10_1016_j_molliq_2024_126272 crossref_primary_10_1016_j_molstruc_2024_139800 crossref_primary_10_1107_S1600576721008529 crossref_primary_10_1016_j_jphotochem_2023_114850 crossref_primary_10_3390_molecules24061107 crossref_primary_10_1016_j_heliyon_2023_e23517 crossref_primary_10_1007_s10870_022_00959_9 crossref_primary_10_1007_s42452_024_06254_w crossref_primary_10_1016_j_molstruc_2022_133713 crossref_primary_10_1107_S2052520622001457 crossref_primary_10_1007_s00339_025_08448_4 crossref_primary_10_1107_S2052252518010758 crossref_primary_10_1107_S2053229620006762 crossref_primary_10_1039_D2CP02127G crossref_primary_10_1007_s10870_022_00948_y crossref_primary_10_1002_slct_202302438 crossref_primary_10_1016_j_molstruc_2021_130136 crossref_primary_10_1107_S2052252524003634 crossref_primary_10_1007_s10870_023_00978_0 crossref_primary_10_1016_j_molstruc_2022_133928 crossref_primary_10_1016_j_molstruc_2019_127024 crossref_primary_10_1007_s13738_020_01853_x crossref_primary_10_1016_j_molstruc_2020_129869 crossref_primary_10_3390_pharmaceutics15010189 crossref_primary_10_1016_j_chphi_2025_100900 crossref_primary_10_1039_D4RA02009J crossref_primary_10_3390_chemistry6050073 crossref_primary_10_1007_s13738_024_03110_x crossref_primary_10_1007_s11224_024_02295_4 crossref_primary_10_1107_S2052252519014416 crossref_primary_10_3103_S0027131423030033 crossref_primary_10_1007_s10854_025_15514_3 crossref_primary_10_1007_s00706_022_02918_8 crossref_primary_10_1016_j_molstruc_2025_143145 crossref_primary_10_1021_jacs_1c06498 crossref_primary_10_1016_j_heliyon_2023_e21312 crossref_primary_10_1080_07391102_2024_2314268 crossref_primary_10_1016_j_cdc_2019_100195 crossref_primary_10_1016_j_ipha_2023_11_008 crossref_primary_10_1039_D3RA08727A crossref_primary_10_1039_D0RA03343J crossref_primary_10_1080_10406638_2023_2165512 crossref_primary_10_1107_S2053229619003589 crossref_primary_10_1107_S2053229621009487 crossref_primary_10_1007_s00339_024_07369_y crossref_primary_10_3390_chemistry4010017 crossref_primary_10_1016_j_molstruc_2025_143318 crossref_primary_10_1016_j_molstruc_2020_128798 crossref_primary_10_1002_cphc_202000927 crossref_primary_10_1002_poc_4660 crossref_primary_10_1016_j_molstruc_2023_136696 crossref_primary_10_1016_j_molstruc_2021_130580 crossref_primary_10_3390_molecules27206899 crossref_primary_10_1016_j_molstruc_2023_136687 crossref_primary_10_3390_cryst13101512 crossref_primary_10_1002_slct_202303510 crossref_primary_10_1016_j_molstruc_2021_131435 crossref_primary_10_1016_j_molstruc_2022_132829 crossref_primary_10_1016_j_xphs_2024_10_011 crossref_primary_10_1021_acs_cgd_5c00565 crossref_primary_10_3390_cryst14121100 crossref_primary_10_3390_cryst13111555 crossref_primary_10_1142_S1088424624500354 crossref_primary_10_1002_slct_202000608 crossref_primary_10_1002_zaac_202400210 crossref_primary_10_1016_j_molstruc_2023_135593 crossref_primary_10_1016_j_molstruc_2024_137847 crossref_primary_10_1107_S2053229624006788 crossref_primary_10_3390_cryst15040371 crossref_primary_10_1039_D3RA04322C crossref_primary_10_1016_j_molstruc_2021_131668 crossref_primary_10_1007_s10870_024_01038_x crossref_primary_10_1002_ange_202513288 crossref_primary_10_1016_j_cclet_2022_07_011 crossref_primary_10_1016_j_molstruc_2025_142008 crossref_primary_10_1098_rsos_251026 crossref_primary_10_1002_ange_202311419 crossref_primary_10_1016_j_molstruc_2023_136475 crossref_primary_10_1107_S2053229625004334 crossref_primary_10_3390_cryst14050396 crossref_primary_10_1016_j_poly_2024_117320 crossref_primary_10_1016_j_saa_2025_126604 crossref_primary_10_3390_molecules25102386 crossref_primary_10_1016_j_molstruc_2023_135137 crossref_primary_10_1002_slct_202100552 crossref_primary_10_1007_s11243_020_00440_6 crossref_primary_10_1080_00958972_2019_1687891 crossref_primary_10_1038_s42004_024_01380_3 crossref_primary_10_1142_S1088424624500330 crossref_primary_10_3390_cryst10040334 crossref_primary_10_1016_j_molstruc_2023_137310 crossref_primary_10_3390_cryst12040550 crossref_primary_10_1016_j_jct_2020_106369 crossref_primary_10_1107_S2053229625005674 crossref_primary_10_1016_j_molstruc_2023_136416 crossref_primary_10_1016_j_molstruc_2019_127086 crossref_primary_10_1107_S2053229620004180 crossref_primary_10_1007_s11224_024_02351_z crossref_primary_10_1107_S2052520620013244 crossref_primary_10_1107_S2052520622000191 crossref_primary_10_3390_ma16020702 crossref_primary_10_1016_j_molstruc_2023_135320 crossref_primary_10_1107_S2052520621003498 crossref_primary_10_1016_j_molstruc_2023_135319 crossref_primary_10_1007_s11224_023_02254_5 crossref_primary_10_1186_s13065_025_01525_y crossref_primary_10_3390_cryst12111573 crossref_primary_10_1016_j_ijpharm_2024_124716 crossref_primary_10_1021_jacs_8b12927 crossref_primary_10_1007_s11224_025_02470_1 crossref_primary_10_3390_cryst14040342 crossref_primary_10_3390_chemistry3010010 crossref_primary_10_3390_chemistry3010016 crossref_primary_10_1016_j_molstruc_2025_141585 crossref_primary_10_3390_pharmaceutics13020139 crossref_primary_10_1016_j_molstruc_2023_135108 crossref_primary_10_1080_07391102_2023_2224899 crossref_primary_10_3390_ph13100270 crossref_primary_10_1016_j_poly_2023_116362 crossref_primary_10_1080_15421406_2024_2323789 crossref_primary_10_1007_s11705_025_2611_9 crossref_primary_10_1016_j_molstruc_2021_130774 crossref_primary_10_1080_10406638_2022_2094420 crossref_primary_10_3390_cryst9120662 crossref_primary_10_1107_S205225252401217X crossref_primary_10_1007_s11164_024_05464_6 crossref_primary_10_1107_S2056989025005547 crossref_primary_10_3390_ma18071492 crossref_primary_10_3389_fchem_2018_00031 crossref_primary_10_1016_j_molstruc_2021_130524 crossref_primary_10_1016_j_molstruc_2025_143784 crossref_primary_10_1107_S2052520624003421 crossref_primary_10_1016_j_molstruc_2022_134181 crossref_primary_10_1107_S2052252523008941 crossref_primary_10_1107_S2053229621004198 |
| Cites_doi | 10.1021/jp203132k 10.1016/S0009-2614(98)00036-0 10.1039/B818330A 10.1063/1.4902353 10.1107/S0021889807067908 10.1063/1.4948363 10.1016/S0009-2614(99)01167-7 10.1021/ic9019958 10.1107/S0567740880002555 10.1002/chem.201504908 10.1063/1.4970519 10.1080/00268970802060674 10.1107/S205225251500189X 10.1039/C6RA14957J 10.1107/S2052252515002067 10.1039/C5CE00045A 10.1088/0031-8949/87/04/048103 10.1063/1.3159673 10.1039/C6CP02690G 10.1002/(SICI)1521-3765(19991203)5:12<3616::AID-CHEM3616>3.0.CO;2-C 10.1021/jp993505o 10.1107/S2052520616003954 10.1039/C6CP05917A 10.1088/0953-4075/43/20/202001 10.1021/jp0144202 10.1039/C5CC09741J 10.1039/c1ce06212c 10.1021/jp022288f 10.1039/C5CE01522G 10.1039/b003674i 10.1021/acs.cgd.5b01332 10.1039/C7FD00072C 10.1107/S0108768102004263 10.1002/chem.200400493 10.1021/acs.cgd.5b00676 10.1186/s13065-016-0152-5 10.1039/C0CE00683A 10.1107/S2052252515002006 10.1021/ja100936w 10.1021/ic50197a006 10.1023/A:1013179702730 10.1021/acs.jpca.5b10027 10.1002/(SICI)1521-3773(19990712)38:13/14<1974::AID-ANIE1974>3.0.CO;2-F 10.1021/cr00031a008 10.1021/acs.cgd.5b01316 10.1039/a607149j 10.1039/C4CC09074H 10.1524/zkri.220.5.499.65063 10.1063/1.4738961 10.1080/00268978400102151 10.1002/qua.560100211 10.1039/C5CE00327J 10.1002/anie.201505813 10.1021/jp212094d 10.1002/jcc.20495 10.1021/acs.cgd.6b00986 10.1021/jz502271c |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2017 International Union of Crystallography Copyright International Union of Crystallography Sep 2017 Campbell F. Mackenzie et al. 2017 2017 |
| Copyright_xml | – notice: COPYRIGHT 2017 International Union of Crystallography – notice: Copyright International Union of Crystallography Sep 2017 – notice: Campbell F. Mackenzie et al. 2017 2017 |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO EHMNL HCIFZ JG9 KB. L7M PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1107/S205225251700848X |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central UK & Ireland Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX UK & Ireland Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | CrystalExplorer model energies |
| EISSN | 2052-2525 |
| EndPage | 587 |
| ExternalDocumentID | oai_doaj_org_article_2c9d8e8e1a8e4a3488221dc6887bedaf PMC5600021 A506829802 28932404 10_1107_S205225251700848X |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DP130103304 – fundername: Danmarks Grundforskningsfond grantid: DNRF-93 |
| GroupedDBID | 5VS 8FE 8FG AAFWJ AAYXX ABJCF ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION D1I EBS EHMNL EJD GROUPED_DOAJ H13 HCIFZ HYE IAO IPNFZ ITC KB. KQ8 M48 M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RCJ RIG ROL RPM ZBA 3V. NPM 7SR 7U5 8BQ 8FD AZQEC DWQXO JG9 L7M PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c404t-c1eaa0beae1a06295311a75282303d7eefc1641b302e17b9627dc14a61cb1cae3 |
| IEDL.DBID | DOA |
| ISSN | 2052-2525 |
| IngestDate | Tue Oct 14 19:05:46 EDT 2025 Tue Nov 04 01:58:28 EST 2025 Thu Oct 02 11:35:26 EDT 2025 Fri Jul 25 11:50:13 EDT 2025 Tue Nov 04 17:49:38 EST 2025 Thu Jan 02 22:22:12 EST 2025 Sat Nov 29 03:53:01 EST 2025 Tue Nov 18 21:17:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | energy frameworks intermolecular interactions CrystalExplorer coordination compounds model energies open-shell systems |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-c1eaa0beae1a06295311a75282303d7eefc1641b302e17b9627dc14a61cb1cae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6532-8571 0000-0003-1521-2041 0000-0001-7465-8989 0000-0002-3349-5834 |
| OpenAccessLink | https://doaj.org/article/2c9d8e8e1a8e4a3488221dc6887bedaf |
| PMID | 28932404 |
| PQID | 1930115485 |
| PQPubID | 2035043 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2c9d8e8e1a8e4a3488221dc6887bedaf pubmedcentral_primary_oai_pubmedcentral_nih_gov_5600021 proquest_miscellaneous_1941372781 proquest_journals_1930115485 gale_infotracacademiconefile_A506829802 pubmed_primary_28932404 crossref_primary_10_1107_S205225251700848X crossref_citationtrail_10_1107_S205225251700848X |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sep-01 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sep-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Chester |
| PublicationTitle | IUCrJ |
| PublicationTitleAlternate | IUCrJ |
| PublicationYear | 2017 |
| Publisher | International Union of Crystallography |
| Publisher_xml | – name: International Union of Crystallography |
| References | Hayes (lc5090_bb29) 1984; 53 Macrae (lc5090_bb39) 2008; 41 Dey (lc5090_bb12) 2016; 18 Mitroy (lc5090_bb43) 2010; 43 lc5090_bb45 Johnson (lc5090_bb32) 2010; 132 Espinosa (lc5090_bb20) 1998; 285 Gavezzotti (lc5090_bb25) 2008; 106 lc5090_bb57 lc5090_bb17 Pontillon (lc5090_bb50) 1999; 5 Acree (lc5090_bb2) 2017; 46 Dey (lc5090_bb13) 2016; 52 Pyziak (lc5090_bb51) 2015; 15 Maschio (lc5090_bb42) 2011; 115 Dunitz (lc5090_bb16) 2012; 116 Turner (lc5090_bb59) 2014; 5 Eikeland (lc5090_bb18) 2016; 16 Lai (lc5090_bb35) 2016; 18 Dunitz (lc5090_bb15) 2015; 2 lc5090_bb26 Wiechert (lc5090_bb63) 1999; 38 Ziegler (lc5090_bb65) 1979; 18 Thakur (lc5090_bb58) 2015; 2 Azuri (lc5090_bb4) 2015; 54 lc5090_bb61 lc5090_bb3 Grimme (lc5090_bb28) 2006; 27 Makal (lc5090_bb40) 2010; 49 lc5090_bb5 Kvick (lc5090_bb34) 1980; 36 lc5090_bb21 Domene (lc5090_bb14) 1999; 314 Gavezzotti (lc5090_bb24) 2005; 220 Gelbrich (lc5090_bb27) 2016; 10 Gavezzotti (lc5090_bb23) 2003; 107 Acree (lc5090_bb1) 2016; 45 Bogdanović (lc5090_bb6) 2011; 13 Moggach (lc5090_bb44) 2015; 17 Deumal (lc5090_bb11) 2004; 10 Gavezzotti (lc5090_bb22) 2002; 106 Eikeland (lc5090_bb19) 2016; 22 Chickos (lc5090_bb7) 2003; 39 Su (lc5090_bb56) 2009; 131 Maloney (lc5090_bb41) 2015; 17 Perlovich (lc5090_bb48) 2001; 66 Zhurov (lc5090_bb64) 2015; 119 Nyman (lc5090_bb46) 2015; 17 Pillet (lc5090_bb49) 2001; 25 Turner (lc5090_bb62) 2015; 51 Landeros-Rivera (lc5090_bb36) 2016; 6 Groom (lc5090_bb100) 2016; 72 Holka (lc5090_bb30) 2014; 141 Spackman (lc5090_bb53) 2013; 87 Turner (lc5090_bb60) 2011; 13 lc5090_bb8 Kitaura (lc5090_bb33) 1976; 10 Spackman (lc5090_bb54) 2015; 15 Destro (lc5090_bb10) 2000; 104 Lecomte (lc5090_bb38) 2015; 2 Otero-de-la-Roza (lc5090_bb47) 2012; 137 Jeziorski (lc5090_bb31) 1994; 94 Langan (lc5090_bb37) 2002; 58 Spackman (lc5090_bb55) 2009; 11 Shi (lc5090_bb52) 2015; 15 Desiraju (lc5090_bb9) 1997 26693707 - Chem Commun (Camb). 2016 Feb 4;52(10):2141-4 25481140 - J Chem Phys. 2014 Dec 7;141(21):214303 25866651 - IUCrJ. 2015 Feb 26;2(Pt 2):161-3 27841399 - Phys Chem Chem Phys. 2016 Nov 23;18(46):31811-31820 25866649 - IUCrJ. 2015 Feb 26;2(Pt 2):157-8 26879515 - Chemistry. 2016 Mar 14;22(12):4061-9 26273970 - J Phys Chem Lett. 2014 Dec 18;5(24):4249-55 20369823 - Inorg Chem. 2010 May 3;49(9):4046-59 20394428 - J Am Chem Soc. 2010 May 12;132(18):6498-506 22894328 - J Chem Phys. 2012 Aug 7;137(5):054103 21894880 - J Phys Chem A. 2011 Oct 20;115(41):11179-86 15532054 - Chemistry. 2004 Dec 3;10(24):6422-32 12149564 - Acta Crystallogr B. 2002 Aug;58(Pt 4):728-33 27048719 - Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9 25525647 - Chem Commun (Camb). 2015 Mar 4;51(18):3735-8 26373817 - Angew Chem Int Ed Engl. 2015 Nov 9;54(46):13566-70 25866650 - IUCrJ. 2015 Feb 26;2(Pt 2):159-60 26618800 - J Phys Chem A. 2015 Dec 31;119(52):13092-100 22360776 - J Phys Chem B. 2012 Jun 14;116(23):6740-50 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 27722530 - Phys Chem Chem Phys. 2016 Oct 19;18(41):28802-28818 19586091 - J Chem Phys. 2009 Jul 7;131(1):014102 |
| References_xml | – volume: 115 start-page: 11179 year: 2011 ident: lc5090_bb42 publication-title: J. Phys. Chem. A doi: 10.1021/jp203132k – volume: 285 start-page: 170 year: 1998 ident: lc5090_bb20 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00036-0 – volume: 11 start-page: 19 year: 2009 ident: lc5090_bb55 publication-title: CrystEngComm doi: 10.1039/B818330A – volume: 141 start-page: 214303 year: 2014 ident: lc5090_bb30 publication-title: J. Chem. Phys. doi: 10.1063/1.4902353 – volume: 41 start-page: 466 year: 2008 ident: lc5090_bb39 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807067908 – volume: 45 start-page: 033101 year: 2016 ident: lc5090_bb1 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.4948363 – volume: 314 start-page: 158 year: 1999 ident: lc5090_bb14 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01167-7 – volume: 49 start-page: 4046 year: 2010 ident: lc5090_bb40 publication-title: Inorg. Chem. doi: 10.1021/ic9019958 – volume: 36 start-page: 115 year: 1980 ident: lc5090_bb34 publication-title: Acta Cryst. B doi: 10.1107/S0567740880002555 – volume: 22 start-page: 4061 year: 2016 ident: lc5090_bb19 publication-title: Chem. Eur. J. doi: 10.1002/chem.201504908 – volume: 46 start-page: 013104 year: 2017 ident: lc5090_bb2 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.4970519 – volume: 106 start-page: 1473 year: 2008 ident: lc5090_bb25 publication-title: Mol. Phys. doi: 10.1080/00268970802060674 – volume: 2 start-page: 159 year: 2015 ident: lc5090_bb58 publication-title: IUCrJ doi: 10.1107/S205225251500189X – volume: 6 start-page: 77301 year: 2016 ident: lc5090_bb36 publication-title: RSC Adv. doi: 10.1039/C6RA14957J – volume: 2 start-page: 161 year: 2015 ident: lc5090_bb38 publication-title: IUCrJ doi: 10.1107/S2052252515002067 – ident: lc5090_bb8 – volume: 17 start-page: 5154 year: 2015 ident: lc5090_bb46 publication-title: CrystEngComm doi: 10.1039/C5CE00045A – ident: lc5090_bb3 – volume: 87 start-page: 048103 year: 2013 ident: lc5090_bb53 publication-title: Phys. Scr. doi: 10.1088/0031-8949/87/04/048103 – volume: 131 start-page: 014102 year: 2009 ident: lc5090_bb56 publication-title: J. Chem. Phys. doi: 10.1063/1.3159673 – volume: 18 start-page: 28802 year: 2016 ident: lc5090_bb35 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02690G – volume: 5 start-page: 3616 year: 1999 ident: lc5090_bb50 publication-title: Chem. Eur. J. doi: 10.1002/(SICI)1521-3765(19991203)5:12<3616::AID-CHEM3616>3.0.CO;2-C – volume: 104 start-page: 1047 year: 2000 ident: lc5090_bb10 publication-title: J. Phys. Chem. A doi: 10.1021/jp993505o – volume: 72 start-page: 171 year: 2016 ident: lc5090_bb100 publication-title: Acta Cryst. B doi: 10.1107/S2052520616003954 – volume: 18 start-page: 31811 year: 2016 ident: lc5090_bb12 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP05917A – volume: 43 start-page: 202001 year: 2010 ident: lc5090_bb43 publication-title: J. Phys. B At. Mol. Opt. Phys. doi: 10.1088/0953-4075/43/20/202001 – ident: lc5090_bb45 – ident: lc5090_bb21 – volume: 106 start-page: 4145 year: 2002 ident: lc5090_bb22 publication-title: J. Phys. Chem. B doi: 10.1021/jp0144202 – volume: 52 start-page: 2141 year: 2016 ident: lc5090_bb13 publication-title: Chem. Commun. doi: 10.1039/C5CC09741J – volume: 13 start-page: 6930 year: 2011 ident: lc5090_bb6 publication-title: CrystEngComm doi: 10.1039/c1ce06212c – volume: 107 start-page: 2344 year: 2003 ident: lc5090_bb23 publication-title: J. Phys. Chem. B doi: 10.1021/jp022288f – volume: 17 start-page: 9300 year: 2015 ident: lc5090_bb41 publication-title: CrystEngComm doi: 10.1039/C5CE01522G – volume: 25 start-page: 131 year: 2001 ident: lc5090_bb49 publication-title: New J. Chem. doi: 10.1039/b003674i – volume: 15 start-page: 5624 year: 2015 ident: lc5090_bb54 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01332 – ident: lc5090_bb17 doi: 10.1039/C7FD00072C – volume: 58 start-page: 728 year: 2002 ident: lc5090_bb37 publication-title: Acta Cryst. B doi: 10.1107/S0108768102004263 – volume: 10 start-page: 6422 year: 2004 ident: lc5090_bb11 publication-title: Chem. Eur. J. doi: 10.1002/chem.200400493 – volume: 15 start-page: 5223 year: 2015 ident: lc5090_bb51 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b00676 – volume: 10 start-page: 8 year: 2016 ident: lc5090_bb27 publication-title: Chem. Cent. J. doi: 10.1186/s13065-016-0152-5 – volume: 39 start-page: 116 year: 2003 ident: lc5090_bb7 publication-title: Netsu Sokutei – volume: 13 start-page: 1804 year: 2011 ident: lc5090_bb60 publication-title: CrystEngComm doi: 10.1039/C0CE00683A – volume: 2 start-page: 157 year: 2015 ident: lc5090_bb15 publication-title: IUCrJ doi: 10.1107/S2052252515002006 – volume: 132 start-page: 6498 year: 2010 ident: lc5090_bb32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100936w – ident: lc5090_bb57 – volume: 18 start-page: 1755 year: 1979 ident: lc5090_bb65 publication-title: Inorg. Chem. doi: 10.1021/ic50197a006 – volume: 66 start-page: 699 year: 2001 ident: lc5090_bb48 publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1013179702730 – volume: 119 start-page: 13092 year: 2015 ident: lc5090_bb64 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b10027 – volume: 38 start-page: 1974 year: 1999 ident: lc5090_bb63 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<1974::AID-ANIE1974>3.0.CO;2-F – volume: 94 start-page: 1887 year: 1994 ident: lc5090_bb31 publication-title: Chem. Rev. doi: 10.1021/cr00031a008 – volume: 15 start-page: 5892 year: 2015 ident: lc5090_bb52 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01316 – start-page: 1475 year: 1997 ident: lc5090_bb9 publication-title: Chem. Commun. doi: 10.1039/a607149j – ident: lc5090_bb61 – volume: 51 start-page: 3735 year: 2015 ident: lc5090_bb62 publication-title: Chem. Commun. doi: 10.1039/C4CC09074H – volume: 220 start-page: 499 year: 2005 ident: lc5090_bb24 publication-title: Z. Kristallogr. doi: 10.1524/zkri.220.5.499.65063 – volume: 137 start-page: 054103 year: 2012 ident: lc5090_bb47 publication-title: J. Chem. Phys. doi: 10.1063/1.4738961 – volume: 53 start-page: 83 year: 1984 ident: lc5090_bb29 publication-title: Mol. Phys. doi: 10.1080/00268978400102151 – volume: 10 start-page: 325 year: 1976 ident: lc5090_bb33 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560100211 – ident: lc5090_bb26 – volume: 17 start-page: 5315 year: 2015 ident: lc5090_bb44 publication-title: CrystEngComm doi: 10.1039/C5CE00327J – volume: 54 start-page: 13566 year: 2015 ident: lc5090_bb4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505813 – volume: 116 start-page: 6740 year: 2012 ident: lc5090_bb16 publication-title: J. Phys. Chem. B doi: 10.1021/jp212094d – volume: 27 start-page: 1787 year: 2006 ident: lc5090_bb28 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 16 start-page: 6858 year: 2016 ident: lc5090_bb18 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00986 – volume: 5 start-page: 4249 year: 2014 ident: lc5090_bb59 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502271c – ident: lc5090_bb5 – reference: 12149564 - Acta Crystallogr B. 2002 Aug;58(Pt 4):728-33 – reference: 25866651 - IUCrJ. 2015 Feb 26;2(Pt 2):161-3 – reference: 20369823 - Inorg Chem. 2010 May 3;49(9):4046-59 – reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 – reference: 25481140 - J Chem Phys. 2014 Dec 7;141(21):214303 – reference: 25866650 - IUCrJ. 2015 Feb 26;2(Pt 2):159-60 – reference: 22360776 - J Phys Chem B. 2012 Jun 14;116(23):6740-50 – reference: 26618800 - J Phys Chem A. 2015 Dec 31;119(52):13092-100 – reference: 27722530 - Phys Chem Chem Phys. 2016 Oct 19;18(41):28802-28818 – reference: 15532054 - Chemistry. 2004 Dec 3;10(24):6422-32 – reference: 27048719 - Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9 – reference: 26373817 - Angew Chem Int Ed Engl. 2015 Nov 9;54(46):13566-70 – reference: 26273970 - J Phys Chem Lett. 2014 Dec 18;5(24):4249-55 – reference: 26879515 - Chemistry. 2016 Mar 14;22(12):4061-9 – reference: 27841399 - Phys Chem Chem Phys. 2016 Nov 23;18(46):31811-31820 – reference: 21894880 - J Phys Chem A. 2011 Oct 20;115(41):11179-86 – reference: 25866649 - IUCrJ. 2015 Feb 26;2(Pt 2):157-8 – reference: 26693707 - Chem Commun (Camb). 2016 Feb 4;52(10):2141-4 – reference: 22894328 - J Chem Phys. 2012 Aug 7;137(5):054103 – reference: 19586091 - J Chem Phys. 2009 Jul 7;131(1):014102 – reference: 25525647 - Chem Commun (Camb). 2015 Mar 4;51(18):3735-8 – reference: 20394428 - J Am Chem Soc. 2010 May 12;132(18):6498-506 |
| SSID | ssj0001125741 |
| Score | 2.625271 |
| Snippet | The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by... The accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals are extended to a broad range of crystals by... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 575 |
| SubjectTerms | Coordination compounds Crystal structure CrystalExplorer Crystals Dipole moments Energy consumption energy frameworks Hafnium intermolecular interactions Ion pairs model energies open-shell systems Organic salts Properties Research Papers Testing |
| SummonAdditionalLinks | – databaseName: Materials Science Database dbid: KB. link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA56-qAP_v5RPSWCIIi9S9K0TX2Ru8NDEA5BhX0raTrBhbU9t72D-yv8l51Js3u7HNyLj23TkrSTyTeT6fcx9lYJ28iycSlI6VLtvE6bDMpUQuEzXdhM5pPYRHlyYmaz6ltMuA2xrHLlE4OjbntHOfJ9BBqBOsbkn07_pKQaRburUULjJrtFLAkk3fD1cO8yx4KrN66YcTMTA53970og4MiJpyswyc-2lqPA2n_VN28sTtuFkxsr0fH9_x3DA3YvYlB-MBnNQ3YDukfs7gYz4WP292h5gbhxMZXowZIHxRxOHNXEK8Ft104HF9yvyruGjzyk1Cn_xsee_wZ8AHc9hrfzKefIqYCddJyGD3ySk3J8sIsRD3EKnBPsDU8mSa90oBJVPjFND0_Yz-PPP46-pFG7IXVa6DF1EqwVDViQVhSqwqkubZkr2tfL2hLAOwzUZJMJBWgrJAHUOqltIV0jnYXsKdvp-g6eM-5FK70rpS280dbrypTGF40FIZvCaJkwsfqEtYvE5qSvsahDgCPK-spXT9j79S2nE6vHdY0PyS7WDYmQO5zAF1XH-V0rV7UGDI7WgLYZukWlZOsK9OENtNYn7B1ZVU1uAzvnbPz7AYdIBFz1QS4KoyojVMJ2V8ZTR38y1JeWk7A368voCWh7x3bQn1EbBCQIRw2-kWeTna77jGE1MS_qhJVbFrw1qO0r3fxXYBsnSIxA8MX13XrJ7igCPKH6bpftjMszeMVuu_NxPixfh2n5DzTaQ14 priority: 102 providerName: ProQuest |
| Title | CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28932404 https://www.proquest.com/docview/1930115485 https://www.proquest.com/docview/1941372781 https://pubmed.ncbi.nlm.nih.gov/PMC5600021 https://doaj.org/article/2c9d8e8e1a8e4a3488221dc6887bedaf |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: KB. dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: UK & Ireland Database customDbUrl: eissn: 2052-2525 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125741 issn: 2052-2525 databaseCode: EHMNL dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/ukireland providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA26-qAP4rfVdYggCGLdJE2b1LedZRdFHAY_YHwqaZrgwNiRaXdhf4V_2XuTztBhQV98GWiaKc3NTXJucnsOIS8FMzVXtU0d5zaV1su0zpxKuSt8JguT8TyKTajZTC8W5Xwk9YU5YZEeOBruSNiy0U47brSTJgN_E4I3toDBUbvGeJx9AfWMgqmwuwLrtgqylYLlIhW5yIcjTQh3jr5gIZYhOZ2WerG3KAXu_qsz9GiJ2k-fHK1HZ3fJnQFI0uPYgHvkmmvvk9sjesEH5PfJ5hLA3yrm2bkNDbI3FImmkRyCmraJF5fUb3O0unc07IvjJhrt1_SngwdQu4YYdRk3DilmoaMYU_eGRk0oSzuz6uES_PgCsWt4MupypR3mmdJIF909JN_OTr-evE8HAYbUSib71HJnDKudAeuzQpQwXrlRucDDuaxRznkL0RavMyYcdDjq-DSWS1NwW3NrXPaIHLTr1j0h1LOGe6u4KbyWxstSK-2L2jjG60JLnhC27YHKDuzkKJKxqkKUwlR1pdMS8nr3l1-RmuNvlafYrbuKyKodCsBQ1eBr1b98LSGv0CkqHPvwctYMnzBAE5FFqzrOWaFFqZlIyOHWb6phUugqwMqB_UjnCXmxuw3DGc9oTOvW51gHUAVgSg0WeRzdbPfOEBsjfaJMiNpzwL1G7d9plz8CZTjiWkBzT_-HFZ6RWwKxTUi0OyQH_ebcPSc37UW_7DYTcl0t9ITcmJ7O5p8nYVTC78fpWyibf_g0__4HJxQ9ZA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwwPdHYICRQEiIaLbjJi4SQmMwrdpWTWJI5Sk4jiMqlXQ03VB_Bf-E38i9TtK1mrS3PfCYxLFs5_reY_vmHICXkptMJJkNnRA2VLZQYRa5JBQuLiIVm0h0a7GJZDDQw2HvcA3-tv_CUFpl6xO9o84nlvbINxFoeOoY3f1w_Csk1Sg6XW0lNGqz2HPz37hkq973P-H3fSXlzuej7d2wURUIreJqFlrhjOGZM04YHsseGqEwSVfSiVOUJ84VFpcQIou4dNgLEqfJrVAmFjYT1rgI670C6wqNXXdg_bB_cPjtbFcH8QLG6Ob4FJdWm18kR4jTJWYwz10_XAmAXifgfDRYCoerqZpLsW_n1v82arfhZoOy2VY9Le7Amivvwo0l7sV78Gd7OkdkPK6TEN2UeU0gRizcxJzBTJnXF3NWtAls1TvmDw1oh5HNJuynwwqYnWC_RvWuKqMUfVKqqt6yWjDLssqMZ3iJk_yUgL2vmUTLwoqScFnNpV3dh6-XMiIPoFNOSvcIWMFzUdhEmLjQyhSqpxNdxJlxXGSxViIA3ppMahvqdlIQGad-CceT9JyVBfBm8cpxzVtyUeGPZIeLgkQ57m_gQKWNB0ul7eXaaeytdspE6PilFLmNMUplLjdFAK_JilNyjNg4a5r_O7CLRDGWbnV5rGVPcxnARmusaeMxq_TMUgN4sXiMvo4OsEzpJidUBiEXAm6NI_KwnheLNksE3ohOVQDJyoxZ6dTqk3L0w_OpE-hHqPv44mY9h2u7Rwf76X5_sPcErkuCdz7XcAM6s-mJewpX7elsVE2fNU6BwffLnlH_AIO7oiM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CrystalExplorer+model+energies+and+energy+frameworks%3A+extension+to+metal+coordination+compounds%2C+organic+salts%2C+solvates+and+open-shell+systems&rft.jtitle=IUCrJ&rft.au=Campbell+F.+Mackenzie&rft.au=Peter+R.+Spackman&rft.au=Dylan+Jayatilaka&rft.au=Mark+A.+Spackman&rft.date=2017-09-01&rft.pub=International+Union+of+Crystallography&rft.issn=2052-2525&rft.eissn=2052-2525&rft.volume=4&rft.issue=5&rft.spage=575&rft.epage=587&rft_id=info:doi/10.1107%2FS205225251700848X&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2c9d8e8e1a8e4a3488221dc6887bedaf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon |