Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method

In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The propo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy conversion and management Ročník 50; číslo 12; s. 2967 - 2975
Hlavní autoři: Sun, Jun, Fang, Wei, Wang, Daojun, Xu, Wenbo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.12.2009
Elsevier
Témata:
ISSN:0196-8904, 1879-2227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability of the algorithm. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zones, and nonsmooth cost functions are considered when the proposed method is used in practical generator operation. The feasibility of the QPSO–DM method is demonstrated by three different power systems. It is compared with the QPSO, the differential evolution (DE), the particle swarm optimization (PSO), and the genetic algorithm (GA) in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed QPSO–DM method is able to obtain higher quality solutions stably and efficiently in the ED problem than any other tested optimization algorithm.
AbstractList In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability of the algorithm. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zones, and nonsmooth cost functions are considered when the proposed method is used in practical generator operation. The feasibility of the QPSO-DM method is demonstrated by three different power systems. It is compared with the QPSO, the differential evolution (DE), the particle swarm optimization (PSO), and the genetic algorithm (GA) in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed QPSO-DM method is able to obtain higher quality solutions stably and efficiently in the ED problem than any other tested optimization algorithm.
Author Sun, Jun
Xu, Wenbo
Wang, Daojun
Fang, Wei
Author_xml – sequence: 1
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  email: sunjun_wx@hotmail.com
– sequence: 2
  givenname: Wei
  surname: Fang
  fullname: Fang, Wei
– sequence: 3
  givenname: Daojun
  surname: Wang
  fullname: Wang, Daojun
– sequence: 4
  givenname: Wenbo
  surname: Xu
  fullname: Xu, Wenbo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22081874$$DView record in Pascal Francis
BookMark eNqFkUtvFDEQhC0UJDaBv4B8gdsMtudpiQMo4iVF4gCcrR67h_FqbE9s70bw63GyyYXLnqyWvip3V12SCx88EvKas5oz3r_b1-h18A58LRiTNRtqxrtnZMfHQVZCiOGC7BiXfTVK1r4glyntGWNNx_odWX6E9Wj9b5oXpFhsgrOaGps2yHqhWwzTio7e2bxQoC4YO1s09PYAPh9cNeECxzJvELPVK9J0B9HRsGXr7F_INnjqMC_BvCTPZ1gTvnp8r8ivz59-Xn-tbr5_-Xb98abSLWtzBbwdGjH3U8ONkaAbKLdMBoUZsONCDkK3owaYtOjZyLUQWEIQDBqBppm65oq8PfmW1W8PmLJyNmlcV_AYDkk1rRSiG9qzoOBs7HspC_jmEYSkYZ0jeG2T2qJ1EP8oIcoe44Ph-xOnY0gp4qy0zQ8R5Ah2VZyp-77UXj31pe77UmxQ5cYi7_-TP_1wVvjhJMQS69FiVEnbQqKxEXVWJthzFv8A9dK3_A
CODEN ECMADL
CitedBy_id crossref_primary_10_1007_s00500_015_2013_x
crossref_primary_10_1016_j_energy_2012_11_035
crossref_primary_10_1016_j_enconman_2014_03_022
crossref_primary_10_1016_j_ijepes_2012_06_040
crossref_primary_10_1016_j_ijepes_2020_106579
crossref_primary_10_1002_tee_21759
crossref_primary_10_1155_2018_7276585
crossref_primary_10_1016_j_ijepes_2016_04_012
crossref_primary_10_1109_TSMCA_2011_2159586
crossref_primary_10_1080_0305215X_2010_497186
crossref_primary_10_1002_etep_468
crossref_primary_10_1007_s00521_016_2650_8
crossref_primary_10_1109_ACCESS_2017_2723862
crossref_primary_10_1016_j_ins_2010_11_014
crossref_primary_10_1016_j_energy_2011_09_017
crossref_primary_10_3390_app12115712
crossref_primary_10_1016_j_ijepes_2013_11_024
crossref_primary_10_1109_TSMC_2013_2248146
crossref_primary_10_1007_s00521_020_05036_w
crossref_primary_10_1007_s10462_012_9330_6
crossref_primary_10_1016_j_asoc_2019_105715
crossref_primary_10_1016_j_asoc_2012_12_014
crossref_primary_10_1038_s41598_022_14338_z
crossref_primary_10_1016_j_epsr_2012_07_009
crossref_primary_10_1016_j_energy_2010_12_006
crossref_primary_10_1260_1369_4332_17_2_143
crossref_primary_10_1016_j_ijepes_2012_04_060
crossref_primary_10_1016_j_enconman_2012_07_005
crossref_primary_10_1016_j_engappai_2015_01_002
crossref_primary_10_1016_j_energy_2017_05_013
crossref_primary_10_1016_j_scs_2021_103075
crossref_primary_10_1162_EVCO_a_00049
crossref_primary_10_1016_j_dajour_2023_100251
crossref_primary_10_1016_j_enconman_2010_11_004
crossref_primary_10_1016_j_ijepes_2010_08_014
crossref_primary_10_3390_math10224168
crossref_primary_10_1155_2013_595639
crossref_primary_10_2166_wp_2021_084
crossref_primary_10_3233_IDA_220415
crossref_primary_10_1109_JOE_2024_3507825
crossref_primary_10_1109_TPWRS_2010_2042472
crossref_primary_10_1016_j_asoc_2021_108132
crossref_primary_10_1016_j_asoc_2014_03_004
Cites_doi 10.1109/TPWRS.2006.873410
10.1109/TPWRS.2003.814889
10.1109/TEVC.2002.806788
10.1109/59.982197
10.1109/59.99376
10.1109/59.141757
10.1049/ip-gtd:19941211
10.1109/59.260897
10.1109/TPWRS.2005.857924
10.1109/59.317548
10.1109/59.476058
10.1023/A:1008202821328
10.1109/59.667377
10.1109/59.221233
10.1109/59.898095
10.1109/TPWRS.2004.831275
10.1109/4235.985692
10.1109/TPAS.1971.293169
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
7TB
8FD
FR3
DOI 10.1016/j.enconman.2009.07.015
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Environment Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-2227
EndPage 2975
ExternalDocumentID 22081874
10_1016_j_enconman_2009_07_015
S0196890409002878
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
7ST
C1K
SOI
7TB
8FD
FR3
ID FETCH-LOGICAL-c404t-a14732f6b31dd9ac3a015bde2d7e512972c48caabc26081c22e10120a32ed3b53
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271178600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sun Sep 28 10:58:23 EDT 2025
Mon Oct 06 17:38:25 EDT 2025
Mon Jul 21 09:11:42 EDT 2025
Sat Nov 29 02:31:37 EST 2025
Tue Nov 18 22:43:11 EST 2025
Fri Feb 23 02:33:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Economic dispatch
Differential mutation operation
Particle swarm optimization
Heuristics
Power generation
Constrained optimization
Performance evaluation
Cost minimization
Case study
Optimal strategy
Production cost
Mutation
Electric power production
Differential method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-a14732f6b31dd9ac3a015bde2d7e512972c48caabc26081c22e10120a32ed3b53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 21086699
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_34922574
proquest_miscellaneous_21086699
pascalfrancis_primary_22081874
crossref_citationtrail_10_1016_j_enconman_2009_07_015
crossref_primary_10_1016_j_enconman_2009_07_015
elsevier_sciencedirect_doi_10_1016_j_enconman_2009_07_015
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy conversion and management
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Chowdhury, Rahman (bib3) 1990; 5
Sun J, Xu W-B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: Proceedings of the 2005 IEEE international conference on systems, man and cybernetics, vol. 4; 2005. p. 3049–54.
Park, Won, Park (bib14) 1998; 6
Lin, Cheng, Tsay (bib17) 2002; 38
Clerc M. The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7.
Sinha, Chakrabarti, Chattopadhyay (bib16) 2003; 7
Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium; 2003. p. 80–7.
park, Kim, Eom, Lee (bib18) 1993; 8
Granville (bib5) 1994; 9
Perez-Guerrero RE, Cedeno-Maldonado JR. Economic power dispatch with non-smooth cost functions using differential evolution. In: Proceedings of the 37th annual North American power symposium; 2005. p. 183–90.
Storn (bib37) 1999; 11
Yang, Yang, Huang (bib15) 1996; 11
Wood, Wollenbergy (bib2) 1984
Gaing (bib9) 2003; 18
Storn R. On the usage of differential evolution for function optimization. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 519–23.
Price K. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 524–7.
Abdul Rahman TK, Yasin ZM, Abdullah WNW. Artificial-immune-based for solving economic dispatch in power system. In: Proceedings of the national power and energy conference; 2004. p. 31–5.
Liang JJ, Suganthan PN. Dynamic multiswarm particle swarm optimizer (DMS-PSO). In: Proceedings of the 2005 IEEE swarm intelligence symposium; 2005. p. 124–9.
Coelho LS, Mariani VC. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers Manage 2009;49(11):3080–5.
Coelho, Mariani (bib13) 2006; 21
Van den Bergh F. An analysis of particle swarm optimizers. PhD thesis. University of Pretoria; November 2001.
Lee, Sode-Yome, Park (bib19) 1998; 13
Swarup, Yamashiro (bib24) 2002; 17
Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks; 1995. p. 1942–8.
IEEE Committee Report. Present practices in the economic operation of power systems. IEEE Trans Power Appar Syst PAS-90; 1971. p. 1768–75.
Chiang (bib8) 2005; 20
Yoshida, Kawata, Fukuyama, Takayama, Nakanishi (bib38) 2000; 15
Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 372–6.
Chen, Chang (bib7) 1995; 10
Sun J, Feng B, Xu W-B. Particle swarm optimization with particles having quantum behavior. In: Proceedings of 2004 congress on evolutionary computation; 2004. p. 326–31.
Suganthan PN. Particle swarm optimizer with neighborhood operator. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1958–62.
Shi Y, Eberhart RC. A modified swarm optimizer. In: Proceedings of the 1998 IEEE international conference of evolutionary computation; 1998. p. 1945–50.
Clerc, Kennedy (bib34) 2002; 6
Park, Lee, Shin, Lee (bib10) 2005; 20
Bakirtzis, Petridis, Kazarlis (bib6) 1994; 141
Sun J, Xu W-B, Feng B. A global search strategy of quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 111–6.
Lianf, Glover (bib4) 1992; 7
Angeline PJ. Using selection to improve particle swarm optimization. In: Proc 1998 IEEE international conference on evolutionary computation; 1998. p. 84–9.
Lee, Breipohl (bib39) 1993; 8
10.1016/j.enconman.2009.07.015_bib12
Park (10.1016/j.enconman.2009.07.015_bib10) 2005; 20
10.1016/j.enconman.2009.07.015_bib35
Wood (10.1016/j.enconman.2009.07.015_bib2) 1984
10.1016/j.enconman.2009.07.015_bib36
10.1016/j.enconman.2009.07.015_bib1
Chiang (10.1016/j.enconman.2009.07.015_bib8) 2005; 20
Lee (10.1016/j.enconman.2009.07.015_bib19) 1998; 13
10.1016/j.enconman.2009.07.015_bib30
10.1016/j.enconman.2009.07.015_bib31
Chen (10.1016/j.enconman.2009.07.015_bib7) 1995; 10
10.1016/j.enconman.2009.07.015_bib32
10.1016/j.enconman.2009.07.015_bib11
10.1016/j.enconman.2009.07.015_bib33
Yoshida (10.1016/j.enconman.2009.07.015_bib38) 2000; 15
Storn (10.1016/j.enconman.2009.07.015_bib37) 1999; 11
park (10.1016/j.enconman.2009.07.015_bib18) 1993; 8
Sinha (10.1016/j.enconman.2009.07.015_bib16) 2003; 7
Lin (10.1016/j.enconman.2009.07.015_bib17) 2002; 38
Granville (10.1016/j.enconman.2009.07.015_bib5) 1994; 9
Park (10.1016/j.enconman.2009.07.015_bib14) 1998; 6
Clerc (10.1016/j.enconman.2009.07.015_bib34) 2002; 6
Lee (10.1016/j.enconman.2009.07.015_bib39) 1993; 8
Lianf (10.1016/j.enconman.2009.07.015_bib4) 1992; 7
10.1016/j.enconman.2009.07.015_bib23
Gaing (10.1016/j.enconman.2009.07.015_bib9) 2003; 18
10.1016/j.enconman.2009.07.015_bib25
10.1016/j.enconman.2009.07.015_bib26
10.1016/j.enconman.2009.07.015_bib20
10.1016/j.enconman.2009.07.015_bib21
10.1016/j.enconman.2009.07.015_bib22
Yang (10.1016/j.enconman.2009.07.015_bib15) 1996; 11
Bakirtzis (10.1016/j.enconman.2009.07.015_bib6) 1994; 141
10.1016/j.enconman.2009.07.015_bib27
10.1016/j.enconman.2009.07.015_bib28
10.1016/j.enconman.2009.07.015_bib29
Coelho (10.1016/j.enconman.2009.07.015_bib13) 2006; 21
Swarup (10.1016/j.enconman.2009.07.015_bib24) 2002; 17
Chowdhury (10.1016/j.enconman.2009.07.015_bib3) 1990; 5
References_xml – volume: 21
  start-page: 989
  year: 2006
  end-page: 996
  ident: bib13
  article-title: Combing of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect
  publication-title: IEEE Trans Power Syst
– reference: Price K. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 524–7.
– volume: 6
  start-page: 103
  year: 1998
  end-page: 110
  ident: bib14
  article-title: A new approach to economic load dispatch based on improved evolutionary programming
  publication-title: Eng Intell Syst Elect Eng Commun
– reference: Abdul Rahman TK, Yasin ZM, Abdullah WNW. Artificial-immune-based for solving economic dispatch in power system. In: Proceedings of the national power and energy conference; 2004. p. 31–5.
– volume: 8
  start-page: 1030
  year: 1993
  end-page: 1038
  ident: bib18
  article-title: Economic load dispatch for piecewise quadratic cost function using Hopfield neural network
  publication-title: IEEE Trans Power Syst
– reference: Coelho LS, Mariani VC. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers Manage 2009;49(11):3080–5.
– volume: 11
  start-page: 341
  year: 1999
  end-page: 359
  ident: bib37
  article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: J Global Optimiz
– reference: IEEE Committee Report. Present practices in the economic operation of power systems. IEEE Trans Power Appar Syst PAS-90; 1971. p. 1768–75.
– reference: Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 372–6.
– reference: Liang JJ, Suganthan PN. Dynamic multiswarm particle swarm optimizer (DMS-PSO). In: Proceedings of the 2005 IEEE swarm intelligence symposium; 2005. p. 124–9.
– reference: Sun J, Xu W-B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: Proceedings of the 2005 IEEE international conference on systems, man and cybernetics, vol. 4; 2005. p. 3049–54.
– volume: 13
  start-page: 519
  year: 1998
  end-page: 526
  ident: bib19
  article-title: Adaptive Hopfield neural network for economic load dispatch
  publication-title: IEEE Trans Power Syst
– reference: Shi Y, Eberhart RC. A modified swarm optimizer. In: Proceedings of the 1998 IEEE international conference of evolutionary computation; 1998. p. 1945–50.
– reference: Perez-Guerrero RE, Cedeno-Maldonado JR. Economic power dispatch with non-smooth cost functions using differential evolution. In: Proceedings of the 37th annual North American power symposium; 2005. p. 183–90.
– reference: Sun J, Xu W-B, Feng B. A global search strategy of quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 111–6.
– volume: 10
  start-page: 1919
  year: 1995
  end-page: 1926
  ident: bib7
  article-title: Large-scale economic dispatch by genetic algorithm
  publication-title: IEEE Trans Power Syst
– volume: 5
  start-page: 1248
  year: 1990
  end-page: 1259
  ident: bib3
  article-title: A review of recent advances in economic dispatch
  publication-title: IEEE Trans Power Syst
– reference: Sun J, Feng B, Xu W-B. Particle swarm optimization with particles having quantum behavior. In: Proceedings of 2004 congress on evolutionary computation; 2004. p. 326–31.
– reference: Storn R. On the usage of differential evolution for function optimization. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 519–23.
– volume: 20
  start-page: 1690
  year: 2005
  end-page: 1699
  ident: bib8
  article-title: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 12
  year: 1996
  end-page: 118
  ident: bib15
  article-title: Evolutionary programming based economic dispatch for units with nonsmooth fuel cost functions
  publication-title: IEEE Trans Power Syst
– volume: 20
  start-page: 34
  year: 2005
  end-page: 41
  ident: bib10
  article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions
  publication-title: IEEE Trans Power Syst
– volume: 15
  start-page: 1232
  year: 2000
  end-page: 1239
  ident: bib38
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans Power Syst
– reference: Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium; 2003. p. 80–7.
– reference: Van den Bergh F. An analysis of particle swarm optimizers. PhD thesis. University of Pretoria; November 2001.
– volume: 38
  start-page: 1037
  year: 2002
  end-page: 1040
  ident: bib17
  article-title: An improved tabu search for economic dispatch with multiple minima
  publication-title: IEEE Trans Magn
– reference: Suganthan PN. Particle swarm optimizer with neighborhood operator. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1958–62.
– volume: 141
  start-page: 377
  year: 1994
  end-page: 382
  ident: bib6
  article-title: Genetic algorithm solution to the economic dispatch problem
  publication-title: Proc Inst Elect Eng-Gen, Transm Dist
– reference: Angeline PJ. Using selection to improve particle swarm optimization. In: Proc 1998 IEEE international conference on evolutionary computation; 1998. p. 84–9.
– year: 1984
  ident: bib2
  article-title: Power generation, operation, and control
– volume: 9
  start-page: 136
  year: 1994
  end-page: 146
  ident: bib5
  article-title: Optimal reactive dispatch through interior point methods
  publication-title: IEEE Trans Power Syst
– volume: 7
  start-page: 83
  year: 2003
  end-page: 94
  ident: bib16
  article-title: Evolutionary programming techniques for economic load dispatch
  publication-title: IEEE Trans Evol Comput
– volume: 17
  start-page: 87
  year: 2002
  end-page: 91
  ident: bib24
  article-title: Unit commitment solution methodology using genetic algorithm
  publication-title: IEEE Trans Power Syst
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib34
  article-title: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space
  publication-title: IEEE Trans Evol Comput
– volume: 18
  start-page: 1187
  year: 2003
  end-page: 1195
  ident: bib9
  article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints
  publication-title: IEEE Trans Power Syst
– volume: 8
  start-page: 246
  year: 1993
  end-page: 254
  ident: bib39
  article-title: Reserve constrained economic dispatch with prohibited zones
  publication-title: IEEE Trans Power Syst
– volume: 7
  start-page: 544
  year: 1992
  end-page: 550
  ident: bib4
  article-title: A zoom feature for a dynamic programming solution to economic dispatch including transmission losses
  publication-title: IEEE Trans Power Syst
– reference: Clerc M. The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7.
– reference: Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks; 1995. p. 1942–8.
– volume: 21
  start-page: 989
  issue: 2
  year: 2006
  ident: 10.1016/j.enconman.2009.07.015_bib13
  article-title: Combing of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2006.873410
– volume: 18
  start-page: 1187
  issue: 3
  year: 2003
  ident: 10.1016/j.enconman.2009.07.015_bib9
  article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2003.814889
– volume: 7
  start-page: 83
  year: 2003
  ident: 10.1016/j.enconman.2009.07.015_bib16
  article-title: Evolutionary programming techniques for economic load dispatch
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.806788
– volume: 17
  start-page: 87
  issue: February
  year: 2002
  ident: 10.1016/j.enconman.2009.07.015_bib24
  article-title: Unit commitment solution methodology using genetic algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.982197
– volume: 5
  start-page: 1248
  issue: 4
  year: 1990
  ident: 10.1016/j.enconman.2009.07.015_bib3
  article-title: A review of recent advances in economic dispatch
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.99376
– ident: 10.1016/j.enconman.2009.07.015_bib36
– ident: 10.1016/j.enconman.2009.07.015_bib11
– ident: 10.1016/j.enconman.2009.07.015_bib32
– volume: 7
  start-page: 544
  issue: 2
  year: 1992
  ident: 10.1016/j.enconman.2009.07.015_bib4
  article-title: A zoom feature for a dynamic programming solution to economic dispatch including transmission losses
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.141757
– ident: 10.1016/j.enconman.2009.07.015_bib27
– volume: 141
  start-page: 377
  issue: 4
  year: 1994
  ident: 10.1016/j.enconman.2009.07.015_bib6
  article-title: Genetic algorithm solution to the economic dispatch problem
  publication-title: Proc Inst Elect Eng-Gen, Transm Dist
  doi: 10.1049/ip-gtd:19941211
– ident: 10.1016/j.enconman.2009.07.015_bib31
– ident: 10.1016/j.enconman.2009.07.015_bib25
– volume: 8
  start-page: 1030
  issue: August
  year: 1993
  ident: 10.1016/j.enconman.2009.07.015_bib18
  article-title: Economic load dispatch for piecewise quadratic cost function using Hopfield neural network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.260897
– volume: 38
  start-page: 1037
  issue: March
  year: 2002
  ident: 10.1016/j.enconman.2009.07.015_bib17
  article-title: An improved tabu search for economic dispatch with multiple minima
  publication-title: IEEE Trans Magn
– ident: 10.1016/j.enconman.2009.07.015_bib29
– volume: 20
  start-page: 1690
  issue: 4
  year: 2005
  ident: 10.1016/j.enconman.2009.07.015_bib8
  article-title: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.857924
– ident: 10.1016/j.enconman.2009.07.015_bib21
– ident: 10.1016/j.enconman.2009.07.015_bib23
– volume: 9
  start-page: 136
  issue: 1
  year: 1994
  ident: 10.1016/j.enconman.2009.07.015_bib5
  article-title: Optimal reactive dispatch through interior point methods
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.317548
– volume: 10
  start-page: 1919
  issue: 4
  year: 1995
  ident: 10.1016/j.enconman.2009.07.015_bib7
  article-title: Large-scale economic dispatch by genetic algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.476058
– ident: 10.1016/j.enconman.2009.07.015_bib35
– ident: 10.1016/j.enconman.2009.07.015_bib33
– volume: 11
  start-page: 12
  issue: 1
  year: 1996
  ident: 10.1016/j.enconman.2009.07.015_bib15
  article-title: Evolutionary programming based economic dispatch for units with nonsmooth fuel cost functions
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 341
  issue: 4
  year: 1999
  ident: 10.1016/j.enconman.2009.07.015_bib37
  article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: J Global Optimiz
  doi: 10.1023/A:1008202821328
– ident: 10.1016/j.enconman.2009.07.015_bib12
– volume: 13
  start-page: 519
  issue: May
  year: 1998
  ident: 10.1016/j.enconman.2009.07.015_bib19
  article-title: Adaptive Hopfield neural network for economic load dispatch
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.667377
– year: 1984
  ident: 10.1016/j.enconman.2009.07.015_bib2
– volume: 8
  start-page: 246
  issue: February
  year: 1993
  ident: 10.1016/j.enconman.2009.07.015_bib39
  article-title: Reserve constrained economic dispatch with prohibited zones
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.221233
– ident: 10.1016/j.enconman.2009.07.015_bib28
– ident: 10.1016/j.enconman.2009.07.015_bib26
– ident: 10.1016/j.enconman.2009.07.015_bib30
– volume: 6
  start-page: 103
  issue: 2
  year: 1998
  ident: 10.1016/j.enconman.2009.07.015_bib14
  article-title: A new approach to economic load dispatch based on improved evolutionary programming
  publication-title: Eng Intell Syst Elect Eng Commun
– volume: 15
  start-page: 1232
  issue: November
  year: 2000
  ident: 10.1016/j.enconman.2009.07.015_bib38
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.898095
– volume: 20
  start-page: 34
  issue: 1
  year: 2005
  ident: 10.1016/j.enconman.2009.07.015_bib10
  article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.831275
– ident: 10.1016/j.enconman.2009.07.015_bib22
– volume: 6
  start-page: 58
  year: 2002
  ident: 10.1016/j.enconman.2009.07.015_bib34
  article-title: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.985692
– ident: 10.1016/j.enconman.2009.07.015_bib1
  doi: 10.1109/TPAS.1971.293169
– ident: 10.1016/j.enconman.2009.07.015_bib20
SSID ssj0003506
Score 2.2472074
Snippet In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2967
SubjectTerms Applied sciences
Constrained optimization
Differential mutation operation
Economic data
Economic dispatch
Electric energy
Energy
Energy economics
Exact sciences and technology
General, economic and professional studies
Heuristics
Methodology. Modelling
Particle swarm optimization
Power generation
Title Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method
URI https://dx.doi.org/10.1016/j.enconman.2009.07.015
https://www.proquest.com/docview/21086699
https://www.proquest.com/docview/34922574
Volume 50
WOSCitedRecordID wos000271178600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcQQjxFeSw-cKtSEiep7eMKdgUcVkhdRG-Rk7jaVm0S2qbsD-KHMhPb6WN3tSDEJWotO3E8X8bjsb8ZQt5hBHOpmfLyLNBeJP3UU3jWVcHiGQ3aKA7GTbIJfnYmRiP5tdP55bgw6xkvCnF5Kav_KmooA2EjdfYvxN3eFArgNwgdriB2uP6R4IflbO04UNrSjnEfpgKle9GzCWQspw0T4UzGaIX-qGGI67nX0Pbhf2Xv3Fv-VIt5rwTNMreUTZt1esenbxiEzRH2xv_W7EnMrxytGdaWCtJC8tT6q7_ryca3b4o-qnK6qTiqTbUiLXc8FXLv1EdLodmcV2o8moAMIU0O4r42Wlhw6SFJd1tNm_i0Do5sW-lKk9HDTuDIFb52cjB-imkfI4QWMAQ2Winv-4ZRuhd4e4hdw575ElemXNwhh4zHEtT_4fHnk9GXdsYP4yaHa_sqW0z06592kxH0oFJL-DTHJqfKFfOgsXnOH5GHdrFCjw0UHpOOLp6Q-1shLJ-SCws3CnCjDm7UwY1auFGEG1XUwY3uwY06uNEGbnQbbtTA7Rn5dnpy_uGTZ7N3eFnkRytPBREP2XiQhkGeS5WFCl48zTXLuUYrk7MsEplSaQZLahFkjGmMNeerkOk8TOPwOTkoykK_IFRl0ThTQohYp5EMVCrCUCpf5LA8HKSMdUnshjPJbGh7zLAyS9wZxmnixIB5V2Xi8wR60yXv23aVCe5yawvppJVYE9WYngmA7Na2RzvibR_JGMaV5FGXvHXyTkDJ486dKnRZLxOG-dAGUt5cA4OMwuwbvfyHDr4i9zaf7WtysFrU-g25m61Xk-XiyIL-Nxtj4C8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+economic+dispatch+problem+with+a+modified+quantum-behaved+particle+swarm+optimization+method&rft.jtitle=Energy+conversion+and+management&rft.au=Sun%2C+Jun&rft.au=Fang%2C+Wei&rft.au=Wang%2C+Daojun&rft.au=Xu%2C+Wenbo&rft.date=2009-12-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=50&rft.issue=12&rft.spage=2967&rft.epage=2975&rft_id=info:doi/10.1016%2Fj.enconman.2009.07.015&rft.externalDocID=S0196890409002878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon