Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method
In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The propo...
Uloženo v:
| Vydáno v: | Energy conversion and management Ročník 50; číslo 12; s. 2967 - 2975 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier Ltd
01.12.2009
Elsevier |
| Témata: | |
| ISSN: | 0196-8904, 1879-2227 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability of the algorithm. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zones, and nonsmooth cost functions are considered when the proposed method is used in practical generator operation. The feasibility of the QPSO–DM method is demonstrated by three different power systems. It is compared with the QPSO, the differential evolution (DE), the particle swarm optimization (PSO), and the genetic algorithm (GA) in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed QPSO–DM method is able to obtain higher quality solutions stably and efficiently in the ED problem than any other tested optimization algorithm. |
|---|---|
| AbstractList | In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability of the algorithm. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zones, and nonsmooth cost functions are considered when the proposed method is used in practical generator operation. The feasibility of the QPSO-DM method is demonstrated by three different power systems. It is compared with the QPSO, the differential evolution (DE), the particle swarm optimization (PSO), and the genetic algorithm (GA) in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed QPSO-DM method is able to obtain higher quality solutions stably and efficiently in the ED problem than any other tested optimization algorithm. |
| Author | Sun, Jun Xu, Wenbo Wang, Daojun Fang, Wei |
| Author_xml | – sequence: 1 givenname: Jun surname: Sun fullname: Sun, Jun email: sunjun_wx@hotmail.com – sequence: 2 givenname: Wei surname: Fang fullname: Fang, Wei – sequence: 3 givenname: Daojun surname: Wang fullname: Wang, Daojun – sequence: 4 givenname: Wenbo surname: Xu fullname: Xu, Wenbo |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22081874$$DView record in Pascal Francis |
| BookMark | eNqFkUtvFDEQhC0UJDaBv4B8gdsMtudpiQMo4iVF4gCcrR67h_FqbE9s70bw63GyyYXLnqyWvip3V12SCx88EvKas5oz3r_b1-h18A58LRiTNRtqxrtnZMfHQVZCiOGC7BiXfTVK1r4glyntGWNNx_odWX6E9Wj9b5oXpFhsgrOaGps2yHqhWwzTio7e2bxQoC4YO1s09PYAPh9cNeECxzJvELPVK9J0B9HRsGXr7F_INnjqMC_BvCTPZ1gTvnp8r8ivz59-Xn-tbr5_-Xb98abSLWtzBbwdGjH3U8ONkaAbKLdMBoUZsONCDkK3owaYtOjZyLUQWEIQDBqBppm65oq8PfmW1W8PmLJyNmlcV_AYDkk1rRSiG9qzoOBs7HspC_jmEYSkYZ0jeG2T2qJ1EP8oIcoe44Ph-xOnY0gp4qy0zQ8R5Ah2VZyp-77UXj31pe77UmxQ5cYi7_-TP_1wVvjhJMQS69FiVEnbQqKxEXVWJthzFv8A9dK3_A |
| CODEN | ECMADL |
| CitedBy_id | crossref_primary_10_1007_s00500_015_2013_x crossref_primary_10_1016_j_energy_2012_11_035 crossref_primary_10_1016_j_enconman_2014_03_022 crossref_primary_10_1016_j_ijepes_2012_06_040 crossref_primary_10_1016_j_ijepes_2020_106579 crossref_primary_10_1002_tee_21759 crossref_primary_10_1155_2018_7276585 crossref_primary_10_1016_j_ijepes_2016_04_012 crossref_primary_10_1109_TSMCA_2011_2159586 crossref_primary_10_1080_0305215X_2010_497186 crossref_primary_10_1002_etep_468 crossref_primary_10_1007_s00521_016_2650_8 crossref_primary_10_1109_ACCESS_2017_2723862 crossref_primary_10_1016_j_ins_2010_11_014 crossref_primary_10_1016_j_energy_2011_09_017 crossref_primary_10_3390_app12115712 crossref_primary_10_1016_j_ijepes_2013_11_024 crossref_primary_10_1109_TSMC_2013_2248146 crossref_primary_10_1007_s00521_020_05036_w crossref_primary_10_1007_s10462_012_9330_6 crossref_primary_10_1016_j_asoc_2019_105715 crossref_primary_10_1016_j_asoc_2012_12_014 crossref_primary_10_1038_s41598_022_14338_z crossref_primary_10_1016_j_epsr_2012_07_009 crossref_primary_10_1016_j_energy_2010_12_006 crossref_primary_10_1260_1369_4332_17_2_143 crossref_primary_10_1016_j_ijepes_2012_04_060 crossref_primary_10_1016_j_enconman_2012_07_005 crossref_primary_10_1016_j_engappai_2015_01_002 crossref_primary_10_1016_j_energy_2017_05_013 crossref_primary_10_1016_j_scs_2021_103075 crossref_primary_10_1162_EVCO_a_00049 crossref_primary_10_1016_j_dajour_2023_100251 crossref_primary_10_1016_j_enconman_2010_11_004 crossref_primary_10_1016_j_ijepes_2010_08_014 crossref_primary_10_3390_math10224168 crossref_primary_10_1155_2013_595639 crossref_primary_10_2166_wp_2021_084 crossref_primary_10_3233_IDA_220415 crossref_primary_10_1109_JOE_2024_3507825 crossref_primary_10_1109_TPWRS_2010_2042472 crossref_primary_10_1016_j_asoc_2021_108132 crossref_primary_10_1016_j_asoc_2014_03_004 |
| Cites_doi | 10.1109/TPWRS.2006.873410 10.1109/TPWRS.2003.814889 10.1109/TEVC.2002.806788 10.1109/59.982197 10.1109/59.99376 10.1109/59.141757 10.1049/ip-gtd:19941211 10.1109/59.260897 10.1109/TPWRS.2005.857924 10.1109/59.317548 10.1109/59.476058 10.1023/A:1008202821328 10.1109/59.667377 10.1109/59.221233 10.1109/59.898095 10.1109/TPWRS.2004.831275 10.1109/4235.985692 10.1109/TPAS.1971.293169 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7ST C1K SOI 7TB 8FD FR3 |
| DOI | 10.1016/j.enconman.2009.07.015 |
| DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Environment Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1879-2227 |
| EndPage | 2975 |
| ExternalDocumentID | 22081874 10_1016_j_enconman_2009_07_015 S0196890409002878 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW 7ST C1K SOI 7TB 8FD FR3 |
| ID | FETCH-LOGICAL-c404t-a14732f6b31dd9ac3a015bde2d7e512972c48caabc26081c22e10120a32ed3b53 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271178600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Sun Sep 28 10:58:23 EDT 2025 Mon Oct 06 17:38:25 EDT 2025 Mon Jul 21 09:11:42 EDT 2025 Sat Nov 29 02:31:37 EST 2025 Tue Nov 18 22:43:11 EST 2025 Fri Feb 23 02:33:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Economic dispatch Differential mutation operation Particle swarm optimization Heuristics Power generation Constrained optimization Performance evaluation Cost minimization Case study Optimal strategy Production cost Mutation Electric power production Differential method |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c404t-a14732f6b31dd9ac3a015bde2d7e512972c48caabc26081c22e10120a32ed3b53 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 21086699 |
| PQPubID | 23462 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_34922574 proquest_miscellaneous_21086699 pascalfrancis_primary_22081874 crossref_citationtrail_10_1016_j_enconman_2009_07_015 crossref_primary_10_1016_j_enconman_2009_07_015 elsevier_sciencedirect_doi_10_1016_j_enconman_2009_07_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-12-01 |
| PublicationDateYYYYMMDD | 2009-12-01 |
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2009 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Chowdhury, Rahman (bib3) 1990; 5 Sun J, Xu W-B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: Proceedings of the 2005 IEEE international conference on systems, man and cybernetics, vol. 4; 2005. p. 3049–54. Park, Won, Park (bib14) 1998; 6 Lin, Cheng, Tsay (bib17) 2002; 38 Clerc M. The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7. Sinha, Chakrabarti, Chattopadhyay (bib16) 2003; 7 Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium; 2003. p. 80–7. park, Kim, Eom, Lee (bib18) 1993; 8 Granville (bib5) 1994; 9 Perez-Guerrero RE, Cedeno-Maldonado JR. Economic power dispatch with non-smooth cost functions using differential evolution. In: Proceedings of the 37th annual North American power symposium; 2005. p. 183–90. Storn (bib37) 1999; 11 Yang, Yang, Huang (bib15) 1996; 11 Wood, Wollenbergy (bib2) 1984 Gaing (bib9) 2003; 18 Storn R. On the usage of differential evolution for function optimization. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 519–23. Price K. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 524–7. Abdul Rahman TK, Yasin ZM, Abdullah WNW. Artificial-immune-based for solving economic dispatch in power system. In: Proceedings of the national power and energy conference; 2004. p. 31–5. Liang JJ, Suganthan PN. Dynamic multiswarm particle swarm optimizer (DMS-PSO). In: Proceedings of the 2005 IEEE swarm intelligence symposium; 2005. p. 124–9. Coelho LS, Mariani VC. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers Manage 2009;49(11):3080–5. Coelho, Mariani (bib13) 2006; 21 Van den Bergh F. An analysis of particle swarm optimizers. PhD thesis. University of Pretoria; November 2001. Lee, Sode-Yome, Park (bib19) 1998; 13 Swarup, Yamashiro (bib24) 2002; 17 Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks; 1995. p. 1942–8. IEEE Committee Report. Present practices in the economic operation of power systems. IEEE Trans Power Appar Syst PAS-90; 1971. p. 1768–75. Chiang (bib8) 2005; 20 Yoshida, Kawata, Fukuyama, Takayama, Nakanishi (bib38) 2000; 15 Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 372–6. Chen, Chang (bib7) 1995; 10 Sun J, Feng B, Xu W-B. Particle swarm optimization with particles having quantum behavior. In: Proceedings of 2004 congress on evolutionary computation; 2004. p. 326–31. Suganthan PN. Particle swarm optimizer with neighborhood operator. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1958–62. Shi Y, Eberhart RC. A modified swarm optimizer. In: Proceedings of the 1998 IEEE international conference of evolutionary computation; 1998. p. 1945–50. Clerc, Kennedy (bib34) 2002; 6 Park, Lee, Shin, Lee (bib10) 2005; 20 Bakirtzis, Petridis, Kazarlis (bib6) 1994; 141 Sun J, Xu W-B, Feng B. A global search strategy of quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 111–6. Lianf, Glover (bib4) 1992; 7 Angeline PJ. Using selection to improve particle swarm optimization. In: Proc 1998 IEEE international conference on evolutionary computation; 1998. p. 84–9. Lee, Breipohl (bib39) 1993; 8 10.1016/j.enconman.2009.07.015_bib12 Park (10.1016/j.enconman.2009.07.015_bib10) 2005; 20 10.1016/j.enconman.2009.07.015_bib35 Wood (10.1016/j.enconman.2009.07.015_bib2) 1984 10.1016/j.enconman.2009.07.015_bib36 10.1016/j.enconman.2009.07.015_bib1 Chiang (10.1016/j.enconman.2009.07.015_bib8) 2005; 20 Lee (10.1016/j.enconman.2009.07.015_bib19) 1998; 13 10.1016/j.enconman.2009.07.015_bib30 10.1016/j.enconman.2009.07.015_bib31 Chen (10.1016/j.enconman.2009.07.015_bib7) 1995; 10 10.1016/j.enconman.2009.07.015_bib32 10.1016/j.enconman.2009.07.015_bib11 10.1016/j.enconman.2009.07.015_bib33 Yoshida (10.1016/j.enconman.2009.07.015_bib38) 2000; 15 Storn (10.1016/j.enconman.2009.07.015_bib37) 1999; 11 park (10.1016/j.enconman.2009.07.015_bib18) 1993; 8 Sinha (10.1016/j.enconman.2009.07.015_bib16) 2003; 7 Lin (10.1016/j.enconman.2009.07.015_bib17) 2002; 38 Granville (10.1016/j.enconman.2009.07.015_bib5) 1994; 9 Park (10.1016/j.enconman.2009.07.015_bib14) 1998; 6 Clerc (10.1016/j.enconman.2009.07.015_bib34) 2002; 6 Lee (10.1016/j.enconman.2009.07.015_bib39) 1993; 8 Lianf (10.1016/j.enconman.2009.07.015_bib4) 1992; 7 10.1016/j.enconman.2009.07.015_bib23 Gaing (10.1016/j.enconman.2009.07.015_bib9) 2003; 18 10.1016/j.enconman.2009.07.015_bib25 10.1016/j.enconman.2009.07.015_bib26 10.1016/j.enconman.2009.07.015_bib20 10.1016/j.enconman.2009.07.015_bib21 10.1016/j.enconman.2009.07.015_bib22 Yang (10.1016/j.enconman.2009.07.015_bib15) 1996; 11 Bakirtzis (10.1016/j.enconman.2009.07.015_bib6) 1994; 141 10.1016/j.enconman.2009.07.015_bib27 10.1016/j.enconman.2009.07.015_bib28 10.1016/j.enconman.2009.07.015_bib29 Coelho (10.1016/j.enconman.2009.07.015_bib13) 2006; 21 Swarup (10.1016/j.enconman.2009.07.015_bib24) 2002; 17 Chowdhury (10.1016/j.enconman.2009.07.015_bib3) 1990; 5 |
| References_xml | – volume: 21 start-page: 989 year: 2006 end-page: 996 ident: bib13 article-title: Combing of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect publication-title: IEEE Trans Power Syst – reference: Price K. Differential evolution: a fast and simple numerical optimizer. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 524–7. – volume: 6 start-page: 103 year: 1998 end-page: 110 ident: bib14 article-title: A new approach to economic load dispatch based on improved evolutionary programming publication-title: Eng Intell Syst Elect Eng Commun – reference: Abdul Rahman TK, Yasin ZM, Abdullah WNW. Artificial-immune-based for solving economic dispatch in power system. In: Proceedings of the national power and energy conference; 2004. p. 31–5. – volume: 8 start-page: 1030 year: 1993 end-page: 1038 ident: bib18 article-title: Economic load dispatch for piecewise quadratic cost function using Hopfield neural network publication-title: IEEE Trans Power Syst – reference: Coelho LS, Mariani VC. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers Manage 2009;49(11):3080–5. – volume: 11 start-page: 341 year: 1999 end-page: 359 ident: bib37 article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces publication-title: J Global Optimiz – reference: IEEE Committee Report. Present practices in the economic operation of power systems. IEEE Trans Power Appar Syst PAS-90; 1971. p. 1768–75. – reference: Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 372–6. – reference: Liang JJ, Suganthan PN. Dynamic multiswarm particle swarm optimizer (DMS-PSO). In: Proceedings of the 2005 IEEE swarm intelligence symposium; 2005. p. 124–9. – reference: Sun J, Xu W-B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level. In: Proceedings of the 2005 IEEE international conference on systems, man and cybernetics, vol. 4; 2005. p. 3049–54. – volume: 13 start-page: 519 year: 1998 end-page: 526 ident: bib19 article-title: Adaptive Hopfield neural network for economic load dispatch publication-title: IEEE Trans Power Syst – reference: Shi Y, Eberhart RC. A modified swarm optimizer. In: Proceedings of the 1998 IEEE international conference of evolutionary computation; 1998. p. 1945–50. – reference: Perez-Guerrero RE, Cedeno-Maldonado JR. Economic power dispatch with non-smooth cost functions using differential evolution. In: Proceedings of the 37th annual North American power symposium; 2005. p. 183–90. – reference: Sun J, Xu W-B, Feng B. A global search strategy of quantum-behaved particle swarm optimization. In: Proceedings of the 2004 IEEE conference on cybernetics and intelligent systems; 2004. p. 111–6. – volume: 10 start-page: 1919 year: 1995 end-page: 1926 ident: bib7 article-title: Large-scale economic dispatch by genetic algorithm publication-title: IEEE Trans Power Syst – volume: 5 start-page: 1248 year: 1990 end-page: 1259 ident: bib3 article-title: A review of recent advances in economic dispatch publication-title: IEEE Trans Power Syst – reference: Sun J, Feng B, Xu W-B. Particle swarm optimization with particles having quantum behavior. In: Proceedings of 2004 congress on evolutionary computation; 2004. p. 326–31. – reference: Storn R. On the usage of differential evolution for function optimization. In: Proceedings of the 1996 biennial conference of the North American fuzzy information processing society; 1996. p. 519–23. – volume: 20 start-page: 1690 year: 2005 end-page: 1699 ident: bib8 article-title: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels publication-title: IEEE Trans Power Syst – volume: 11 start-page: 12 year: 1996 end-page: 118 ident: bib15 article-title: Evolutionary programming based economic dispatch for units with nonsmooth fuel cost functions publication-title: IEEE Trans Power Syst – volume: 20 start-page: 34 year: 2005 end-page: 41 ident: bib10 article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions publication-title: IEEE Trans Power Syst – volume: 15 start-page: 1232 year: 2000 end-page: 1239 ident: bib38 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans Power Syst – reference: Kennedy J. Bare bones particle swarms. In: Proceedings of the 2003 IEEE swarm intelligence symposium; 2003. p. 80–7. – reference: Van den Bergh F. An analysis of particle swarm optimizers. PhD thesis. University of Pretoria; November 2001. – volume: 38 start-page: 1037 year: 2002 end-page: 1040 ident: bib17 article-title: An improved tabu search for economic dispatch with multiple minima publication-title: IEEE Trans Magn – reference: Suganthan PN. Particle swarm optimizer with neighborhood operator. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1958–62. – volume: 141 start-page: 377 year: 1994 end-page: 382 ident: bib6 article-title: Genetic algorithm solution to the economic dispatch problem publication-title: Proc Inst Elect Eng-Gen, Transm Dist – reference: Angeline PJ. Using selection to improve particle swarm optimization. In: Proc 1998 IEEE international conference on evolutionary computation; 1998. p. 84–9. – year: 1984 ident: bib2 article-title: Power generation, operation, and control – volume: 9 start-page: 136 year: 1994 end-page: 146 ident: bib5 article-title: Optimal reactive dispatch through interior point methods publication-title: IEEE Trans Power Syst – volume: 7 start-page: 83 year: 2003 end-page: 94 ident: bib16 article-title: Evolutionary programming techniques for economic load dispatch publication-title: IEEE Trans Evol Comput – volume: 17 start-page: 87 year: 2002 end-page: 91 ident: bib24 article-title: Unit commitment solution methodology using genetic algorithm publication-title: IEEE Trans Power Syst – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib34 article-title: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space publication-title: IEEE Trans Evol Comput – volume: 18 start-page: 1187 year: 2003 end-page: 1195 ident: bib9 article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints publication-title: IEEE Trans Power Syst – volume: 8 start-page: 246 year: 1993 end-page: 254 ident: bib39 article-title: Reserve constrained economic dispatch with prohibited zones publication-title: IEEE Trans Power Syst – volume: 7 start-page: 544 year: 1992 end-page: 550 ident: bib4 article-title: A zoom feature for a dynamic programming solution to economic dispatch including transmission losses publication-title: IEEE Trans Power Syst – reference: Clerc M. The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation; 1999. p. 1951–7. – reference: Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks; 1995. p. 1942–8. – volume: 21 start-page: 989 issue: 2 year: 2006 ident: 10.1016/j.enconman.2009.07.015_bib13 article-title: Combing of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2006.873410 – volume: 18 start-page: 1187 issue: 3 year: 2003 ident: 10.1016/j.enconman.2009.07.015_bib9 article-title: Particle swarm optimization to solving the economic dispatch considering the generator constraints publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2003.814889 – volume: 7 start-page: 83 year: 2003 ident: 10.1016/j.enconman.2009.07.015_bib16 article-title: Evolutionary programming techniques for economic load dispatch publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.806788 – volume: 17 start-page: 87 issue: February year: 2002 ident: 10.1016/j.enconman.2009.07.015_bib24 article-title: Unit commitment solution methodology using genetic algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/59.982197 – volume: 5 start-page: 1248 issue: 4 year: 1990 ident: 10.1016/j.enconman.2009.07.015_bib3 article-title: A review of recent advances in economic dispatch publication-title: IEEE Trans Power Syst doi: 10.1109/59.99376 – ident: 10.1016/j.enconman.2009.07.015_bib36 – ident: 10.1016/j.enconman.2009.07.015_bib11 – ident: 10.1016/j.enconman.2009.07.015_bib32 – volume: 7 start-page: 544 issue: 2 year: 1992 ident: 10.1016/j.enconman.2009.07.015_bib4 article-title: A zoom feature for a dynamic programming solution to economic dispatch including transmission losses publication-title: IEEE Trans Power Syst doi: 10.1109/59.141757 – ident: 10.1016/j.enconman.2009.07.015_bib27 – volume: 141 start-page: 377 issue: 4 year: 1994 ident: 10.1016/j.enconman.2009.07.015_bib6 article-title: Genetic algorithm solution to the economic dispatch problem publication-title: Proc Inst Elect Eng-Gen, Transm Dist doi: 10.1049/ip-gtd:19941211 – ident: 10.1016/j.enconman.2009.07.015_bib31 – ident: 10.1016/j.enconman.2009.07.015_bib25 – volume: 8 start-page: 1030 issue: August year: 1993 ident: 10.1016/j.enconman.2009.07.015_bib18 article-title: Economic load dispatch for piecewise quadratic cost function using Hopfield neural network publication-title: IEEE Trans Power Syst doi: 10.1109/59.260897 – volume: 38 start-page: 1037 issue: March year: 2002 ident: 10.1016/j.enconman.2009.07.015_bib17 article-title: An improved tabu search for economic dispatch with multiple minima publication-title: IEEE Trans Magn – ident: 10.1016/j.enconman.2009.07.015_bib29 – volume: 20 start-page: 1690 issue: 4 year: 2005 ident: 10.1016/j.enconman.2009.07.015_bib8 article-title: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.857924 – ident: 10.1016/j.enconman.2009.07.015_bib21 – ident: 10.1016/j.enconman.2009.07.015_bib23 – volume: 9 start-page: 136 issue: 1 year: 1994 ident: 10.1016/j.enconman.2009.07.015_bib5 article-title: Optimal reactive dispatch through interior point methods publication-title: IEEE Trans Power Syst doi: 10.1109/59.317548 – volume: 10 start-page: 1919 issue: 4 year: 1995 ident: 10.1016/j.enconman.2009.07.015_bib7 article-title: Large-scale economic dispatch by genetic algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/59.476058 – ident: 10.1016/j.enconman.2009.07.015_bib35 – ident: 10.1016/j.enconman.2009.07.015_bib33 – volume: 11 start-page: 12 issue: 1 year: 1996 ident: 10.1016/j.enconman.2009.07.015_bib15 article-title: Evolutionary programming based economic dispatch for units with nonsmooth fuel cost functions publication-title: IEEE Trans Power Syst – volume: 11 start-page: 341 issue: 4 year: 1999 ident: 10.1016/j.enconman.2009.07.015_bib37 article-title: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces publication-title: J Global Optimiz doi: 10.1023/A:1008202821328 – ident: 10.1016/j.enconman.2009.07.015_bib12 – volume: 13 start-page: 519 issue: May year: 1998 ident: 10.1016/j.enconman.2009.07.015_bib19 article-title: Adaptive Hopfield neural network for economic load dispatch publication-title: IEEE Trans Power Syst doi: 10.1109/59.667377 – year: 1984 ident: 10.1016/j.enconman.2009.07.015_bib2 – volume: 8 start-page: 246 issue: February year: 1993 ident: 10.1016/j.enconman.2009.07.015_bib39 article-title: Reserve constrained economic dispatch with prohibited zones publication-title: IEEE Trans Power Syst doi: 10.1109/59.221233 – ident: 10.1016/j.enconman.2009.07.015_bib28 – ident: 10.1016/j.enconman.2009.07.015_bib26 – ident: 10.1016/j.enconman.2009.07.015_bib30 – volume: 6 start-page: 103 issue: 2 year: 1998 ident: 10.1016/j.enconman.2009.07.015_bib14 article-title: A new approach to economic load dispatch based on improved evolutionary programming publication-title: Eng Intell Syst Elect Eng Commun – volume: 15 start-page: 1232 issue: November year: 2000 ident: 10.1016/j.enconman.2009.07.015_bib38 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans Power Syst doi: 10.1109/59.898095 – volume: 20 start-page: 34 issue: 1 year: 2005 ident: 10.1016/j.enconman.2009.07.015_bib10 article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.831275 – ident: 10.1016/j.enconman.2009.07.015_bib22 – volume: 6 start-page: 58 year: 2002 ident: 10.1016/j.enconman.2009.07.015_bib34 article-title: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.985692 – ident: 10.1016/j.enconman.2009.07.015_bib1 doi: 10.1109/TPAS.1971.293169 – ident: 10.1016/j.enconman.2009.07.015_bib20 |
| SSID | ssj0003506 |
| Score | 2.2472074 |
| Snippet | In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems,... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2967 |
| SubjectTerms | Applied sciences Constrained optimization Differential mutation operation Economic data Economic dispatch Electric energy Energy Energy economics Exact sciences and technology General, economic and professional studies Heuristics Methodology. Modelling Particle swarm optimization Power generation |
| Title | Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method |
| URI | https://dx.doi.org/10.1016/j.enconman.2009.07.015 https://www.proquest.com/docview/21086699 https://www.proquest.com/docview/34922574 |
| Volume | 50 |
| WOSCitedRecordID | wos000271178600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcQQjxFeSw-cKtSEiep7eMKdgUcVkhdRG-Rk7jaVm0S2qbsD-KHMhPb6WN3tSDEJWotO3E8X8bjsb8ZQt5hBHOpmfLyLNBeJP3UU3jWVcHiGQ3aKA7GTbIJfnYmRiP5tdP55bgw6xkvCnF5Kav_KmooA2EjdfYvxN3eFArgNwgdriB2uP6R4IflbO04UNrSjnEfpgKle9GzCWQspw0T4UzGaIX-qGGI67nX0Pbhf2Xv3Fv-VIt5rwTNMreUTZt1esenbxiEzRH2xv_W7EnMrxytGdaWCtJC8tT6q7_ryca3b4o-qnK6qTiqTbUiLXc8FXLv1EdLodmcV2o8moAMIU0O4r42Wlhw6SFJd1tNm_i0Do5sW-lKk9HDTuDIFb52cjB-imkfI4QWMAQ2Winv-4ZRuhd4e4hdw575ElemXNwhh4zHEtT_4fHnk9GXdsYP4yaHa_sqW0z06592kxH0oFJL-DTHJqfKFfOgsXnOH5GHdrFCjw0UHpOOLp6Q-1shLJ-SCws3CnCjDm7UwY1auFGEG1XUwY3uwY06uNEGbnQbbtTA7Rn5dnpy_uGTZ7N3eFnkRytPBREP2XiQhkGeS5WFCl48zTXLuUYrk7MsEplSaQZLahFkjGmMNeerkOk8TOPwOTkoykK_IFRl0ThTQohYp5EMVCrCUCpf5LA8HKSMdUnshjPJbGh7zLAyS9wZxmnixIB5V2Xi8wR60yXv23aVCe5yawvppJVYE9WYngmA7Na2RzvibR_JGMaV5FGXvHXyTkDJ486dKnRZLxOG-dAGUt5cA4OMwuwbvfyHDr4i9zaf7WtysFrU-g25m61Xk-XiyIL-Nxtj4C8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+economic+dispatch+problem+with+a+modified+quantum-behaved+particle+swarm+optimization+method&rft.jtitle=Energy+conversion+and+management&rft.au=Sun%2C+Jun&rft.au=Fang%2C+Wei&rft.au=Wang%2C+Daojun&rft.au=Xu%2C+Wenbo&rft.date=2009-12-01&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=50&rft.issue=12&rft.spage=2967&rft.epage=2975&rft_id=info:doi/10.1016%2Fj.enconman.2009.07.015&rft.externalDocID=S0196890409002878 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |