A practical multi-objective optimization sectorization method for water distribution network
In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water resources. As one of the measures used for flow monitoring and leakage control, water network sectorization is a research hotspot in China. This pape...
Uloženo v:
| Vydáno v: | The Science of the total environment Ročník 656; s. 1401 - 1412 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
15.03.2019
|
| Témata: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water resources. As one of the measures used for flow monitoring and leakage control, water network sectorization is a research hotspot in China. This paper, which begins with an introduction of present sectorization methods, proposes a multi-objective optimization sectorization method based on a comprehensive consideration of the hydraulics, water quality and economy. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) which is a heuristic algorithm for multi-objective optimization to obtain the optimal schemes. In addition, human experience is also considered in the optimization process. In a case study, this method proves to be efficient in producing good results with little impact on the hydraulics and water quality of the WDN, and the results obtained are acceptable for multiple objectives. Therefore, this method provides references for the transformation of future water distribution network sectorization.
[Display omitted]
•Water leakage problem caused a large quantity of water loss and it needs to be solved urgently.•Water network sectorization are beneficial for the control of water leakage through flow monitoring and management.•We applied Non-dominated sorting genetic algorithm-II (NSGA-II) in water network sectorization.•Natural and administrative boundaries were considered when defining the main pipes.•The connecting pipes were partially optimized to improve the hydraulic links and water quality. |
|---|---|
| AbstractList | In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water resources. As one of the measures used for flow monitoring and leakage control, water network sectorization is a research hotspot in China. This paper, which begins with an introduction of present sectorization methods, proposes a multi-objective optimization sectorization method based on a comprehensive consideration of the hydraulics, water quality and economy. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) which is a heuristic algorithm for multi-objective optimization to obtain the optimal schemes. In addition, human experience is also considered in the optimization process. In a case study, this method proves to be efficient in producing good results with little impact on the hydraulics and water quality of the WDN, and the results obtained are acceptable for multiple objectives. Therefore, this method provides references for the transformation of future water distribution network sectorization.In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water resources. As one of the measures used for flow monitoring and leakage control, water network sectorization is a research hotspot in China. This paper, which begins with an introduction of present sectorization methods, proposes a multi-objective optimization sectorization method based on a comprehensive consideration of the hydraulics, water quality and economy. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) which is a heuristic algorithm for multi-objective optimization to obtain the optimal schemes. In addition, human experience is also considered in the optimization process. In a case study, this method proves to be efficient in producing good results with little impact on the hydraulics and water quality of the WDN, and the results obtained are acceptable for multiple objectives. Therefore, this method provides references for the transformation of future water distribution network sectorization. In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water resources. As one of the measures used for flow monitoring and leakage control, water network sectorization is a research hotspot in China. This paper, which begins with an introduction of present sectorization methods, proposes a multi-objective optimization sectorization method based on a comprehensive consideration of the hydraulics, water quality and economy. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) which is a heuristic algorithm for multi-objective optimization to obtain the optimal schemes. In addition, human experience is also considered in the optimization process. In a case study, this method proves to be efficient in producing good results with little impact on the hydraulics and water quality of the WDN, and the results obtained are acceptable for multiple objectives. Therefore, this method provides references for the transformation of future water distribution network sectorization. In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water resources. As one of the measures used for flow monitoring and leakage control, water network sectorization is a research hotspot in China. This paper, which begins with an introduction of present sectorization methods, proposes a multi-objective optimization sectorization method based on a comprehensive consideration of the hydraulics, water quality and economy. This method is based on the non-dominated sorting genetic algorithm (NSGA-II) which is a heuristic algorithm for multi-objective optimization to obtain the optimal schemes. In addition, human experience is also considered in the optimization process. In a case study, this method proves to be efficient in producing good results with little impact on the hydraulics and water quality of the WDN, and the results obtained are acceptable for multiple objectives. Therefore, this method provides references for the transformation of future water distribution network sectorization. [Display omitted] •Water leakage problem caused a large quantity of water loss and it needs to be solved urgently.•Water network sectorization are beneficial for the control of water leakage through flow monitoring and management.•We applied Non-dominated sorting genetic algorithm-II (NSGA-II) in water network sectorization.•Natural and administrative boundaries were considered when defining the main pipes.•The connecting pipes were partially optimized to improve the hydraulic links and water quality. |
| Author | Tao, Tao Zhang, Kui Yan, Hexiang Xin, Kunlun Zeng, Han |
| Author_xml | – sequence: 1 givenname: Kui surname: Zhang fullname: Zhang, Kui organization: Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China – sequence: 2 givenname: Hexiang orcidid: 0000-0003-0649-8789 surname: Yan fullname: Yan, Hexiang organization: Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China – sequence: 3 givenname: Han surname: Zeng fullname: Zeng, Han organization: Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China – sequence: 4 givenname: Kunlun surname: Xin fullname: Xin, Kunlun organization: Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China – sequence: 5 givenname: Tao surname: Tao fullname: Tao, Tao email: taotao@tongji.edu.cn organization: Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30625668$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFv3CAQhVGUKNmk_Qutj73YZTA2cOhhFbVJpUi9pLdKCOOxytY2W8Abpb--bDbbQy_LBTF8b2b03jU5n_2MhLwHWgGF9uOmitYln3DeVYyCrAAqJuozsgIpVAmUtedkRSmXpWqVuCLXMW5oPkLCJbmqacuatpUr8mNdbIOxyVkzFtMyJlf6boO5sMPCb5Ob3B-TnJ-LmIs-HF8Tpp--LwYfiieTMBS9iym4bnn5nTE9-fDrDbkYzBjx7et9Q75_-fx4e18-fLv7ert-KC2nPJVG1UOHlOatLe96yjlVnamttRwQFSCAYLVg0gyy6ahoLFNcoBLMtLwxfX1DPhz6boP_vWBMenLR4jiaGf0SNWOMyib7xE6jIFTdKCpVRt-9oks3Ya-3wU0mPOujeRn4dABs8DEGHHTO5MWeFIwbNVC9D0tv9L-w9D4sDaBzWFkv_tMfR5xWrg9KzK7uHIY9h7PF3oUck-69O9njL7Dztck |
| CitedBy_id | crossref_primary_10_1016_j_ifacol_2023_10_977 crossref_primary_10_1061__ASCE_WR_1943_5452_0001223 crossref_primary_10_3390_su131910546 crossref_primary_10_1016_j_energy_2022_124764 crossref_primary_10_3389_frwa_2021_648622 crossref_primary_10_1016_j_scitotenv_2019_134565 crossref_primary_10_3390_w15081621 crossref_primary_10_3390_w12041002 crossref_primary_10_1061_JWRMD5_WRENG_6515 crossref_primary_10_3390_math12131994 crossref_primary_10_3390_su11102970 crossref_primary_10_3390_agronomy12091997 crossref_primary_10_1007_s11356_024_33395_7 crossref_primary_10_1371_journal_pone_0277954 crossref_primary_10_3390_su151512091 crossref_primary_10_1007_s11269_021_02873_9 crossref_primary_10_1007_s12065_024_00922_x crossref_primary_10_3390_w11051087 crossref_primary_10_32604_cmes_2022_018867 crossref_primary_10_3390_w15142583 crossref_primary_10_1525_elementa_2020_00131 crossref_primary_10_1061_JWRMD5_WRENG_6227 crossref_primary_10_1016_j_heliyon_2023_e18602 crossref_primary_10_1016_j_scs_2020_102306 crossref_primary_10_1088_1742_6596_1397_1_012075 crossref_primary_10_2166_ws_2023_220 crossref_primary_10_1061_JPSEA2_PSENG_1507 crossref_primary_10_5194_hess_28_1325_2024 crossref_primary_10_1016_j_techfore_2021_121300 crossref_primary_10_1016_j_jclepro_2021_126594 crossref_primary_10_1061__ASCE_WR_1943_5452_0001163 crossref_primary_10_3390_w13060836 crossref_primary_10_3390_w14233876 crossref_primary_10_1016_j_scitotenv_2019_135559 crossref_primary_10_3390_w16111463 crossref_primary_10_1016_j_compchemeng_2024_108676 crossref_primary_10_3390_w13020131 crossref_primary_10_1016_j_scs_2024_105246 crossref_primary_10_1007_s11269_023_03592_z crossref_primary_10_3390_su14063692 crossref_primary_10_3390_su17094231 crossref_primary_10_1155_2022_2314788 crossref_primary_10_1016_j_jwpe_2024_105472 crossref_primary_10_3390_pr9040642 crossref_primary_10_1016_j_eswa_2024_124559 crossref_primary_10_2166_ws_2021_344 crossref_primary_10_1016_j_jclepro_2021_126465 crossref_primary_10_1109_ACCESS_2020_3008911 crossref_primary_10_3390_pr10010133 crossref_primary_10_1088_1742_6596_1378_2_022068 crossref_primary_10_1080_10426914_2020_1711933 crossref_primary_10_1061__ASCE_PS_1949_1204_0000674 |
| Cites_doi | 10.1061/(ASCE)WR.1943-5452.0000819 10.1061/(ASCE)WR.1943-5452.0000364 10.1016/j.envsoft.2014.01.028 10.1029/2012WR013160 10.2166/hydro.2015.144 10.1061/(ASCE)WR.1943-5452.0000578 10.1061/(ASCE)WR.1943-5452.0000916 10.1109/TEVC.2017.2682899 10.2166/ws.2013.059 10.1061/(ASCE)WR.1943-5452.0000957 10.1061/(ASCE)WR.1943-5452.0000247 10.1007/s11269-016-1266-1 10.1061/(ASCE)WR.1943-5452.0000597 10.1061/(ASCE)WR.1943-5452.0000424 10.1021/acs.est.5b03331 10.1016/j.envsoft.2014.11.025 10.1016/S1462-0758(00)00046-7 10.1061/(ASCE)WR.1943-5452.0000927 10.3390/w8050179 10.1061/(ASCE)WR.1943-5452.0000650 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2018.11.273 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| EndPage | 1412 |
| ExternalDocumentID | 30625668 10_1016_j_scitotenv_2018_11_273 S0048969718346308 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AATTM AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-a93fbe00102c4bd04409ba3ccc41ee91e11723728af85b075c2947e972a645ad3 |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455039600133&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sat Sep 27 19:09:19 EDT 2025 Thu Sep 25 08:59:09 EDT 2025 Wed Feb 19 02:34:25 EST 2025 Tue Nov 18 21:50:24 EST 2025 Sat Nov 29 02:37:38 EST 2025 Sat Dec 14 16:15:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | WDN Non-dominated sorting genetic algorithm-II NSGA-II Water distribution network sectorization DMA District metering area WNS Multi-objective optimization method |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c404t-a93fbe00102c4bd04409ba3ccc41ee91e11723728af85b075c2947e972a645ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0649-8789 |
| PMID | 30625668 |
| PQID | 2179359089 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2220852012 proquest_miscellaneous_2179359089 pubmed_primary_30625668 crossref_citationtrail_10_1016_j_scitotenv_2018_11_273 crossref_primary_10_1016_j_scitotenv_2018_11_273 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_11_273 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-15 |
| PublicationDateYYYYMMDD | 2019-03-15 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – sequence: 0 name: Elsevier B.V |
| References | Diao, Fu, Farmani, Guidolin, Butler (bb0055) 2016; 142 Diao, Zhou, Rauch (bb0045) 2013; 139 Qi, Zheng, Guo, Maier, Zhang, Yu, Shao (bb0120) 2018; 144 Hajebi, Roshani, Cardozo, Barrett, Clarke, Clarke (bb0085) 2016; 18 MacDonald, Yates (bb0100) 2005 Diao, Guidolin, Fu, Farmani, Butler (bb0050) 2014 Zheng, Zecchin (bb0145) 2014; 55 Di Nardo, Di Natale, Santonastaso, Tzatchkov, Alcocer-Yamanaka (bb0035) 2014; 140 Chambers, Creasey, Forbes (bb0015) 2004 Ciaponi, Murari, Todeschini (bb0020) 2016; 30 Liu, Han (bb0095) 2018; 144 Elhay, Piller, Deuerlein, Simpson (bb0060) 2016; 142 Burrows, Crowder, Zhang (bb0005) 2000; 2 Morrison, Tooms, Rogers (bb0105) 2007 Zhang, Wu, Zhao, Qi, Huang, Zhao (bb0140) 2017; 143 Rahman, Wu (bb0125) 2018; 144 Zheng, Zecchin, Newman, Maier, Dandy (bb0160) 2017; 21 Farley, Water, S., Supply, W., Council, S.C., Organization, W.H (bb0065) 2001 Zhang (bb0135) 2012 Herrera, Canu, Karatzoglou, Perez-Garcia, Izquierdo (bb0090) 2010 Perelman, Allen, Preis, Iqbal, Whittle (bb0115) 2015; 49 Hajebi, Temate, Barrett, Clarke, Clarke (bb0080) 2014 Campbell, Izquierdo, Montalvo, Perez-Garcia (bb0010) 2016; 8 Di Nardo, Di Natale, Giudicianni, Greco, Santonastaso (bb0040) 2017; V Rossman (bb0130) 2000 Di Nardo, Di Natale, Santonastaso, Tzatchkov, Alcocer-Yamanaka (bb0025) 2013; 13 Ferrari, Savic, Becciu (bb0070) 2014; 140 Zheng, Zecchin, Maier, Simpson (bb0155) 2016; 142 Perelman, Allen, Preis, Iqbal, Whittle (bb0110) 2015; 65 Zheng, Simpson, Zecchin (bb0150) 2013; 49 Di Nardo, Di Natale, Greco, Santonastaso (bb0030) 2014 Hajebi, Song, Barrett, Clarke, Clarke (bb0075) 2013; 2 Campbell (10.1016/j.scitotenv.2018.11.273_bb0010) 2016; 8 Ciaponi (10.1016/j.scitotenv.2018.11.273_bb0020) 2016; 30 Farley (10.1016/j.scitotenv.2018.11.273_bb0065) 2001 Zheng (10.1016/j.scitotenv.2018.11.273_bb0155) 2016; 142 Di Nardo (10.1016/j.scitotenv.2018.11.273_bb0035) 2014; 140 Hajebi (10.1016/j.scitotenv.2018.11.273_bb0085) 2016; 18 Zhang (10.1016/j.scitotenv.2018.11.273_bb0140) 2017; 143 Qi (10.1016/j.scitotenv.2018.11.273_bb0120) 2018; 144 Burrows (10.1016/j.scitotenv.2018.11.273_bb0005) 2000; 2 Diao (10.1016/j.scitotenv.2018.11.273_bb0045) 2013; 139 Ferrari (10.1016/j.scitotenv.2018.11.273_bb0070) 2014; 140 Zhang (10.1016/j.scitotenv.2018.11.273_bb0135) 2012 Perelman (10.1016/j.scitotenv.2018.11.273_bb0110) 2015; 65 Hajebi (10.1016/j.scitotenv.2018.11.273_bb0075) 2013; 2 Diao (10.1016/j.scitotenv.2018.11.273_bb0055) 2016; 142 Chambers (10.1016/j.scitotenv.2018.11.273_bb0015) 2004 Di Nardo (10.1016/j.scitotenv.2018.11.273_bb0025) 2013; 13 Elhay (10.1016/j.scitotenv.2018.11.273_bb0060) 2016; 142 Rossman (10.1016/j.scitotenv.2018.11.273_bb0130) 2000 Di Nardo (10.1016/j.scitotenv.2018.11.273_bb0030) 2014 Perelman (10.1016/j.scitotenv.2018.11.273_bb0115) 2015; 49 Diao (10.1016/j.scitotenv.2018.11.273_bb0050) 2014 Zheng (10.1016/j.scitotenv.2018.11.273_bb0150) 2013; 49 MacDonald (10.1016/j.scitotenv.2018.11.273_bb0100) 2005 Morrison (10.1016/j.scitotenv.2018.11.273_bb0105) 2007 Herrera (10.1016/j.scitotenv.2018.11.273_bb0090) 2010 Zheng (10.1016/j.scitotenv.2018.11.273_bb0145) 2014; 55 Hajebi (10.1016/j.scitotenv.2018.11.273_bb0080) 2014 Rahman (10.1016/j.scitotenv.2018.11.273_bb0125) 2018; 144 Di Nardo (10.1016/j.scitotenv.2018.11.273_bb0040) 2017; V Liu (10.1016/j.scitotenv.2018.11.273_bb0095) 2018; 144 Zheng (10.1016/j.scitotenv.2018.11.273_bb0160) 2017; 21 |
| References_xml | – year: 2005 ident: bb0100 article-title: DMA Design and Implementation, A North American Context, Leakage 2005, Specialized Conference Proceedings – volume: 21 start-page: 773 year: 2017 end-page: 791 ident: bb0160 article-title: An adaptive convergence-trajectory controlled ant colony optimization algorithm with application to water distribution system design problems publication-title: IEEE Trans. Evol. Comput. – volume: 140 year: 2014 ident: bb0070 article-title: Graph-theoretic approach and sound engineering principles for design of district metered areas publication-title: J. Water Resour. Plan. Manag. – volume: 139 start-page: 184 year: 2013 end-page: 190 ident: bb0045 article-title: Automated creation of district metered area boundaries in water distribution systems publication-title: J. Water Resour. Plan. Manag. – year: 2007 ident: bb0105 article-title: District Metered Areas Guidance Notes – volume: 30 start-page: 2021 year: 2016 end-page: 2036 ident: bb0020 article-title: Modularity-Based procedure for partitioning water distribution systems into independent districts publication-title: Water Resour. Manag. – year: 2001 ident: bb0065 article-title: Leakage Management and Control: A Best Practice Training Manual – volume: 13 start-page: 951 year: 2013 end-page: 957 ident: bb0025 article-title: Water network sectorization based on a genetic algorithm and minimum dissipated power paths publication-title: Water Sci. Technol. Water Supply – volume: 143 year: 2017 ident: bb0140 article-title: Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization publication-title: J. Water Resour. Plan. Manag. – start-page: 38 year: 2004 end-page: 68 ident: bb0015 article-title: Design and operation of distribution networks publication-title: Safe Piped Water: Managing Microbial Water Quality in Piped Distribution Systems – start-page: 525 year: 2014 end-page: 534 ident: bb0030 article-title: Ant algorithm for smart water network partitioning publication-title: 12th International Conference on Computing And Control for the Water Industry – year: 2010 ident: bb0090 article-title: An Approach to Water Supply Clusters by Semi-supervised Learning – volume: 2 start-page: 83 year: 2000 end-page: 95 ident: bb0005 article-title: Utilisation of network modelling in the operational management of water distribution systems publication-title: Urban Water J. – volume: 142 year: 2016 ident: bb0060 article-title: A robust, rapidly convergent method that solves the water distribution equations for pressure-dependent models publication-title: J. Water Resour. Plan. Manag. – volume: 144 year: 2018 ident: bb0120 article-title: Better understanding of the capacity of pressure sensor systems to detect pipe burst within water distribution networks publication-title: J. Water Resour. Plan. Manag. – volume: 8 year: 2016 ident: bb0010 article-title: A novel water supply network sectorization methodology based on a complete economic analysis, including uncertainties publication-title: Water – volume: 65 start-page: 1 year: 2015 end-page: 14 ident: bb0110 article-title: Automated sub-zoning of water distribution systems publication-title: Environ. Model. Softw. – volume: 142 year: 2016 ident: bb0055 article-title: Twin-hierarchy decomposition for optimal design of water distribution systems publication-title: J. Water Resour. Plan. Manag. – volume: 144 year: 2018 ident: bb0095 article-title: Spectral clustering and multicriteria decision for design of district metered areas publication-title: J. Water Resour. Plan. Manag. – volume: 55 start-page: 143 year: 2014 end-page: 155 ident: bb0145 article-title: An efficient decomposition and dual-stage multi-objective optimization method for water distribution systems with multiple supply sources publication-title: Environ. Model. Softw. – year: 2012 ident: bb0135 article-title: Research on Optimization of Sectorization Management Technology for Urban Water Supply Network – volume: 2 start-page: 310 year: 2013 end-page: 317 ident: bb0075 article-title: Towards a reference model for water smart grid publication-title: Int. J. Adv. Eng. Sci. Technol. – volume: 142 year: 2016 ident: bb0155 article-title: Comparison of the searching behavior of NSGA-II, SAMODE, and Borg MOEAs applied to water distribution system design problems publication-title: J. Water Resour. Plan. Manag. – start-page: 53 year: 2014 end-page: 58 ident: bb0050 article-title: Hierarchical decomposition of water distribution systems for background leakage assessment publication-title: 16th Water Distribution System Analysis Conference – volume: 144 year: 2018 ident: bb0125 article-title: Multistep simulation-optimization modeling approach for partitioning water distribution system into district meter areas publication-title: J. Water Resour. Plan. Manag. – volume: 49 start-page: 13378 year: 2015 end-page: 13384 ident: bb0115 article-title: Flexible reconfiguration of existing urban water infrastructure systems publication-title: Environ. Sci. Technol. – volume: 140 start-page: 620 year: 2014 end-page: 629 ident: bb0035 article-title: Water network sectorization based on graph theory and energy performance indices publication-title: J. Water Resour. Plan. Manag. – volume: 49 start-page: 380 year: 2013 end-page: 399 ident: bb0150 article-title: A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources publication-title: Water Resour. Res. – volume: 18 start-page: 77 year: 2016 end-page: 95 ident: bb0085 article-title: Water distribution network sectorisation using graph theory and many-objective optimisation publication-title: J. Hydroinf. – year: 2000 ident: bb0130 article-title: EPANET 2 User's Manual – volume: V start-page: 797 year: 2017 end-page: 807 ident: bb0040 article-title: Water supply network partitioning based on weighted spectral clustering publication-title: Complex Networks & Their Applications – start-page: 1144 year: 2014 end-page: 1151 ident: bb0080 article-title: Water distribution network sectorisation using structural graph partitioning and multi-objective optimization publication-title: 16th Water Distribution System Analysis Conference – start-page: 38 year: 2004 ident: 10.1016/j.scitotenv.2018.11.273_bb0015 article-title: Design and operation of distribution networks – volume: 143 year: 2017 ident: 10.1016/j.scitotenv.2018.11.273_bb0140 article-title: Automatic partitioning of water distribution networks using multiscale community detection and multiobjective optimization publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000819 – volume: V start-page: 797 year: 2017 ident: 10.1016/j.scitotenv.2018.11.273_bb0040 article-title: Water supply network partitioning based on weighted spectral clustering – volume: 140 start-page: 620 year: 2014 ident: 10.1016/j.scitotenv.2018.11.273_bb0035 article-title: Water network sectorization based on graph theory and energy performance indices publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000364 – year: 2012 ident: 10.1016/j.scitotenv.2018.11.273_bb0135 – start-page: 525 year: 2014 ident: 10.1016/j.scitotenv.2018.11.273_bb0030 article-title: Ant algorithm for smart water network partitioning – start-page: 53 year: 2014 ident: 10.1016/j.scitotenv.2018.11.273_bb0050 article-title: Hierarchical decomposition of water distribution systems for background leakage assessment – volume: 55 start-page: 143 year: 2014 ident: 10.1016/j.scitotenv.2018.11.273_bb0145 article-title: An efficient decomposition and dual-stage multi-objective optimization method for water distribution systems with multiple supply sources publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.01.028 – volume: 2 start-page: 310 year: 2013 ident: 10.1016/j.scitotenv.2018.11.273_bb0075 article-title: Towards a reference model for water smart grid publication-title: Int. J. Adv. Eng. Sci. Technol. – volume: 49 start-page: 380 year: 2013 ident: 10.1016/j.scitotenv.2018.11.273_bb0150 article-title: A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources publication-title: Water Resour. Res. doi: 10.1029/2012WR013160 – volume: 18 start-page: 77 year: 2016 ident: 10.1016/j.scitotenv.2018.11.273_bb0085 article-title: Water distribution network sectorisation using graph theory and many-objective optimisation publication-title: J. Hydroinf. doi: 10.2166/hydro.2015.144 – volume: 142 year: 2016 ident: 10.1016/j.scitotenv.2018.11.273_bb0060 article-title: A robust, rapidly convergent method that solves the water distribution equations for pressure-dependent models publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000578 – volume: 144 year: 2018 ident: 10.1016/j.scitotenv.2018.11.273_bb0095 article-title: Spectral clustering and multicriteria decision for design of district metered areas publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000916 – volume: 21 start-page: 773 year: 2017 ident: 10.1016/j.scitotenv.2018.11.273_bb0160 article-title: An adaptive convergence-trajectory controlled ant colony optimization algorithm with application to water distribution system design problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2682899 – volume: 13 start-page: 951 year: 2013 ident: 10.1016/j.scitotenv.2018.11.273_bb0025 article-title: Water network sectorization based on a genetic algorithm and minimum dissipated power paths publication-title: Water Sci. Technol. Water Supply doi: 10.2166/ws.2013.059 – volume: 144 year: 2018 ident: 10.1016/j.scitotenv.2018.11.273_bb0120 article-title: Better understanding of the capacity of pressure sensor systems to detect pipe burst within water distribution networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000957 – volume: 139 start-page: 184 year: 2013 ident: 10.1016/j.scitotenv.2018.11.273_bb0045 article-title: Automated creation of district metered area boundaries in water distribution systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000247 – year: 2007 ident: 10.1016/j.scitotenv.2018.11.273_bb0105 – volume: 30 start-page: 2021 year: 2016 ident: 10.1016/j.scitotenv.2018.11.273_bb0020 article-title: Modularity-Based procedure for partitioning water distribution systems into independent districts publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1266-1 – volume: 142 year: 2016 ident: 10.1016/j.scitotenv.2018.11.273_bb0055 article-title: Twin-hierarchy decomposition for optimal design of water distribution systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000597 – volume: 140 year: 2014 ident: 10.1016/j.scitotenv.2018.11.273_bb0070 article-title: Graph-theoretic approach and sound engineering principles for design of district metered areas publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000424 – volume: 49 start-page: 13378 year: 2015 ident: 10.1016/j.scitotenv.2018.11.273_bb0115 article-title: Flexible reconfiguration of existing urban water infrastructure systems publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03331 – start-page: 1144 year: 2014 ident: 10.1016/j.scitotenv.2018.11.273_bb0080 article-title: Water distribution network sectorisation using structural graph partitioning and multi-objective optimization – volume: 65 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2018.11.273_bb0110 article-title: Automated sub-zoning of water distribution systems publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.11.025 – volume: 2 start-page: 83 year: 2000 ident: 10.1016/j.scitotenv.2018.11.273_bb0005 article-title: Utilisation of network modelling in the operational management of water distribution systems publication-title: Urban Water J. doi: 10.1016/S1462-0758(00)00046-7 – volume: 144 year: 2018 ident: 10.1016/j.scitotenv.2018.11.273_bb0125 article-title: Multistep simulation-optimization modeling approach for partitioning water distribution system into district meter areas publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000927 – volume: 8 year: 2016 ident: 10.1016/j.scitotenv.2018.11.273_bb0010 article-title: A novel water supply network sectorization methodology based on a complete economic analysis, including uncertainties publication-title: Water doi: 10.3390/w8050179 – year: 2001 ident: 10.1016/j.scitotenv.2018.11.273_bb0065 – year: 2000 ident: 10.1016/j.scitotenv.2018.11.273_bb0130 – volume: 142 year: 2016 ident: 10.1016/j.scitotenv.2018.11.273_bb0155 article-title: Comparison of the searching behavior of NSGA-II, SAMODE, and Borg MOEAs applied to water distribution system design problems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000650 – year: 2010 ident: 10.1016/j.scitotenv.2018.11.273_bb0090 – year: 2005 ident: 10.1016/j.scitotenv.2018.11.273_bb0100 |
| SSID | ssj0000781 |
| Score | 2.5068152 |
| Snippet | In recent years, water leakage problems in water distribution networks (WDN) have been attracting more attention, with an emphasis on energy and water... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1401 |
| SubjectTerms | algorithms case studies China District metering area energy fluid mechanics monitoring Multi-objective optimization method Non-dominated sorting genetic algorithm-II water distribution Water distribution network sectorization water quality water resources |
| Title | A practical multi-objective optimization sectorization method for water distribution network |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2018.11.273 https://www.ncbi.nlm.nih.gov/pubmed/30625668 https://www.proquest.com/docview/2179359089 https://www.proquest.com/docview/2220852012 |
| Volume | 656 |
| WOSCitedRecordID | wos000455039600133&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbYBmgSQlAYKz8mI_FWZUpip455q1BRYdLEw5D6gBQ5rjOt2pJqbUf333PO2Wk2VgYPvERt4rhVv6-f7y53PkI-FDws-oqFQRTlYcATEwdShDwQudYsNBpWDGw2IY6P0_FYfnNRpXndTkCUZbpaydl_hRrOAdi2dPYf4G4mhRPwGkCHI8AOx78CfuArn2xdiE0XDKp8irLWq0AgLlzlZW9eB-z9O2wlXWcd_lR133C7pa7rhtUrMVu8bcpagnllcIkGi8qWVrZq534LSx8tzxqdwdDryKyAoafNSIMDR2vWjnGbg6Nleb4s21EKWxjFAqzTPDSorKmQoPlYHu-lt5-0xdP6eneqOgYYpuDvg8qBK3FlU_JSUPvDGPugtGCdXdS4gicExhx27Lm1oba_tEV2YpFIkMKdwZfh-Ot6ARdpdCMV8M7P3SWP_UybbJpNPkttu5w8I0-d00EHSJbn5IEpO-QRtiG97pC94RoxGOZAnXfIEwzqUqxVe0F-DGjDLXqLW7TNLXqDWxS5RYFbtOYWbXOLOm69JN8_D08-jQLXniPQPOSLQElW5KbelFDzfGJ7l8tcMa01j4yRkYnAOGYiTlWRJjmYpjqWXBgpYtXniZqwPbJdVqXZJ5QxA45GkfB4UnAulWJMgSPNJ9Ze5mrSJX3_A2fa7V1vW6icZz5JcZo1IGUWJPBsMwCpS8Lmxhlu33L_LR89gpmzQtG6zICO99_83mOegU7bh2-qNNVynsV2JUzsU_Y_jIltx1yYLu6SV0iY5lt7rr3eeOUN2V3_896S7cXl0rwjD_XV4mx-eUC2xDg9cFT_BfZvyhs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+multi-objective+optimization+sectorization+method+for+water+distribution+network&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhang%2C+Kui&rft.au=Yan%2C+Hexiang&rft.au=Zeng%2C+Han&rft.au=Xin%2C+Kunlun&rft.date=2019-03-15&rft.eissn=1879-1026&rft.volume=656&rft.spage=1401&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.11.273&rft_id=info%3Apmid%2F30625668&rft.externalDocID=30625668 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |