An experimental modeling of cyclone separator efficiency with PCA-PSO-SVR algorithm

Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to pre...

Full description

Saved in:
Bibliographic Details
Published in:Powder technology Vol. 347; pp. 114 - 124
Main Authors: Zhang, Wei, Zhang, Linlin, Yang, Jingxuan, Hao, Xiaogang, Guan, Guoqing, Gao, Zhihua
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 01.04.2019
Elsevier BV
Subjects:
ISSN:0032-5910, 1873-328X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to predict the grade efficiency of cyclone separators with the operating parameters based on 217 sets of experimental data provided in the literature. The experimental data are preprocessed using the random sampling technique together with the normalization method and principal component analysis (PCA) at first; subsequently, the particle swarm optimization (PSO) algorithm is incorporated to optimize the parameters for the support vector regression (SVR), including the penalty factor C, kernel function parameter g, and insensitive loss ε. Finally, the SVR model with the optimized parameters is trained with 80% pretreatment data, and the generalization ability of the model is tested with the remaining 20% data. The mean squared error of the test sets is 6.948 × 10−4 with a correlation coefficient of 0.982. The comparison results show that the PCA-PSO-SVR model has higher accuracy, better generalization ability, and stronger robustness than the existing models for predicting the cyclone separator efficiency in the case with only a few experimental data. [Display omitted] •The geometrical and operating parameters are both considered in modeling.•PCA is used to reduce the eight factors to five factors with minimal information loss.•SVR is used to create models with limited experimental data.•PSO is applied to improve the modeling accuracy.
AbstractList Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to predict the grade efficiency of cyclone separators with the operating parameters based on 217 sets of experimental data provided in the literature. The experimental data are preprocessed using the random sampling technique together with the normalization method and principal component analysis (PCA) at first; subsequently, the particle swarm optimization (PSO) algorithm is incorporated to optimize the parameters for the support vector regression (SVR), including the penalty factor C, kernel function parameter g, and insensitive loss ε. Finally, the SVR model with the optimized parameters is trained with 80% pretreatment data, and the generalization ability of the model is tested with the remaining 20% data. The mean squared error of the test sets is 6.948 × 10−4 with a correlation coefficient of 0.982. The comparison results show that the PCA-PSO-SVR model has higher accuracy, better generalization ability, and stronger robustness than the existing models for predicting the cyclone separator efficiency in the case with only a few experimental data.
Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to predict the grade efficiency of cyclone separators with the operating parameters based on 217 sets of experimental data provided in the literature. The experimental data are preprocessed using the random sampling technique together with the normalization method and principal component analysis (PCA) at first; subsequently, the particle swarm optimization (PSO) algorithm is incorporated to optimize the parameters for the support vector regression (SVR), including the penalty factor C, kernel function parameter g, and insensitive loss ε. Finally, the SVR model with the optimized parameters is trained with 80% pretreatment data, and the generalization ability of the model is tested with the remaining 20% data. The mean squared error of the test sets is 6.948 × 10−4 with a correlation coefficient of 0.982. The comparison results show that the PCA-PSO-SVR model has higher accuracy, better generalization ability, and stronger robustness than the existing models for predicting the cyclone separator efficiency in the case with only a few experimental data. [Display omitted] •The geometrical and operating parameters are both considered in modeling.•PCA is used to reduce the eight factors to five factors with minimal information loss.•SVR is used to create models with limited experimental data.•PSO is applied to improve the modeling accuracy.
Author Zhang, Linlin
Yang, Jingxuan
Guan, Guoqing
Hao, Xiaogang
Gao, Zhihua
Zhang, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  email: zhangwei01@tyut.edu.cn
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 2
  givenname: Linlin
  surname: Zhang
  fullname: Zhang, Linlin
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 3
  givenname: Jingxuan
  orcidid: 0000-0002-6006-8352
  surname: Yang
  fullname: Yang, Jingxuan
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 4
  givenname: Xiaogang
  surname: Hao
  fullname: Hao, Xiaogang
  organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 5
  givenname: Guoqing
  orcidid: 0000-0002-5875-3596
  surname: Guan
  fullname: Guan, Guoqing
  email: guan@hirosaki-u.ac.jp
  organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan
– sequence: 6
  givenname: Zhihua
  surname: Gao
  fullname: Gao, Zhihua
  organization: Key Laboratory Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
BookMark eNqFkMFq3DAQhkVJoJu0b9CDoZde7I4ky7J7KCxL2hQCCdmk9CYm8jjV4pVcSdt03z5Otqcc2tPA8P3_DN8JO_LBE2PvOFQcePNxU03hIZOtBPCuAl6BhldswVstSynaH0dsASBFqToOr9lJShsAaCSHBVsvfUF_JopuSz7jWGxDT6Pz90UYCru343ypSDRhxBxiQcPgrCNv98WDyz-Lq9WyvFpfluvv1wWO9yHOy-0bdjzgmOjt33nKbr-c3azOy4vLr99Wy4vS1lDnsrNaoVK8bdSd1VI0wHtssBVC32FHnRLIe4U1oq1b2VoNpKkTg1VDU2M3yFP24dA7xfBrRymbrUuWxhE9hV0yQkithJIaZvT9C3QTdtHP382UAK204Hqm6gNlY0gp0mCm2QvGveFgnkybjTmYNk-mDXADz-WfXsSsy5hd8DmiG_8X_nwI02zqt6No0rNg6l0km00f3L8LHgF8hZ2t
CitedBy_id crossref_primary_10_1177_0954407020918802
crossref_primary_10_1016_j_dche_2022_100031
crossref_primary_10_1016_j_energy_2024_132477
crossref_primary_10_1016_j_measurement_2023_113655
crossref_primary_10_1016_j_cja_2019_07_020
crossref_primary_10_3390_en15113871
crossref_primary_10_1016_j_fuel_2022_124670
crossref_primary_10_19206_CE_207838
crossref_primary_10_3233_JIFS_211435
crossref_primary_10_1016_j_compstruct_2021_114282
crossref_primary_10_3390_ma14237166
crossref_primary_10_1016_j_buildenv_2022_108876
crossref_primary_10_1016_j_mtcomm_2024_110704
crossref_primary_10_1016_j_chemolab_2019_103870
crossref_primary_10_3390_en14082285
crossref_primary_10_1016_j_apt_2025_105049
crossref_primary_10_1002_cben_202300052
crossref_primary_10_1016_j_psep_2023_06_029
crossref_primary_10_1016_j_jhydrol_2020_125563
crossref_primary_10_1016_j_measurement_2023_113106
crossref_primary_10_1016_j_chemosphere_2020_126474
crossref_primary_10_1016_j_fuel_2022_126980
crossref_primary_10_3390_buildings13061395
crossref_primary_10_1016_j_dche_2021_100002
crossref_primary_10_1007_s13369_024_08990_y
crossref_primary_10_3390_pr8111332
crossref_primary_10_1016_j_energy_2022_124552
crossref_primary_10_1016_j_jngse_2020_103716
crossref_primary_10_1016_j_intermet_2025_108914
crossref_primary_10_1016_j_ibmed_2025_100276
crossref_primary_10_1007_s41939_025_00913_0
crossref_primary_10_3390_en17112462
crossref_primary_10_1016_j_powtec_2020_06_078
Cites_doi 10.1016/j.powtec.2016.09.050
10.1016/j.seppur.2017.09.040
10.1016/j.powtec.2015.07.024
10.1016/j.jaerosci.2003.12.002
10.1016/j.apm.2012.11.010
10.1016/S0021-8502(96)00479-X
10.1080/02786826.2010.512027
10.1002/aic.690270603
10.1016/j.applthermaleng.2016.11.110
10.1016/j.powtec.2017.11.012
10.1016/j.jtice.2017.12.016
10.1080/0305215X.2011.564619
10.1016/j.seppur.2017.11.017
10.1016/j.ces.2009.06.017
10.1016/S1672-2515(07)60095-5
10.1016/j.powtec.2011.10.015
10.1007/s11390-012-1279-z
10.1016/j.powtec.2011.10.031
10.1089/ees.2006.23.680
10.1016/S0021-8502(99)00024-5
10.1016/j.seppur.2017.02.024
10.1016/j.seppur.2011.10.006
10.1016/S1672-2515(07)60162-6
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2019
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
JG9
SOI
7S9
L.6
DOI 10.1016/j.powtec.2019.01.070
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 124
ExternalDocumentID 10_1016_j_powtec_2019_01_070
S0032591019300725
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~02
~G-
29O
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
SEW
T9H
WUQ
XPP
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
JG9
SOI
7S9
L.6
ID FETCH-LOGICAL-c404t-9c75a551865bc732601da6a8227ba9e952a1d5a4aac4838c70e7e92fc5f64a9f3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464299900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0032-5910
IngestDate Thu Oct 02 08:22:56 EDT 2025
Wed Aug 13 05:26:39 EDT 2025
Sat Nov 29 02:39:07 EST 2025
Tue Nov 18 21:17:20 EST 2025
Fri Feb 23 02:29:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Grade efficiency
Cyclone separator
Particle swarm optimization
Support vector regression algorithm
Principal component analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-9c75a551865bc732601da6a8227ba9e952a1d5a4aac4838c70e7e92fc5f64a9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6006-8352
0000-0002-5875-3596
PQID 2220757217
PQPubID 2045415
PageCount 11
ParticipantIDs proquest_miscellaneous_2237525370
proquest_journals_2220757217
crossref_primary_10_1016_j_powtec_2019_01_070
crossref_citationtrail_10_1016_j_powtec_2019_01_070
elsevier_sciencedirect_doi_10_1016_j_powtec_2019_01_070
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Powder technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dietz (bb0040) 1981; 27
Francesco, Francesco, Carlo (bb0090) 2017; 179
Jin, Shi (bb0080) 1990; 5
Leith, Licht (bb0045) 1972; 68
Huang, Keiya, Tomonori, Kunihiro, Hsiu-Po (bb0095) 2018; 90
Elsayed, Lacor (bb0115) 2013; 37
Zhong, Pi (bb0170) 2014; 41
Mazyana, Ahmadib, Brinkerhoffa, Ahmedc, Hoorfar (bb0105) 2018; 191
Wang, Tian (bb0145) 2016; 1
Sun, Chen, Shi (bb0025) 2005; 3
Sun, Shi (bb0140) 2002; 32
Zhu, Lee (bb0055) 1999; 30
Chen, Shi (bb0060) 2003; 1
Rafiee, Sadeghiazad (bb0050) 2017; 114
Lim, Kim, Lee (bb0065) 2004; 35
Sun, Joon (bb0085) 2018; 325
Zhao (bb0005) 2010; 44
Yang, Sun, Zhan (bb0030) 2015; 286
Khalkhali, Safikhani (bb0135) 2012; 44
Dash, Sa, Majhi (bb0150) 2012; 27
Lidén, Gudmundsson (bb0015) 1997; 28
Qiu, Deng, Chang (bb0020) 2012; 217
Misiulia, Andersson, Lundström (bb0100) 2017; 305
Jin, Chen (bb0075) 1995; 2
Yetilmezsoy (bb0130) 2006; 23
Zhao (bb0010) 2012; 85
Luo, Chen (bb0070) 1992; 13
Russell, James (bb0165) 1995; 4
Zhao (bb0120) 2009; 64
Yajima, Ohi, Mori (bb0160) 2003; 46
Zhou, Sun, Zhang, Ci, Wei (bb0110) 2018; 193
Barth (bb0035) 1956; 8
Chen, Xiong (bb0155) 2011
Elsayed, Lacor (bb0125) 2012; 217
Zhao (10.1016/j.powtec.2019.01.070_bb0010) 2012; 85
Zhao (10.1016/j.powtec.2019.01.070_bb0005) 2010; 44
Dash (10.1016/j.powtec.2019.01.070_bb0150) 2012; 27
Leith (10.1016/j.powtec.2019.01.070_bb0045) 1972; 68
Chen (10.1016/j.powtec.2019.01.070_bb0060) 2003; 1
Jin (10.1016/j.powtec.2019.01.070_bb0075) 1995; 2
Yang (10.1016/j.powtec.2019.01.070_bb0030) 2015; 286
Khalkhali (10.1016/j.powtec.2019.01.070_bb0135) 2012; 44
Rafiee (10.1016/j.powtec.2019.01.070_bb0050) 2017; 114
Francesco (10.1016/j.powtec.2019.01.070_bb0090) 2017; 179
Luo (10.1016/j.powtec.2019.01.070_bb0070) 1992; 13
Chen (10.1016/j.powtec.2019.01.070_bb0155) 2011
Zhu (10.1016/j.powtec.2019.01.070_bb0055) 1999; 30
Huang (10.1016/j.powtec.2019.01.070_bb0095) 2018; 90
Mazyana (10.1016/j.powtec.2019.01.070_bb0105) 2018; 191
Lidén (10.1016/j.powtec.2019.01.070_bb0015) 1997; 28
Russell (10.1016/j.powtec.2019.01.070_bb0165) 1995; 4
Elsayed (10.1016/j.powtec.2019.01.070_bb0115) 2013; 37
Yetilmezsoy (10.1016/j.powtec.2019.01.070_bb0130) 2006; 23
Jin (10.1016/j.powtec.2019.01.070_bb0080) 1990; 5
Zhou (10.1016/j.powtec.2019.01.070_bb0110) 2018; 193
Yajima (10.1016/j.powtec.2019.01.070_bb0160) 2003; 46
Lim (10.1016/j.powtec.2019.01.070_bb0065) 2004; 35
Zhao (10.1016/j.powtec.2019.01.070_bb0120) 2009; 64
Dietz (10.1016/j.powtec.2019.01.070_bb0040) 1981; 27
Misiulia (10.1016/j.powtec.2019.01.070_bb0100) 2017; 305
Qiu (10.1016/j.powtec.2019.01.070_bb0020) 2012; 217
Elsayed (10.1016/j.powtec.2019.01.070_bb0125) 2012; 217
Sun (10.1016/j.powtec.2019.01.070_bb0085) 2018; 325
Sun (10.1016/j.powtec.2019.01.070_bb0025) 2005; 3
Barth (10.1016/j.powtec.2019.01.070_bb0035) 1956; 8
Sun (10.1016/j.powtec.2019.01.070_bb0140) 2002; 32
Wang (10.1016/j.powtec.2019.01.070_bb0145) 2016; 1
Zhong (10.1016/j.powtec.2019.01.070_bb0170) 2014; 41
References_xml – volume: 1
  start-page: 20
  year: 2003
  end-page: 26
  ident: bb0060
  article-title: Analysis on cyclone collection efficiencies at high temperatures
  publication-title: China Particuology
– volume: 27
  start-page: 989
  year: 2012
  end-page: 995
  ident: bb0150
  article-title: Particle swarm optimization based support vector regression for blind image restoration
  publication-title: J. Comput. Sci. Technol.
– volume: 27
  start-page: 888
  year: 1981
  end-page: 892,
  ident: bb0040
  article-title: Collection efficiency of cyclone separators
  publication-title: AICHE J.
– volume: 41
  start-page: 153
  year: 2014
  end-page: 162
  ident: bb0170
  article-title: Forecasting satellite attitude volatility using support vector regression with particle swarm optimization
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 325
  start-page: 347
  year: 2018
  end-page: 360
  ident: bb0085
  article-title: Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics
  publication-title: Powder Technol.
– volume: 179
  start-page: 393
  year: 2017
  end-page: 402
  ident: bb0090
  article-title: Separation efficiency and heat exchange optimization in a cyclone
  publication-title: Sep. Purif. Technol.
– year: 2011
  ident: bb0155
  article-title: Support Vector Machine Method and Application Course [M]. Beijing
– volume: 68
  start-page: 196
  year: 1972
  end-page: 206,
  ident: bb0045
  article-title: The collection efficiency of cyclone type particle collectors: a new theoretical approach
  publication-title: AIChE Symp. Ser.
– volume: 35
  start-page: 743
  year: 2004
  end-page: 754
  ident: bb0065
  article-title: Characteristics of the collection efficiency for a cyclone with different vortex finder shapes
  publication-title: J. Aerosol Sci.
– volume: 64
  start-page: 4131
  year: 2009
  end-page: 4136
  ident: bb0120
  article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach
  publication-title: Chem. Eng. Sci.
– volume: 37
  start-page: 5680
  year: 2013
  end-page: 5704
  ident: bb0115
  article-title: CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms
  publication-title: Appl. Math. Model.
– volume: 44
  start-page: 1105
  year: 2010
  end-page: 1112
  ident: bb0005
  article-title: Development of a dimensionless logistic model for predicting cyclone separation efficiency
  publication-title: Aerosol Sci. Technol.
– volume: 28
  start-page: 853
  year: 1997
  end-page: 874
  ident: bb0015
  article-title: Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design
  publication-title: J. Aerosol Sci.
– volume: 90
  start-page: 61
  year: 2018
  end-page: 67
  ident: bb0095
  article-title: Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator
  publication-title: J. Taiwan Inst. Chem. E.
– volume: 44
  start-page: 105
  year: 2012
  end-page: 118
  ident: bb0135
  article-title: Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms
  publication-title: Eng. Optim.
– volume: 85
  start-page: 171
  year: 2012
  end-page: 177
  ident: bb0010
  article-title: Prediction of gas-particle separation efficiency for cyclones: a time-of-flight model
  publication-title: Sep. Purif. Technol.
– volume: 32
  start-page: 4
  year: 2002
  end-page: 7
  ident: bb0140
  article-title: The proper design and application of PV cyclone
  publication-title: Pet. Refin. Eng.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0145
  article-title: Dynamic heat supply prediction using support vector regression optimized by particle swarm optimization algorithm
  publication-title: Math. Probl. Eng.
– volume: 30
  start-page: 1303
  year: 1999
  end-page: 1315
  ident: bb0055
  article-title: Experimental study on small cyclones operating at high flowrates
  publication-title: J. Aerosol Sci.
– volume: 8
  start-page: 1
  year: 1956
  end-page: 9,
  ident: bb0035
  article-title: Design and layout of the cyclone separator on the basis of new investigations
  publication-title: Brennstoff-Warme-Kraft
– volume: 114
  start-page: 300
  year: 2017
  end-page: 327
  ident: bb0050
  article-title: Efficiency evaluation of vortex tube cyclone separator
  publication-title: Appl. Therm. Eng.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bb0165
  article-title: Particle swarm optimization, in: IEEE proceedings
  publication-title: Neural Netw.
– volume: 286
  start-page: 124
  year: 2015
  end-page: 131
  ident: bb0030
  article-title: Prediction of the maximum-efficiency inlet velocity in cyclones
  publication-title: Powder Technol.
– volume: 191
  start-page: 276
  year: 2018
  end-page: 285
  ident: bb0105
  article-title: Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis
  publication-title: Sep. Purif. Technol.
– volume: 2
  start-page: 93
  year: 1995
  end-page: 99
  ident: bb0075
  article-title: Computation method of PV™ cyclone performance
  publication-title: Acta Pet. Sin.
– volume: 5
  start-page: 46
  year: 1990
  end-page: 55
  ident: bb0080
  article-title: Experimental studies on scale-up of cyclone separator
  publication-title: J. China Univ. Pet. Ed. Nat. Sci.
– volume: 46
  start-page: 395
  year: 2003
  end-page: 408
  ident: bb0160
  article-title: Extracting feature subspace for kernel based linear programming support vector machines
  publication-title: J. Oper. Res. Soc. Jan.
– volume: 217
  start-page: 84
  year: 2012
  end-page: 99
  ident: bb0125
  article-title: Modeling and pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms
  publication-title: Powder Technol.
– volume: 305
  start-page: 48
  year: 2017
  end-page: 55
  ident: bb0100
  article-title: Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet
  publication-title: Powder Technol.
– volume: 23
  start-page: 680
  year: 2006
  end-page: 690
  ident: bb0130
  article-title: Determination of optimum body diameter of air cyclones using a new empirical model and a neural network approach
  publication-title: Environ. Eng. Sci.
– volume: 217
  start-page: 231
  year: 2012
  end-page: 237
  ident: bb0020
  article-title: Numerical study of the flow field and separation efficiency of a divergent cyclone
  publication-title: Powder Technol.
– volume: 13
  start-page: 282
  year: 1992
  end-page: 285
  ident: bb0070
  article-title: Research on the effect of the particale concentration in gas upon the performance of cyclone separators
  publication-title: J. Eng. Thermophys-rus.
– volume: 193
  start-page: 175
  year: 2018
  end-page: 183
  ident: bb0110
  article-title: Experimental and CFD study on the effects of surface roughness on cyclone performance
  publication-title: Sep. Purif. Technol.
– volume: 3
  start-page: 43
  year: 2005
  end-page: 46
  ident: bb0025
  article-title: Optimization and applications of reverse-flow cyclones
  publication-title: China Particuology
– volume: 46
  start-page: 395
  issue: 4
  year: 2003
  ident: 10.1016/j.powtec.2019.01.070_bb0160
  article-title: Extracting feature subspace for kernel based linear programming support vector machines
  publication-title: J. Oper. Res. Soc. Jan.
– volume: 305
  start-page: 48
  year: 2017
  ident: 10.1016/j.powtec.2019.01.070_bb0100
  article-title: Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.09.050
– volume: 13
  start-page: 282
  issue: 3
  year: 1992
  ident: 10.1016/j.powtec.2019.01.070_bb0070
  article-title: Research on the effect of the particale concentration in gas upon the performance of cyclone separators
  publication-title: J. Eng. Thermophys-rus.
– volume: 191
  start-page: 276
  year: 2018
  ident: 10.1016/j.powtec.2019.01.070_bb0105
  article-title: Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.09.040
– volume: 286
  start-page: 124
  year: 2015
  ident: 10.1016/j.powtec.2019.01.070_bb0030
  article-title: Prediction of the maximum-efficiency inlet velocity in cyclones
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.07.024
– volume: 35
  start-page: 743
  year: 2004
  ident: 10.1016/j.powtec.2019.01.070_bb0065
  article-title: Characteristics of the collection efficiency for a cyclone with different vortex finder shapes
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2003.12.002
– volume: 41
  start-page: 153
  issue: 3
  year: 2014
  ident: 10.1016/j.powtec.2019.01.070_bb0170
  article-title: Forecasting satellite attitude volatility using support vector regression with particle swarm optimization
  publication-title: IAENG Int. J. Comput. Sci.
– volume: 37
  start-page: 5680
  issue: 8
  year: 2013
  ident: 10.1016/j.powtec.2019.01.070_bb0115
  article-title: CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.11.010
– year: 2011
  ident: 10.1016/j.powtec.2019.01.070_bb0155
– volume: 28
  start-page: 853
  issue: 5
  year: 1997
  ident: 10.1016/j.powtec.2019.01.070_bb0015
  article-title: Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(96)00479-X
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.powtec.2019.01.070_bb0145
  article-title: Dynamic heat supply prediction using support vector regression optimized by particle swarm optimization algorithm
  publication-title: Math. Probl. Eng.
– volume: 44
  start-page: 1105
  issue: 12
  year: 2010
  ident: 10.1016/j.powtec.2019.01.070_bb0005
  article-title: Development of a dimensionless logistic model for predicting cyclone separation efficiency
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2010.512027
– volume: 27
  start-page: 888
  year: 1981
  ident: 10.1016/j.powtec.2019.01.070_bb0040
  article-title: Collection efficiency of cyclone separators
  publication-title: AICHE J.
  doi: 10.1002/aic.690270603
– volume: 114
  start-page: 300
  year: 2017
  ident: 10.1016/j.powtec.2019.01.070_bb0050
  article-title: Efficiency evaluation of vortex tube cyclone separator
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.110
– volume: 325
  start-page: 347
  year: 2018
  ident: 10.1016/j.powtec.2019.01.070_bb0085
  article-title: Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.11.012
– volume: 90
  start-page: 61
  year: 2018
  ident: 10.1016/j.powtec.2019.01.070_bb0095
  article-title: Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator
  publication-title: J. Taiwan Inst. Chem. E.
  doi: 10.1016/j.jtice.2017.12.016
– volume: 44
  start-page: 105
  issue: 1
  year: 2012
  ident: 10.1016/j.powtec.2019.01.070_bb0135
  article-title: Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.564619
– volume: 193
  start-page: 175
  year: 2018
  ident: 10.1016/j.powtec.2019.01.070_bb0110
  article-title: Experimental and CFD study on the effects of surface roughness on cyclone performance
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.11.017
– volume: 64
  start-page: 4131
  year: 2009
  ident: 10.1016/j.powtec.2019.01.070_bb0120
  article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.06.017
– volume: 1
  start-page: 20
  year: 2003
  ident: 10.1016/j.powtec.2019.01.070_bb0060
  article-title: Analysis on cyclone collection efficiencies at high temperatures
  publication-title: China Particuology
  doi: 10.1016/S1672-2515(07)60095-5
– volume: 217
  start-page: 84
  issue: 2
  year: 2012
  ident: 10.1016/j.powtec.2019.01.070_bb0125
  article-title: Modeling and pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.10.015
– volume: 8
  start-page: 1
  year: 1956
  ident: 10.1016/j.powtec.2019.01.070_bb0035
  article-title: Design and layout of the cyclone separator on the basis of new investigations
  publication-title: Brennstoff-Warme-Kraft
– volume: 27
  start-page: 989
  issue: 5
  year: 2012
  ident: 10.1016/j.powtec.2019.01.070_bb0150
  article-title: Particle swarm optimization based support vector regression for blind image restoration
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-012-1279-z
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.powtec.2019.01.070_bb0165
  article-title: Particle swarm optimization, in: IEEE proceedings
  publication-title: Neural Netw.
– volume: 217
  start-page: 231
  year: 2012
  ident: 10.1016/j.powtec.2019.01.070_bb0020
  article-title: Numerical study of the flow field and separation efficiency of a divergent cyclone
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.10.031
– volume: 23
  start-page: 680
  issue: 4
  year: 2006
  ident: 10.1016/j.powtec.2019.01.070_bb0130
  article-title: Determination of optimum body diameter of air cyclones using a new empirical model and a neural network approach
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2006.23.680
– volume: 68
  start-page: 196
  year: 1972
  ident: 10.1016/j.powtec.2019.01.070_bb0045
  article-title: The collection efficiency of cyclone type particle collectors: a new theoretical approach
  publication-title: AIChE Symp. Ser.
– volume: 30
  start-page: 1303
  issue: 10
  year: 1999
  ident: 10.1016/j.powtec.2019.01.070_bb0055
  article-title: Experimental study on small cyclones operating at high flowrates
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(99)00024-5
– volume: 179
  start-page: 393
  year: 2017
  ident: 10.1016/j.powtec.2019.01.070_bb0090
  article-title: Separation efficiency and heat exchange optimization in a cyclone
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.02.024
– volume: 2
  start-page: 93
  year: 1995
  ident: 10.1016/j.powtec.2019.01.070_bb0075
  article-title: Computation method of PV™ cyclone performance
  publication-title: Acta Pet. Sin.
– volume: 5
  start-page: 46
  year: 1990
  ident: 10.1016/j.powtec.2019.01.070_bb0080
  article-title: Experimental studies on scale-up of cyclone separator
  publication-title: J. China Univ. Pet. Ed. Nat. Sci.
– volume: 32
  start-page: 4
  issue: 9
  year: 2002
  ident: 10.1016/j.powtec.2019.01.070_bb0140
  article-title: The proper design and application of PV cyclone
  publication-title: Pet. Refin. Eng.
– volume: 85
  start-page: 171
  year: 2012
  ident: 10.1016/j.powtec.2019.01.070_bb0010
  article-title: Prediction of gas-particle separation efficiency for cyclones: a time-of-flight model
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.10.006
– volume: 3
  start-page: 43
  year: 2005
  ident: 10.1016/j.powtec.2019.01.070_bb0025
  article-title: Optimization and applications of reverse-flow cyclones
  publication-title: China Particuology
  doi: 10.1016/S1672-2515(07)60162-6
SSID ssj0006310
Score 2.4253728
Snippet Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms Algorithms
Correlation coefficient
Correlation coefficients
Cyclone separator
Cyclone separators
Efficiency
Experimental data
Grade efficiency
Kernel functions
Mathematical models
Model accuracy
Model testing
Parameters
Particle swarm optimization
powders
prediction
Predictions
Pretreatment
Principal component analysis
Principal components analysis
Random sampling
Regression analysis
sampling
Separators
Statistical sampling
Support vector machines
Support vector regression algorithm
Test sets
Title An experimental modeling of cyclone separator efficiency with PCA-PSO-SVR algorithm
URI https://dx.doi.org/10.1016/j.powtec.2019.01.070
https://www.proquest.com/docview/2220757217
https://www.proquest.com/docview/2237525370
Volume 347
WOSCitedRecordID wos000464299900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-328X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006310
  issn: 0032-5910
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeEJ9aYaAgIV4mo3zYcfxYTZ3GVHUV7aA8WY7rTJ1KEvrByn_P2XHSsAptPPASVY7Tur6f786X8-8Qeq9iHqUZpzhMUo1JTCTmoY4xSxklKSEszWzVkj4bDJLJhA9dStDSlhNgeZ5sNrz8r6KGNhC2OTr7D-JuvhQa4DMIHa4gdrjeSfDdG7T9ttaNy21Wv9S8ALdyqS3lt2H7thQS9vylDckOj7t4ODrHoy-fj-T8slhA4_e2Bzssrg39xGonJN-Enr_q2U4bbHnnswaH31zrGQxrs97i81TawO1kJotL6Uyqi0gEvJXI4rRsBBtc7tJVnZaNCDsqDTMxDkLS0phBdYbUGV93b0evVyGGq49lcQ3_z2Tkccu2WhUd-ZNGe3AuTi76fTHuTcYfyh_YVBgzb-JduZX7aD9klIMG3O9-6k3OGrsdR4Ej8axGXx-0tNmAuz_8N0fmhkm3fsr4CXrsNhhetwLGU3RP58_Qoxbt5HM06uZeGyJeDRGvyDwHEa-BiLeFiGcg4rUg4jUQeYEuTnrj41PsimtgRXyywlwxKg0dX0xTxSLDLDeVsQR_kaWSa05DGUypJFIqkkSJYr5mmoeZohksaJ5FL9FeDsM5QF4mE5LoQEqwlURNKax9FUvp-1MiAyKjDorqmRLKMc-bAihzUacYXolqfoWZX-EHAua3g3DzVFkxr9zSn9VCEM57rLxCASC65cnDWmbCLeSlAL8ZvGkGO_YOetfcBt1rXqjJXBdr0ydiNKQR81_doc9r9HC7Wg7R3mqx1m_QA_VzNVsu3jo0_gahjqb9
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+modeling+of+cyclone+separator+efficiency+with+PCA-PSO-SVR+algorithm&rft.jtitle=Powder+technology&rft.au=Zhang%2C+Wei&rft.au=Zhang%2C+Linlin&rft.au=Yang%2C+Jingxuan&rft.au=Hao%2C+Xiaogang&rft.date=2019-04-01&rft.issn=0032-5910&rft.volume=347+p.114-124&rft.spage=114&rft.epage=124&rft_id=info:doi/10.1016%2Fj.powtec.2019.01.070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon