IDESS: a toolbox for identification and automated design of stochastic gene circuits

Abstract Motivation One of the main causes hampering predictability during the model identification and automated design of gene circuits in synthetic biology is the effect of molecular noise. Stochasticity may significantly impact the dynamics and function of gene circuits, specially in bacteria an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) Jg. 39; H. 11
Hauptverfasser: Sequeiros, Carlos, Pájaro, Manuel, Vázquez, Carlos, Banga, Julio R, Otero-Muras, Irene
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 01.11.2023
Schlagworte:
ISSN:1367-4811, 1367-4803, 1367-4811
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Motivation One of the main causes hampering predictability during the model identification and automated design of gene circuits in synthetic biology is the effect of molecular noise. Stochasticity may significantly impact the dynamics and function of gene circuits, specially in bacteria and yeast due to low mRNA copy numbers. Standard stochastic simulation methods are too computationally costly in realistic scenarios to be applied to optimization-based design or parameter estimation. Results In this work, we present IDESS (Identification and automated Design of Stochastic gene circuitS), a software toolbox for optimization-based design and model identification of gene regulatory circuits in the stochastic regime. This software incorporates an efficient approximation of the Chemical Master Equation as well as a stochastic simulation algorithm—both with GPU and CPU implementations—combined with global optimization algorithms capable of solving Mixed Integer Nonlinear Programming problems. The toolbox efficiently addresses two types of problems relevant in systems and synthetic biology: the automated design of stochastic synthetic gene circuits, and the parameter estimation for model identification of stochastic gene regulatory networks. Availability and implementation IDESS runs under the MATLAB environment and it is available under GPLv3 license at https://doi.org/10.5281/zenodo.7788692.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad682