An experimental modeling of cyclone separator efficiency with PCA-PSO-SVR algorithm
Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to pre...
Saved in:
| Published in: | Powder technology Vol. 347; pp. 114 - 124 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Elsevier B.V
01.04.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0032-5910, 1873-328X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to predict the grade efficiency of cyclone separators with the operating parameters based on 217 sets of experimental data provided in the literature. The experimental data are preprocessed using the random sampling technique together with the normalization method and principal component analysis (PCA) at first; subsequently, the particle swarm optimization (PSO) algorithm is incorporated to optimize the parameters for the support vector regression (SVR), including the penalty factor C, kernel function parameter g, and insensitive loss ε. Finally, the SVR model with the optimized parameters is trained with 80% pretreatment data, and the generalization ability of the model is tested with the remaining 20% data. The mean squared error of the test sets is 6.948 × 10−4 with a correlation coefficient of 0.982. The comparison results show that the PCA-PSO-SVR model has higher accuracy, better generalization ability, and stronger robustness than the existing models for predicting the cyclone separator efficiency in the case with only a few experimental data.
[Display omitted]
•The geometrical and operating parameters are both considered in modeling.•PCA is used to reduce the eight factors to five factors with minimal information loss.•SVR is used to create models with limited experimental data.•PSO is applied to improve the modeling accuracy. |
|---|---|
| AbstractList | Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to predict the grade efficiency of cyclone separators with the operating parameters based on 217 sets of experimental data provided in the literature. The experimental data are preprocessed using the random sampling technique together with the normalization method and principal component analysis (PCA) at first; subsequently, the particle swarm optimization (PSO) algorithm is incorporated to optimize the parameters for the support vector regression (SVR), including the penalty factor C, kernel function parameter g, and insensitive loss ε. Finally, the SVR model with the optimized parameters is trained with 80% pretreatment data, and the generalization ability of the model is tested with the remaining 20% data. The mean squared error of the test sets is 6.948 × 10−4 with a correlation coefficient of 0.982. The comparison results show that the PCA-PSO-SVR model has higher accuracy, better generalization ability, and stronger robustness than the existing models for predicting the cyclone separator efficiency in the case with only a few experimental data. Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited experimental data is the most effective way to design a high-efficiency cyclone separator. Herein, a hybrid PCA-PSO-SVR model is proposed to predict the grade efficiency of cyclone separators with the operating parameters based on 217 sets of experimental data provided in the literature. The experimental data are preprocessed using the random sampling technique together with the normalization method and principal component analysis (PCA) at first; subsequently, the particle swarm optimization (PSO) algorithm is incorporated to optimize the parameters for the support vector regression (SVR), including the penalty factor C, kernel function parameter g, and insensitive loss ε. Finally, the SVR model with the optimized parameters is trained with 80% pretreatment data, and the generalization ability of the model is tested with the remaining 20% data. The mean squared error of the test sets is 6.948 × 10−4 with a correlation coefficient of 0.982. The comparison results show that the PCA-PSO-SVR model has higher accuracy, better generalization ability, and stronger robustness than the existing models for predicting the cyclone separator efficiency in the case with only a few experimental data. [Display omitted] •The geometrical and operating parameters are both considered in modeling.•PCA is used to reduce the eight factors to five factors with minimal information loss.•SVR is used to create models with limited experimental data.•PSO is applied to improve the modeling accuracy. |
| Author | Zhang, Linlin Yang, Jingxuan Guan, Guoqing Hao, Xiaogang Gao, Zhihua Zhang, Wei |
| Author_xml | – sequence: 1 givenname: Wei surname: Zhang fullname: Zhang, Wei email: zhangwei01@tyut.edu.cn organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 2 givenname: Linlin surname: Zhang fullname: Zhang, Linlin organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 3 givenname: Jingxuan orcidid: 0000-0002-6006-8352 surname: Yang fullname: Yang, Jingxuan organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 4 givenname: Xiaogang surname: Hao fullname: Hao, Xiaogang organization: Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 5 givenname: Guoqing orcidid: 0000-0002-5875-3596 surname: Guan fullname: Guan, Guoqing email: guan@hirosaki-u.ac.jp organization: Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan – sequence: 6 givenname: Zhihua surname: Gao fullname: Gao, Zhihua organization: Key Laboratory Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China |
| BookMark | eNqFkMFq3DAQhkVJoJu0b9CDoZde7I4ky7J7KCxL2hQCCdmk9CYm8jjV4pVcSdt03z5Otqcc2tPA8P3_DN8JO_LBE2PvOFQcePNxU03hIZOtBPCuAl6BhldswVstSynaH0dsASBFqToOr9lJShsAaCSHBVsvfUF_JopuSz7jWGxDT6Pz90UYCru343ypSDRhxBxiQcPgrCNv98WDyz-Lq9WyvFpfluvv1wWO9yHOy-0bdjzgmOjt33nKbr-c3azOy4vLr99Wy4vS1lDnsrNaoVK8bdSd1VI0wHtssBVC32FHnRLIe4U1oq1b2VoNpKkTg1VDU2M3yFP24dA7xfBrRymbrUuWxhE9hV0yQkithJIaZvT9C3QTdtHP382UAK204Hqm6gNlY0gp0mCm2QvGveFgnkybjTmYNk-mDXADz-WfXsSsy5hd8DmiG_8X_nwI02zqt6No0rNg6l0km00f3L8LHgF8hZ2t |
| CitedBy_id | crossref_primary_10_1177_0954407020918802 crossref_primary_10_1016_j_dche_2022_100031 crossref_primary_10_1016_j_energy_2024_132477 crossref_primary_10_1016_j_measurement_2023_113655 crossref_primary_10_1016_j_cja_2019_07_020 crossref_primary_10_3390_en15113871 crossref_primary_10_1016_j_fuel_2022_124670 crossref_primary_10_19206_CE_207838 crossref_primary_10_3233_JIFS_211435 crossref_primary_10_1016_j_compstruct_2021_114282 crossref_primary_10_3390_ma14237166 crossref_primary_10_1016_j_buildenv_2022_108876 crossref_primary_10_1016_j_mtcomm_2024_110704 crossref_primary_10_1016_j_chemolab_2019_103870 crossref_primary_10_3390_en14082285 crossref_primary_10_1016_j_apt_2025_105049 crossref_primary_10_1002_cben_202300052 crossref_primary_10_1016_j_psep_2023_06_029 crossref_primary_10_1016_j_jhydrol_2020_125563 crossref_primary_10_1016_j_measurement_2023_113106 crossref_primary_10_1016_j_chemosphere_2020_126474 crossref_primary_10_1016_j_fuel_2022_126980 crossref_primary_10_3390_buildings13061395 crossref_primary_10_1016_j_dche_2021_100002 crossref_primary_10_1007_s13369_024_08990_y crossref_primary_10_3390_pr8111332 crossref_primary_10_1016_j_energy_2022_124552 crossref_primary_10_1016_j_jngse_2020_103716 crossref_primary_10_1016_j_intermet_2025_108914 crossref_primary_10_1016_j_ibmed_2025_100276 crossref_primary_10_1007_s41939_025_00913_0 crossref_primary_10_3390_en17112462 crossref_primary_10_1016_j_powtec_2020_06_078 |
| Cites_doi | 10.1016/j.powtec.2016.09.050 10.1016/j.seppur.2017.09.040 10.1016/j.powtec.2015.07.024 10.1016/j.jaerosci.2003.12.002 10.1016/j.apm.2012.11.010 10.1016/S0021-8502(96)00479-X 10.1080/02786826.2010.512027 10.1002/aic.690270603 10.1016/j.applthermaleng.2016.11.110 10.1016/j.powtec.2017.11.012 10.1016/j.jtice.2017.12.016 10.1080/0305215X.2011.564619 10.1016/j.seppur.2017.11.017 10.1016/j.ces.2009.06.017 10.1016/S1672-2515(07)60095-5 10.1016/j.powtec.2011.10.015 10.1007/s11390-012-1279-z 10.1016/j.powtec.2011.10.031 10.1089/ees.2006.23.680 10.1016/S0021-8502(99)00024-5 10.1016/j.seppur.2017.02.024 10.1016/j.seppur.2011.10.006 10.1016/S1672-2515(07)60162-6 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Apr 1, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Apr 1, 2019 |
| DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K JG9 SOI 7S9 L.6 |
| DOI | 10.1016/j.powtec.2019.01.070 |
| DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Materials Research Database AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-328X |
| EndPage | 124 |
| ExternalDocumentID | 10_1016_j_powtec_2019_01_070 S0032591019300725 |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K ~02 ~G- 29O 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW T9H WUQ XPP ZY4 ~HD 7SR 7ST 8BQ 8FD AGCQF C1K JG9 SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-9c75a551865bc732601da6a8227ba9e952a1d5a4aac4838c70e7e92fc5f64a9f3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464299900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0032-5910 |
| IngestDate | Thu Oct 02 08:22:56 EDT 2025 Wed Aug 13 05:26:39 EDT 2025 Sat Nov 29 02:39:07 EST 2025 Tue Nov 18 21:17:20 EST 2025 Fri Feb 23 02:29:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Grade efficiency Cyclone separator Particle swarm optimization Support vector regression algorithm Principal component analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c404t-9c75a551865bc732601da6a8227ba9e952a1d5a4aac4838c70e7e92fc5f64a9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6006-8352 0000-0002-5875-3596 |
| PQID | 2220757217 |
| PQPubID | 2045415 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2237525370 proquest_journals_2220757217 crossref_primary_10_1016_j_powtec_2019_01_070 crossref_citationtrail_10_1016_j_powtec_2019_01_070 elsevier_sciencedirect_doi_10_1016_j_powtec_2019_01_070 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Powder technology |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Dietz (bb0040) 1981; 27 Francesco, Francesco, Carlo (bb0090) 2017; 179 Jin, Shi (bb0080) 1990; 5 Leith, Licht (bb0045) 1972; 68 Huang, Keiya, Tomonori, Kunihiro, Hsiu-Po (bb0095) 2018; 90 Elsayed, Lacor (bb0115) 2013; 37 Zhong, Pi (bb0170) 2014; 41 Mazyana, Ahmadib, Brinkerhoffa, Ahmedc, Hoorfar (bb0105) 2018; 191 Wang, Tian (bb0145) 2016; 1 Sun, Chen, Shi (bb0025) 2005; 3 Sun, Shi (bb0140) 2002; 32 Zhu, Lee (bb0055) 1999; 30 Chen, Shi (bb0060) 2003; 1 Rafiee, Sadeghiazad (bb0050) 2017; 114 Lim, Kim, Lee (bb0065) 2004; 35 Sun, Joon (bb0085) 2018; 325 Zhao (bb0005) 2010; 44 Yang, Sun, Zhan (bb0030) 2015; 286 Khalkhali, Safikhani (bb0135) 2012; 44 Dash, Sa, Majhi (bb0150) 2012; 27 Lidén, Gudmundsson (bb0015) 1997; 28 Qiu, Deng, Chang (bb0020) 2012; 217 Misiulia, Andersson, Lundström (bb0100) 2017; 305 Jin, Chen (bb0075) 1995; 2 Yetilmezsoy (bb0130) 2006; 23 Zhao (bb0010) 2012; 85 Luo, Chen (bb0070) 1992; 13 Russell, James (bb0165) 1995; 4 Zhao (bb0120) 2009; 64 Yajima, Ohi, Mori (bb0160) 2003; 46 Zhou, Sun, Zhang, Ci, Wei (bb0110) 2018; 193 Barth (bb0035) 1956; 8 Chen, Xiong (bb0155) 2011 Elsayed, Lacor (bb0125) 2012; 217 Zhao (10.1016/j.powtec.2019.01.070_bb0010) 2012; 85 Zhao (10.1016/j.powtec.2019.01.070_bb0005) 2010; 44 Dash (10.1016/j.powtec.2019.01.070_bb0150) 2012; 27 Leith (10.1016/j.powtec.2019.01.070_bb0045) 1972; 68 Chen (10.1016/j.powtec.2019.01.070_bb0060) 2003; 1 Jin (10.1016/j.powtec.2019.01.070_bb0075) 1995; 2 Yang (10.1016/j.powtec.2019.01.070_bb0030) 2015; 286 Khalkhali (10.1016/j.powtec.2019.01.070_bb0135) 2012; 44 Rafiee (10.1016/j.powtec.2019.01.070_bb0050) 2017; 114 Francesco (10.1016/j.powtec.2019.01.070_bb0090) 2017; 179 Luo (10.1016/j.powtec.2019.01.070_bb0070) 1992; 13 Chen (10.1016/j.powtec.2019.01.070_bb0155) 2011 Zhu (10.1016/j.powtec.2019.01.070_bb0055) 1999; 30 Huang (10.1016/j.powtec.2019.01.070_bb0095) 2018; 90 Mazyana (10.1016/j.powtec.2019.01.070_bb0105) 2018; 191 Lidén (10.1016/j.powtec.2019.01.070_bb0015) 1997; 28 Russell (10.1016/j.powtec.2019.01.070_bb0165) 1995; 4 Elsayed (10.1016/j.powtec.2019.01.070_bb0115) 2013; 37 Yetilmezsoy (10.1016/j.powtec.2019.01.070_bb0130) 2006; 23 Jin (10.1016/j.powtec.2019.01.070_bb0080) 1990; 5 Zhou (10.1016/j.powtec.2019.01.070_bb0110) 2018; 193 Yajima (10.1016/j.powtec.2019.01.070_bb0160) 2003; 46 Lim (10.1016/j.powtec.2019.01.070_bb0065) 2004; 35 Zhao (10.1016/j.powtec.2019.01.070_bb0120) 2009; 64 Dietz (10.1016/j.powtec.2019.01.070_bb0040) 1981; 27 Misiulia (10.1016/j.powtec.2019.01.070_bb0100) 2017; 305 Qiu (10.1016/j.powtec.2019.01.070_bb0020) 2012; 217 Elsayed (10.1016/j.powtec.2019.01.070_bb0125) 2012; 217 Sun (10.1016/j.powtec.2019.01.070_bb0085) 2018; 325 Sun (10.1016/j.powtec.2019.01.070_bb0025) 2005; 3 Barth (10.1016/j.powtec.2019.01.070_bb0035) 1956; 8 Sun (10.1016/j.powtec.2019.01.070_bb0140) 2002; 32 Wang (10.1016/j.powtec.2019.01.070_bb0145) 2016; 1 Zhong (10.1016/j.powtec.2019.01.070_bb0170) 2014; 41 |
| References_xml | – volume: 1 start-page: 20 year: 2003 end-page: 26 ident: bb0060 article-title: Analysis on cyclone collection efficiencies at high temperatures publication-title: China Particuology – volume: 27 start-page: 989 year: 2012 end-page: 995 ident: bb0150 article-title: Particle swarm optimization based support vector regression for blind image restoration publication-title: J. Comput. Sci. Technol. – volume: 27 start-page: 888 year: 1981 end-page: 892, ident: bb0040 article-title: Collection efficiency of cyclone separators publication-title: AICHE J. – volume: 41 start-page: 153 year: 2014 end-page: 162 ident: bb0170 article-title: Forecasting satellite attitude volatility using support vector regression with particle swarm optimization publication-title: IAENG Int. J. Comput. Sci. – volume: 325 start-page: 347 year: 2018 end-page: 360 ident: bb0085 article-title: Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics publication-title: Powder Technol. – volume: 179 start-page: 393 year: 2017 end-page: 402 ident: bb0090 article-title: Separation efficiency and heat exchange optimization in a cyclone publication-title: Sep. Purif. Technol. – year: 2011 ident: bb0155 article-title: Support Vector Machine Method and Application Course [M]. Beijing – volume: 68 start-page: 196 year: 1972 end-page: 206, ident: bb0045 article-title: The collection efficiency of cyclone type particle collectors: a new theoretical approach publication-title: AIChE Symp. Ser. – volume: 35 start-page: 743 year: 2004 end-page: 754 ident: bb0065 article-title: Characteristics of the collection efficiency for a cyclone with different vortex finder shapes publication-title: J. Aerosol Sci. – volume: 64 start-page: 4131 year: 2009 end-page: 4136 ident: bb0120 article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach publication-title: Chem. Eng. Sci. – volume: 37 start-page: 5680 year: 2013 end-page: 5704 ident: bb0115 article-title: CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms publication-title: Appl. Math. Model. – volume: 44 start-page: 1105 year: 2010 end-page: 1112 ident: bb0005 article-title: Development of a dimensionless logistic model for predicting cyclone separation efficiency publication-title: Aerosol Sci. Technol. – volume: 28 start-page: 853 year: 1997 end-page: 874 ident: bb0015 article-title: Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design publication-title: J. Aerosol Sci. – volume: 90 start-page: 61 year: 2018 end-page: 67 ident: bb0095 article-title: Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator publication-title: J. Taiwan Inst. Chem. E. – volume: 44 start-page: 105 year: 2012 end-page: 118 ident: bb0135 article-title: Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms publication-title: Eng. Optim. – volume: 85 start-page: 171 year: 2012 end-page: 177 ident: bb0010 article-title: Prediction of gas-particle separation efficiency for cyclones: a time-of-flight model publication-title: Sep. Purif. Technol. – volume: 32 start-page: 4 year: 2002 end-page: 7 ident: bb0140 article-title: The proper design and application of PV cyclone publication-title: Pet. Refin. Eng. – volume: 1 start-page: 1 year: 2016 end-page: 10 ident: bb0145 article-title: Dynamic heat supply prediction using support vector regression optimized by particle swarm optimization algorithm publication-title: Math. Probl. Eng. – volume: 30 start-page: 1303 year: 1999 end-page: 1315 ident: bb0055 article-title: Experimental study on small cyclones operating at high flowrates publication-title: J. Aerosol Sci. – volume: 8 start-page: 1 year: 1956 end-page: 9, ident: bb0035 article-title: Design and layout of the cyclone separator on the basis of new investigations publication-title: Brennstoff-Warme-Kraft – volume: 114 start-page: 300 year: 2017 end-page: 327 ident: bb0050 article-title: Efficiency evaluation of vortex tube cyclone separator publication-title: Appl. Therm. Eng. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bb0165 article-title: Particle swarm optimization, in: IEEE proceedings publication-title: Neural Netw. – volume: 286 start-page: 124 year: 2015 end-page: 131 ident: bb0030 article-title: Prediction of the maximum-efficiency inlet velocity in cyclones publication-title: Powder Technol. – volume: 191 start-page: 276 year: 2018 end-page: 285 ident: bb0105 article-title: Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis publication-title: Sep. Purif. Technol. – volume: 2 start-page: 93 year: 1995 end-page: 99 ident: bb0075 article-title: Computation method of PV™ cyclone performance publication-title: Acta Pet. Sin. – volume: 5 start-page: 46 year: 1990 end-page: 55 ident: bb0080 article-title: Experimental studies on scale-up of cyclone separator publication-title: J. China Univ. Pet. Ed. Nat. Sci. – volume: 46 start-page: 395 year: 2003 end-page: 408 ident: bb0160 article-title: Extracting feature subspace for kernel based linear programming support vector machines publication-title: J. Oper. Res. Soc. Jan. – volume: 217 start-page: 84 year: 2012 end-page: 99 ident: bb0125 article-title: Modeling and pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms publication-title: Powder Technol. – volume: 305 start-page: 48 year: 2017 end-page: 55 ident: bb0100 article-title: Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet publication-title: Powder Technol. – volume: 23 start-page: 680 year: 2006 end-page: 690 ident: bb0130 article-title: Determination of optimum body diameter of air cyclones using a new empirical model and a neural network approach publication-title: Environ. Eng. Sci. – volume: 217 start-page: 231 year: 2012 end-page: 237 ident: bb0020 article-title: Numerical study of the flow field and separation efficiency of a divergent cyclone publication-title: Powder Technol. – volume: 13 start-page: 282 year: 1992 end-page: 285 ident: bb0070 article-title: Research on the effect of the particale concentration in gas upon the performance of cyclone separators publication-title: J. Eng. Thermophys-rus. – volume: 193 start-page: 175 year: 2018 end-page: 183 ident: bb0110 article-title: Experimental and CFD study on the effects of surface roughness on cyclone performance publication-title: Sep. Purif. Technol. – volume: 3 start-page: 43 year: 2005 end-page: 46 ident: bb0025 article-title: Optimization and applications of reverse-flow cyclones publication-title: China Particuology – volume: 46 start-page: 395 issue: 4 year: 2003 ident: 10.1016/j.powtec.2019.01.070_bb0160 article-title: Extracting feature subspace for kernel based linear programming support vector machines publication-title: J. Oper. Res. Soc. Jan. – volume: 305 start-page: 48 year: 2017 ident: 10.1016/j.powtec.2019.01.070_bb0100 article-title: Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.09.050 – volume: 13 start-page: 282 issue: 3 year: 1992 ident: 10.1016/j.powtec.2019.01.070_bb0070 article-title: Research on the effect of the particale concentration in gas upon the performance of cyclone separators publication-title: J. Eng. Thermophys-rus. – volume: 191 start-page: 276 year: 2018 ident: 10.1016/j.powtec.2019.01.070_bb0105 article-title: Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.09.040 – volume: 286 start-page: 124 year: 2015 ident: 10.1016/j.powtec.2019.01.070_bb0030 article-title: Prediction of the maximum-efficiency inlet velocity in cyclones publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.07.024 – volume: 35 start-page: 743 year: 2004 ident: 10.1016/j.powtec.2019.01.070_bb0065 article-title: Characteristics of the collection efficiency for a cyclone with different vortex finder shapes publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2003.12.002 – volume: 41 start-page: 153 issue: 3 year: 2014 ident: 10.1016/j.powtec.2019.01.070_bb0170 article-title: Forecasting satellite attitude volatility using support vector regression with particle swarm optimization publication-title: IAENG Int. J. Comput. Sci. – volume: 37 start-page: 5680 issue: 8 year: 2013 ident: 10.1016/j.powtec.2019.01.070_bb0115 article-title: CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.11.010 – year: 2011 ident: 10.1016/j.powtec.2019.01.070_bb0155 – volume: 28 start-page: 853 issue: 5 year: 1997 ident: 10.1016/j.powtec.2019.01.070_bb0015 article-title: Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design publication-title: J. Aerosol Sci. doi: 10.1016/S0021-8502(96)00479-X – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.powtec.2019.01.070_bb0145 article-title: Dynamic heat supply prediction using support vector regression optimized by particle swarm optimization algorithm publication-title: Math. Probl. Eng. – volume: 44 start-page: 1105 issue: 12 year: 2010 ident: 10.1016/j.powtec.2019.01.070_bb0005 article-title: Development of a dimensionless logistic model for predicting cyclone separation efficiency publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2010.512027 – volume: 27 start-page: 888 year: 1981 ident: 10.1016/j.powtec.2019.01.070_bb0040 article-title: Collection efficiency of cyclone separators publication-title: AICHE J. doi: 10.1002/aic.690270603 – volume: 114 start-page: 300 year: 2017 ident: 10.1016/j.powtec.2019.01.070_bb0050 article-title: Efficiency evaluation of vortex tube cyclone separator publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.110 – volume: 325 start-page: 347 year: 2018 ident: 10.1016/j.powtec.2019.01.070_bb0085 article-title: Multi-objective optimization of a gas cyclone separator using genetic algorithm and computational fluid dynamics publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.11.012 – volume: 90 start-page: 61 year: 2018 ident: 10.1016/j.powtec.2019.01.070_bb0095 article-title: Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator publication-title: J. Taiwan Inst. Chem. E. doi: 10.1016/j.jtice.2017.12.016 – volume: 44 start-page: 105 issue: 1 year: 2012 ident: 10.1016/j.powtec.2019.01.070_bb0135 article-title: Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms publication-title: Eng. Optim. doi: 10.1080/0305215X.2011.564619 – volume: 193 start-page: 175 year: 2018 ident: 10.1016/j.powtec.2019.01.070_bb0110 article-title: Experimental and CFD study on the effects of surface roughness on cyclone performance publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.11.017 – volume: 64 start-page: 4131 year: 2009 ident: 10.1016/j.powtec.2019.01.070_bb0120 article-title: Modeling pressure drop coefficient for cyclone separators: a support vector machine approach publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.06.017 – volume: 1 start-page: 20 year: 2003 ident: 10.1016/j.powtec.2019.01.070_bb0060 article-title: Analysis on cyclone collection efficiencies at high temperatures publication-title: China Particuology doi: 10.1016/S1672-2515(07)60095-5 – volume: 217 start-page: 84 issue: 2 year: 2012 ident: 10.1016/j.powtec.2019.01.070_bb0125 article-title: Modeling and pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.10.015 – volume: 8 start-page: 1 year: 1956 ident: 10.1016/j.powtec.2019.01.070_bb0035 article-title: Design and layout of the cyclone separator on the basis of new investigations publication-title: Brennstoff-Warme-Kraft – volume: 27 start-page: 989 issue: 5 year: 2012 ident: 10.1016/j.powtec.2019.01.070_bb0150 article-title: Particle swarm optimization based support vector regression for blind image restoration publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-012-1279-z – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.powtec.2019.01.070_bb0165 article-title: Particle swarm optimization, in: IEEE proceedings publication-title: Neural Netw. – volume: 217 start-page: 231 year: 2012 ident: 10.1016/j.powtec.2019.01.070_bb0020 article-title: Numerical study of the flow field and separation efficiency of a divergent cyclone publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.10.031 – volume: 23 start-page: 680 issue: 4 year: 2006 ident: 10.1016/j.powtec.2019.01.070_bb0130 article-title: Determination of optimum body diameter of air cyclones using a new empirical model and a neural network approach publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2006.23.680 – volume: 68 start-page: 196 year: 1972 ident: 10.1016/j.powtec.2019.01.070_bb0045 article-title: The collection efficiency of cyclone type particle collectors: a new theoretical approach publication-title: AIChE Symp. Ser. – volume: 30 start-page: 1303 issue: 10 year: 1999 ident: 10.1016/j.powtec.2019.01.070_bb0055 article-title: Experimental study on small cyclones operating at high flowrates publication-title: J. Aerosol Sci. doi: 10.1016/S0021-8502(99)00024-5 – volume: 179 start-page: 393 year: 2017 ident: 10.1016/j.powtec.2019.01.070_bb0090 article-title: Separation efficiency and heat exchange optimization in a cyclone publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.02.024 – volume: 2 start-page: 93 year: 1995 ident: 10.1016/j.powtec.2019.01.070_bb0075 article-title: Computation method of PV™ cyclone performance publication-title: Acta Pet. Sin. – volume: 5 start-page: 46 year: 1990 ident: 10.1016/j.powtec.2019.01.070_bb0080 article-title: Experimental studies on scale-up of cyclone separator publication-title: J. China Univ. Pet. Ed. Nat. Sci. – volume: 32 start-page: 4 issue: 9 year: 2002 ident: 10.1016/j.powtec.2019.01.070_bb0140 article-title: The proper design and application of PV cyclone publication-title: Pet. Refin. Eng. – volume: 85 start-page: 171 year: 2012 ident: 10.1016/j.powtec.2019.01.070_bb0010 article-title: Prediction of gas-particle separation efficiency for cyclones: a time-of-flight model publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.10.006 – volume: 3 start-page: 43 year: 2005 ident: 10.1016/j.powtec.2019.01.070_bb0025 article-title: Optimization and applications of reverse-flow cyclones publication-title: China Particuology doi: 10.1016/S1672-2515(07)60162-6 |
| SSID | ssj0006310 |
| Score | 2.4253728 |
| Snippet | Accurate prediction of the complicated nonlinear relationship among the grade efficiency, geometrical dimensions, and operating parameters based on limited... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114 |
| SubjectTerms | Algorithms Correlation coefficient Correlation coefficients Cyclone separator Cyclone separators Efficiency Experimental data Grade efficiency Kernel functions Mathematical models Model accuracy Model testing Parameters Particle swarm optimization powders prediction Predictions Pretreatment Principal component analysis Principal components analysis Random sampling Regression analysis sampling Separators Statistical sampling Support vector machines Support vector regression algorithm Test sets |
| Title | An experimental modeling of cyclone separator efficiency with PCA-PSO-SVR algorithm |
| URI | https://dx.doi.org/10.1016/j.powtec.2019.01.070 https://www.proquest.com/docview/2220757217 https://www.proquest.com/docview/2237525370 |
| Volume | 347 |
| WOSCitedRecordID | wos000464299900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-328X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006310 issn: 0032-5910 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeEJ9aYaAgIV4mo3zYcfxYTZ3GVHUV7aA8WY7rTJ1KEvrByn_P2XHSsAptPPASVY7Tur6f786X8-8Qeq9iHqUZpzhMUo1JTCTmoY4xSxklKSEszWzVkj4bDJLJhA9dStDSlhNgeZ5sNrz8r6KGNhC2OTr7D-JuvhQa4DMIHa4gdrjeSfDdG7T9ttaNy21Wv9S8ALdyqS3lt2H7thQS9vylDckOj7t4ODrHoy-fj-T8slhA4_e2Bzssrg39xGonJN-Enr_q2U4bbHnnswaH31zrGQxrs97i81TawO1kJotL6Uyqi0gEvJXI4rRsBBtc7tJVnZaNCDsqDTMxDkLS0phBdYbUGV93b0evVyGGq49lcQ3_z2Tkccu2WhUd-ZNGe3AuTi76fTHuTcYfyh_YVBgzb-JduZX7aD9klIMG3O9-6k3OGrsdR4Ej8axGXx-0tNmAuz_8N0fmhkm3fsr4CXrsNhhetwLGU3RP58_Qoxbt5HM06uZeGyJeDRGvyDwHEa-BiLeFiGcg4rUg4jUQeYEuTnrj41PsimtgRXyywlwxKg0dX0xTxSLDLDeVsQR_kaWSa05DGUypJFIqkkSJYr5mmoeZohksaJ5FL9FeDsM5QF4mE5LoQEqwlURNKax9FUvp-1MiAyKjDorqmRLKMc-bAihzUacYXolqfoWZX-EHAua3g3DzVFkxr9zSn9VCEM57rLxCASC65cnDWmbCLeSlAL8ZvGkGO_YOetfcBt1rXqjJXBdr0ydiNKQR81_doc9r9HC7Wg7R3mqx1m_QA_VzNVsu3jo0_gahjqb9 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+modeling+of+cyclone+separator+efficiency+with+PCA-PSO-SVR+algorithm&rft.jtitle=Powder+technology&rft.au=Zhang%2C+Wei&rft.au=Zhang%2C+Linlin&rft.au=Yang%2C+Jingxuan&rft.au=Hao%2C+Xiaogang&rft.date=2019-04-01&rft.issn=0032-5910&rft.volume=347+p.114-124&rft.spage=114&rft.epage=124&rft_id=info:doi/10.1016%2Fj.powtec.2019.01.070&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon |