Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the Projection Neural Network

In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks Jg. 17; H. 6; S. 1487 - 1499
Hauptverfasser: Hu, Xiaolin, Wang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.11.2006
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:1045-9227, 1941-0093
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network
AbstractList In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network
In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network.In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network.
In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex optimization problems. In this paper, we show that the projection neural network can also be used to solve pseudomonotone variational inequalities and related pseudoconvex optimization problems. Under various pseudomonotonicity conditions and other conditions, the projection neural network is proved to be stable in the sense of Lyapunov and globally convergent, globally asymptotically stable, and globally exponentially stable. Since monotonicity is a special case of pseudomononicity, the projection neural network can be applied to solve a broader class of constrained optimization problems related to variational inequalities. Moreover, a new concept, called componentwise pseudomononicity, different from pseudomononicity in general, is introduced. Under this new concept, two stability results of the projection neural network for solving variational inequalities are also obtained. Finally, numerical examples show the effectiveness and performance of the projection neural network.
Author Xiaolin Hu
Jun Wang
Author_xml – sequence: 1
  givenname: Xiaolin
  surname: Hu
  fullname: Hu, Xiaolin
  organization: Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18295788$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17131663$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYNU7IeuXQgyG3U1r0kmk4-lFKuF8lqwdTvkJXc0dSZ5TTK19q83897TgotCIOHmd86Fcw7Rng8eEHpN8IIQrI6vlssFxZgvpFBCsGfogChGaoxVs1femLW1olTso8OUbjAmrMX8BdongjSE8-YAPXwNw53z36vLBJMNY_AhlxXVNx2dzi54PVRnHm4nPbjsIFXa2x1rgr-D--pind3oHjZwdRnDaoAxVddpNs0_YB7dgNn8LmGKxW8J-VeIP1-i570eErza3Ufo-vTT1cmX-vzi89nJx_PaMMxyrawSlkjVclBWGmEaJhVTWpkeWMvUSoqVLaen2GLKLZNaY9PTpue4lcQ0R-jD1ncdw-0EKXejSwaGQXsIU-qk4iUiwVUh3z9JckmUaFpZwLc7cFqNYLt1dKOOv7u_uRbg3Q7Qyeihj9oblx45SVUr5Gx0vOVMDClF6B8R3M0Nd6Xhbm642zZcFO1_CuPyJvwctRue0L3Z6hwA_NvCMKGYiuYPhV20Zw
CODEN ITNNEP
CitedBy_id crossref_primary_10_1109_TCYB_2016_2611529
crossref_primary_10_1137_23M1627304
crossref_primary_10_1109_TNN_2010_2048123
crossref_primary_10_1109_TNNLS_2015_2496658
crossref_primary_10_3233_JIFS_220972
crossref_primary_10_1002_acs_3804
crossref_primary_10_1109_TNN_2007_910736
crossref_primary_10_1016_j_ins_2023_120078
crossref_primary_10_1109_TNNLS_2016_2575860
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1109_TNNLS_2017_2731325
crossref_primary_10_1016_j_cam_2024_116420
crossref_primary_10_1109_TNNLS_2015_2461553
crossref_primary_10_1109_TPAMI_2009_141
crossref_primary_10_1109_COMST_2024_3363639
crossref_primary_10_1016_j_neucom_2020_02_100
crossref_primary_10_1016_j_neucom_2010_03_009
crossref_primary_10_1155_2014_283092
crossref_primary_10_1109_TNN_2008_2003287
crossref_primary_10_1109_TCYB_2019_2925707
crossref_primary_10_1002_rnc_5403
crossref_primary_10_1016_j_neucom_2008_02_016
crossref_primary_10_1007_s41478_022_00384_3
crossref_primary_10_1007_s11590_022_01874_w
crossref_primary_10_1109_TCYB_2021_3093076
crossref_primary_10_1109_TNNLS_2021_3126730
crossref_primary_10_1080_02331934_2022_2094795
crossref_primary_10_1109_TAC_2015_2416927
crossref_primary_10_1109_TSMC_2021_3050993
crossref_primary_10_1186_s13660_024_03099_0
crossref_primary_10_1007_s40314_024_02606_9
crossref_primary_10_1155_2020_8818794
crossref_primary_10_1002_asjc_3609
crossref_primary_10_1002_mma_10147
crossref_primary_10_3390_sym13020182
crossref_primary_10_1080_02331934_2024_2385645
crossref_primary_10_1016_j_neunet_2018_01_008
crossref_primary_10_1016_j_neucom_2022_07_034
crossref_primary_10_1109_TCYB_2016_2567449
crossref_primary_10_1016_j_neucom_2013_09_028
crossref_primary_10_1002_rnc_6340
crossref_primary_10_1109_TIE_2011_2169636
crossref_primary_10_1016_j_automatica_2023_111203
crossref_primary_10_1016_j_cam_2024_116448
crossref_primary_10_1080_02331934_2021_1928123
crossref_primary_10_1109_TCYB_2020_3031379
crossref_primary_10_1109_TNN_2008_2006263
crossref_primary_10_1007_s11067_023_09606_y
crossref_primary_10_1016_j_neunet_2013_11_007
crossref_primary_10_1007_s12559_017_9495_z
crossref_primary_10_1109_TNNLS_2015_2500618
crossref_primary_10_1109_TNN_2008_2000273
crossref_primary_10_1080_0305215X_2025_2450683
crossref_primary_10_1109_TNNLS_2016_2582381
crossref_primary_10_1109_TNNLS_2022_3213167
crossref_primary_10_1109_TSMC_2023_3274222
crossref_primary_10_1016_j_neucom_2021_04_059
crossref_primary_10_1016_j_neucom_2012_07_043
crossref_primary_10_1007_s10489_014_0616_z
crossref_primary_10_1155_2022_9447175
crossref_primary_10_1007_s11075_019_00718_6
crossref_primary_10_1016_j_eswa_2024_123980
crossref_primary_10_1109_TNNLS_2015_2441697
crossref_primary_10_1109_TNN_2008_2011266
crossref_primary_10_1109_TNNLS_2015_2466612
crossref_primary_10_1007_s40747_020_00265_x
crossref_primary_10_1109_TNNLS_2014_2387862
crossref_primary_10_1007_s10114_022_0243_2
crossref_primary_10_1016_j_neunet_2014_06_002
crossref_primary_10_1109_TNNLS_2020_3008661
crossref_primary_10_1016_j_neucom_2018_03_016
crossref_primary_10_1109_TNNLS_2013_2275732
crossref_primary_10_1016_j_neunet_2013_11_015
crossref_primary_10_1080_00207721_2024_2428844
crossref_primary_10_1016_j_jfranklin_2021_11_034
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_1007_s11768_023_00181_8
crossref_primary_10_1016_j_engappai_2020_104115
crossref_primary_10_1016_j_neucom_2024_127518
crossref_primary_10_1080_01630563_2022_2069813
crossref_primary_10_1016_j_neunet_2019_12_015
crossref_primary_10_1007_s11075_023_01746_z
crossref_primary_10_1007_s11590_018_1230_5
crossref_primary_10_1016_j_artmed_2008_03_003
crossref_primary_10_1016_j_neucom_2020_04_023
crossref_primary_10_1109_TNNLS_2020_3027288
crossref_primary_10_1016_j_neunet_2024_106247
crossref_primary_10_1109_TNNLS_2016_2570257
crossref_primary_10_1007_s40314_024_02699_2
crossref_primary_10_1080_02331934_2021_1909584
crossref_primary_10_1016_j_neunet_2011_09_001
crossref_primary_10_1080_0952813X_2019_1647559
crossref_primary_10_1007_s10440_008_9402_4
crossref_primary_10_1016_j_neunet_2015_09_013
crossref_primary_10_1016_j_neucom_2024_128988
crossref_primary_10_1109_TCSII_2012_2228400
crossref_primary_10_1109_ACCESS_2020_3028125
crossref_primary_10_1109_TNNLS_2015_2425301
crossref_primary_10_1007_s10957_020_01792_w
crossref_primary_10_1109_TNNLS_2021_3105732
crossref_primary_10_1007_s11075_024_01851_7
crossref_primary_10_1007_s11590_020_01654_4
crossref_primary_10_1007_s12190_024_02186_1
crossref_primary_10_1109_TAC_2022_3214795
crossref_primary_10_1007_s11590_019_01511_z
crossref_primary_10_1080_02331934_2018_1522636
crossref_primary_10_1016_j_neunet_2021_01_004
crossref_primary_10_1186_s13660_023_03046_5
crossref_primary_10_1007_s00521_012_0918_1
crossref_primary_10_1109_TII_2022_3180080
crossref_primary_10_1016_j_neucom_2013_01_025
crossref_primary_10_1109_TNN_2011_2169682
crossref_primary_10_1016_j_cnsns_2013_08_034
crossref_primary_10_1109_TNNLS_2018_2814824
crossref_primary_10_1016_j_neucom_2013_10_008
crossref_primary_10_1016_j_neunet_2021_04_038
crossref_primary_10_1109_TNNLS_2013_2244908
crossref_primary_10_1016_j_neucom_2014_08_014
crossref_primary_10_1007_s10462_009_9111_z
crossref_primary_10_1007_s10915_020_01327_5
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1016_j_neunet_2014_09_009
crossref_primary_10_1109_TFUZZ_2020_3031385
crossref_primary_10_1109_TSMC_2019_2916750
crossref_primary_10_1007_s40065_022_00400_1
crossref_primary_10_1186_s13660_019_2233_1
crossref_primary_10_1007_s11063_021_10538_2
crossref_primary_10_1016_j_neunet_2019_02_002
crossref_primary_10_1080_00036811_2024_2330509
crossref_primary_10_1080_02331934_2021_1963248
crossref_primary_10_1016_j_cam_2022_114260
crossref_primary_10_1016_j_neucom_2011_04_026
crossref_primary_10_1007_s40747_022_00884_6
crossref_primary_10_1016_j_amc_2012_01_020
crossref_primary_10_1007_s11063_010_9129_x
crossref_primary_10_1007_s40314_023_02582_6
crossref_primary_10_1016_j_neucom_2019_01_012
crossref_primary_10_1080_02331934_2019_1613404
crossref_primary_10_1007_s11590_020_01599_8
crossref_primary_10_1007_s11063_021_10628_1
crossref_primary_10_1016_j_cam_2018_08_030
crossref_primary_10_1016_j_neucom_2019_05_078
crossref_primary_10_1016_j_neunet_2018_03_003
crossref_primary_10_1016_j_neunet_2014_03_006
crossref_primary_10_1109_TNN_2007_891593
crossref_primary_10_3390_axioms9040115
crossref_primary_10_1016_j_asoc_2019_01_002
crossref_primary_10_1109_TNN_2008_2000993
crossref_primary_10_1016_j_neunet_2021_01_012
crossref_primary_10_1007_s10589_010_9359_x
crossref_primary_10_1109_TNNLS_2019_2944388
crossref_primary_10_1016_j_ins_2009_11_014
crossref_primary_10_1109_TNN_2011_2109735
crossref_primary_10_1109_TNNLS_2022_3144148
crossref_primary_10_1080_02331934_2020_1849206
crossref_primary_10_1155_2019_4545064
crossref_primary_10_1016_j_cnsns_2024_108315
crossref_primary_10_1016_j_jfranklin_2023_11_041
crossref_primary_10_3390_math8071165
crossref_primary_10_1109_TNNLS_2015_2404773
crossref_primary_10_1109_TNNLS_2013_2292893
crossref_primary_10_1515_ijnsns_2021_0459
crossref_primary_10_1016_j_cam_2022_114092
crossref_primary_10_1109_TNN_2011_2167760
crossref_primary_10_1007_s11067_019_09457_6
crossref_primary_10_1007_s11075_019_00780_0
crossref_primary_10_1016_j_neucom_2012_01_020
crossref_primary_10_1016_j_chaos_2008_05_003
crossref_primary_10_1109_JAS_2020_1003605
crossref_primary_10_1049_cth2_12147
crossref_primary_10_1016_j_amc_2010_02_010
crossref_primary_10_1016_j_neucom_2009_05_003
crossref_primary_10_3390_sym16030363
Cites_doi 10.1023/A:1004611224835
10.1007/BF00941891
10.1080/0233193021000030779
10.1007/BF00339943
10.1023/A:1012606212823
10.1109/ICARCV.2006.345414
10.1109/31.52732
10.1137/S0036144595285963
10.1016/S0893-9659(01)00137-9
10.1287/opre.42.6.1120
10.1137/S0363012994268655
10.1109/TNN.2004.841779
10.1109/81.995659
10.1023/B:JOTA.0000042598.21226.af
10.1109/TCSI.2004.830694
10.1109/72.914529
10.1016/0893-6080(94)90041-8
10.1016/S0096-3003(01)00269-7
10.1109/31.1783
10.1016/j.neunet.2004.05.006
10.1007/BF01585696
10.1016/S0893-6080(00)00019-8
10.1023/A:1017562305308
10.1007/BF01582255
10.1016/j.jmaa.2004.04.068
10.1109/31.41295
10.1007/BF01580617
10.1007/BF00940531
10.1007/BF01582565
10.1109/TCS.1986.1085953
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2006.879774
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 1499
ExternalDocumentID 17131663
18295788
10_1109_TNN_2006_879774
4012027
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c404t-9d97d18956e9d8c7c348949a9cfe4549b87bd7bdf20d026d48aa0cf23f60581c3
IEDL.DBID RIE
ISICitedReferencesCount 238
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241933100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
IngestDate Fri Sep 05 10:52:45 EDT 2025
Fri Sep 05 07:44:33 EDT 2025
Wed Feb 19 01:47:08 EST 2025
Mon Jul 21 09:15:37 EDT 2025
Tue Nov 18 22:11:23 EST 2025
Sat Nov 29 03:59:20 EST 2025
Tue Aug 26 16:36:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Monotonic function
Recurrent neural nets
Componentwise pseudomonotone variational inequality
global asymptotic stability
pseudoconvex optimization
Lyapunov method
Neural network
Convex programming
Constrained optimization
projection neural network
Asymptotic stability
Variational inequality
pseudomonotone variational inequality
Monotonicity
Lyapunov function
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-9d97d18956e9d8c7c348949a9cfe4549b87bd7bdf20d026d48aa0cf23f60581c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17131663
PQID 68197358
PQPubID 23479
PageCount 13
ParticipantIDs crossref_primary_10_1109_TNN_2006_879774
pubmed_primary_17131663
ieee_primary_4012027
crossref_citationtrail_10_1109_TNN_2006_879774
pascalfrancis_primary_18295788
proquest_miscellaneous_896227769
proquest_miscellaneous_68197358
PublicationCentury 2000
PublicationDate 2006-11-01
PublicationDateYYYYMMDD 2006-11-01
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref36
ref14
ref31
ref33
hu (ref30) 2006
ref11
ref32
ref10
ref39
ref17
ref19
kojima (ref38) 1986; 29
ref18
cottle (ref2) 1980
kosko (ref15) 1992
ref24
ref23
ref26
kinderlehrer (ref1) 1980
ref25
ref20
ref22
ref21
ref28
avriel (ref35) 1988; 36
ref27
miller (ref34) 1982
noor (ref29) 2002; 31
ref8
ref7
hopfield (ref16) 1985; 52
ref9
ref4
ref3
ref6
ref5
bazaraa (ref37) 1993
References_xml – ident: ref25
  doi: 10.1023/A:1004611224835
– volume: 29
  start-page: 352
  year: 1986
  ident: ref38
  article-title: extensions of newton and quasi-newton methods to systems of equations
  publication-title: J Oper Res Soc Japan
– ident: ref33
  doi: 10.1007/BF00941891
– ident: ref36
  doi: 10.1080/0233193021000030779
– volume: 52
  start-page: 141
  year: 1985
  ident: ref16
  article-title: neural computation of decisions in optimization problems
  publication-title: Biol Cybern
  doi: 10.1007/BF00339943
– ident: ref12
  doi: 10.1023/A:1012606212823
– ident: ref14
  doi: 10.1109/ICARCV.2006.345414
– ident: ref19
  doi: 10.1109/31.52732
– ident: ref6
  doi: 10.1137/S0036144595285963
– year: 1982
  ident: ref34
  publication-title: Ordinary Differential Equations
– year: 1992
  ident: ref15
  publication-title: Neural Networks for Signal Processing
– ident: ref13
  doi: 10.1016/S0893-9659(01)00137-9
– ident: ref5
  doi: 10.1287/opre.42.6.1120
– ident: ref9
  doi: 10.1137/S0363012994268655
– ident: ref23
  doi: 10.1109/TNN.2004.841779
– ident: ref27
  doi: 10.1109/81.995659
– ident: ref28
  doi: 10.1023/B:JOTA.0000042598.21226.af
– ident: ref21
  doi: 10.1109/TCSI.2004.830694
– ident: ref26
  doi: 10.1109/72.914529
– ident: ref20
  doi: 10.1016/0893-6080(94)90041-8
– year: 1980
  ident: ref2
  publication-title: Variational Inequalities and Complementarity Problems Theorey and Applications
– ident: ref31
  doi: 10.1016/S0096-3003(01)00269-7
– ident: ref18
  doi: 10.1109/31.1783
– ident: ref22
  doi: 10.1016/j.neunet.2004.05.006
– ident: ref7
  doi: 10.1007/BF01585696
– ident: ref24
  doi: 10.1016/S0893-6080(00)00019-8
– start-page: 755
  year: 2006
  ident: ref30
  article-title: global stability of a recurrent neural network for solving pseudomonotone variational inequalities
  publication-title: Proc IEEE Int Symp Circuits Syst
– year: 1993
  ident: ref37
  publication-title: Nonlinear Programming Theory and Algorithms
– ident: ref11
  doi: 10.1023/A:1017562305308
– ident: ref4
  doi: 10.1007/BF01582255
– volume: 36
  year: 1988
  ident: ref35
  publication-title: Generalized concavity Mathematical Concepts and Methods in Science and Engineering
– ident: ref10
  doi: 10.1016/j.jmaa.2004.04.068
– volume: 31
  start-page: 173
  year: 2002
  ident: ref29
  article-title: a wiener-hopf dynamical system for variational inequalities
  publication-title: New Zealand J Math
– ident: ref3
  doi: 10.1109/31.41295
– ident: ref39
  doi: 10.1007/BF01580617
– ident: ref32
  doi: 10.1007/BF00940531
– year: 1980
  ident: ref1
  publication-title: An Introduction to Variational Inequalities and Their Applications
– ident: ref8
  doi: 10.1007/BF01582565
– ident: ref17
  doi: 10.1109/TCS.1986.1085953
SSID ssj0014506
Score 2.3522234
Snippet In recent years, a recurrent neural network called projection neural network was proposed for solving monotone variational inequalities and related convex...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1487
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Artificial neural networks
Asymptotic properties
Asymptotic stability
Circuits
Componentwise pseudomonotone variational inequality
Computer science; control theory; systems
Connectionism. Neural networks
Constraint optimization
Constraints
Convergence
Exact sciences and technology
global asymptotic stability
Inequalities
Information Storage and Retrieval - methods
Iterative algorithms
Neural networks
Neural Networks (Computer)
Optimization
Pattern Recognition, Automated - methods
Projection
projection neural network
pseudoconvex optimization
pseudomonotone variational inequality
Recurrent neural networks
Signal processing algorithms
Signal Processing, Computer-Assisted
Stability
Telecommunication traffic
Title Solving Pseudomonotone Variational Inequalities and Pseudoconvex Optimization Problems Using the Projection Neural Network
URI https://ieeexplore.ieee.org/document/4012027
https://www.ncbi.nlm.nih.gov/pubmed/17131663
https://www.proquest.com/docview/68197358
https://www.proquest.com/docview/896227769
Volume 17
WOSCitedRecordID wos000241933100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B6oEeCk1a6rake6hQDzX4sd7HESEQvZhI0Co3y95dS63ARjhBtL--s4-EIjUHpBysaLJ2PDO7880T4DOeSkmjUQEVWhsxZayJRatNLPGobDltlMn8sAlelmI2k9MN-LqqhTHGuOQzc2gvXSxf92phXWVH1FZ6ZnwTNjnnvlZrFTGghZujieiiwBtlPLTxSRN5dFWWPuoguLV2bJ9QhGYpY_mTw8hNV7G5kfWAr6f1cy3WG57uADrbed6j78KrYGiSYy8Zr2HDdCMYH3cIsm9-kwPiUj-dT30EO8vZDiSo-ghe_tOocAx_Lvtr63kg08EsdI-i29sm3uQHIu3gTSTfOuMrNBF7k7rTgdaltT-QC9yabkLNJ5n6KTYDcQkLBG1Q-9UvlxXWEdsvBNcrfYL6G_h-dnp1ch6HqQ2xogmdx1JLrlOBuMtILRRXORWSylqq1lBEo43gjcZPmyUaAaCmoq4T1WZ5ayO0qcrfwlaHf-EdkMJuKEWTWnJa01YWhjOW1fguqTFFFsHhkn2VCi3N7WSN68pBm0RWyHo7aJNVnvURfFn94NZ381hPOrZcXJEFBkYweSIfj8uITOLuJyL4tBSYCjXVhl_qzvSLoWJofPG8QAqyhkJIhpLLmYxgz4va4_JBYt___7E-wLbzDbkiyY-wNb9bmH14oe7nP4e7CerLTEycvvwF5M0SFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcKOzyCI_WB4Q4kDZxHD-OFaJqRQkrsaDeosR2JFCboGYXAb-e8WO3VGIPSDlE0cR5zNieb54AL3FXylqDE1CjtpEyzttUdsamCrfKTrBWWxqaTYiqkmdnarYFb9a5MNZaH3xm992p9-WbQS-dqeyAuUxPKm7AzZIxmodsrbXPgJW-kybiixIfRUUs5JNn6mBeVcHvIIXTd1ylUARnOefFte3I91dx0ZHNiD-oC50tNquefgs62vm_l78P96KqSQ6DbDyALdtPYHrYI8y--EVeER_86a3qE9hZdXcgcbJP4O5fpQqn8PvTcO5sD2Q22qUZUHgHV8abfEGsHe2J5KS3IUcT0TdpehNpfWD7T_IRF6eLmPVJZqGPzUh8yAJBLdRd-ubjwnriKobgeFUIUX8In4_ezd8ep7FvQ6pZxhapMkqYXCLysspILXTBpGKqUbqzDPFoK0Vr8OhoZhACGiabJtMdLTrno8118Qi2e_yEJ0BKt6SUbe7IWcM6VVrBOW3wXzJrS5rA_op9tY5FzV1vjfPag5tM1ch612qT14H1Cbxe3_A91PPYTDp1XFyTRQYmsHtNPq6GkVTh-icT2FsJTI1z1Tlgmt4Oy7HmqH6JokQKsoFCKo6SK7hK4HEQtavho8Q-_fdr7cHt4_mH0_r0pHr_DO54S5FPmXwO24vLpX0Bt_SPxdfxctfPmj_KbBR2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+pseudomonotone+variational+inequalities+and+pseudoconvex+optimization+problems+using+the+projection+neural+network&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=XIAOLIN+HU&rft.au=JUN+WANG&rft.date=2006-11-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1045-9227&rft.volume=17&rft.issue=6&rft.spage=1487&rft.epage=1499&rft_id=info:doi/10.1109%2FTNN.2006.879774&rft.externalDBID=n%2Fa&rft.externalDocID=18295788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon