Improving prediction of water quality indices using novel hybrid machine-learning algorithms

River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment Jg. 721; S. 137612
Hauptverfasser: Bui, Duie Tien, Khosravi, Khabat, Tiefenbacher, John, Nguyen, Hoang, Kazakis, Nerantzis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 15.06.2020
Schlagworte:
ISSN:0048-9697, 1879-1026, 1879-1026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values. [Display omitted] •16 novel hybrid data mining algorithm applied for WQI prediction•BA-RT algorithm outperformed while RFC-RT has the lowest prediction power.•Fecal coliform was the most effective predictor on WQI estimation.•The best input combination is not the same for all models.
AbstractList River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQI ) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQI . The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R  = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values.
River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values. [Display omitted] •16 novel hybrid data mining algorithm applied for WQI prediction•BA-RT algorithm outperformed while RFC-RT has the lowest prediction power.•Fecal coliform was the most effective predictor on WQI estimation.•The best input combination is not the same for all models.
River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIₛc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIₛc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R² = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values.
River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values.River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values.
ArticleNumber 137612
Author Kazakis, Nerantzis
Khosravi, Khabat
Tiefenbacher, John
Nguyen, Hoang
Bui, Duie Tien
Author_xml – sequence: 1
  givenname: Duie Tien
  orcidid: 0000-0001-5161-6479
  surname: Bui
  fullname: Bui, Duie Tien
  email: buitiendieu@tdtu.edu.vn
  organization: Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
– sequence: 2
  givenname: Khabat
  surname: Khosravi
  fullname: Khosravi, Khabat
  email: kkhosrav@uoguelph.ca
  organization: School of Engineering, University of Guelph, Guelph, Canada
– sequence: 3
  givenname: John
  orcidid: 0000-0001-9342-6550
  surname: Tiefenbacher
  fullname: Tiefenbacher, John
  email: tief@txstate.edu
  organization: Department of Geography, Texas State University, San Marcos, TX 78666, USA
– sequence: 4
  givenname: Hoang
  orcidid: 0000-0001-6122-8314
  surname: Nguyen
  fullname: Nguyen, Hoang
  email: nguyenhoang23@duytan.edu.vn
  organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
– sequence: 5
  givenname: Nerantzis
  surname: Kazakis
  fullname: Kazakis, Nerantzis
  email: kazakis@geo.auth.gr
  organization: Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32169637$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v2yAYh9HUaU27fYXNx12c8s9gDjtU1dZWqtRLd5uECH6dENmQAs6Ubz-spDv0Ei5IvM8PxO-5Qhc-eEDoG8FLgom42S6TdTlk8PslxbScMikI_YAWpJWqJpiKC7TAmLe1EkpeoquUtrgs2ZJP6JJRIpRgcoH-PI67GPbOr6tdhM7Z7IKvQl_9NRli9TqZweVD5XwZQaqmNJM-7GGoNodVdF01GrtxHuoBTPTz1AzrEF3ejOkz-tibIcGX036Nfv_6-XL3UD893z_e3T7VlmOea2WAWCsMbyRpO24pBiV534q257zvOG0IZxZDbxuxItQYbBRTTUNkD6uOWXaNvh_vLV95nSBlPbpkYRiMhzAlTXlpoqFtI8-jTErWUK5IQb-e0Gk1Qqd30Y0mHvRbeQX4cQRsDClF6HVxYuYCczRu0ATrWZbe6v-y9CxLH2WVvHyXf3vifPL2mITS6t5BnDnwtgiMYLPugjt7xz86p7Up
CitedBy_id crossref_primary_10_3390_su13169124
crossref_primary_10_1007_s11356_024_32061_2
crossref_primary_10_1016_j_dynatmoce_2025_101579
crossref_primary_10_1016_j_jenvman_2024_121378
crossref_primary_10_2166_ws_2021_157
crossref_primary_10_7717_peerj_cs_591
crossref_primary_10_1016_j_gsd_2024_101156
crossref_primary_10_1016_j_envpol_2024_124015
crossref_primary_10_1007_s11356_022_22906_z
crossref_primary_10_36937_cebel_2025_1999
crossref_primary_10_1016_j_ecolind_2021_108318
crossref_primary_10_1016_j_jenvman_2024_122903
crossref_primary_10_1109_ACCESS_2024_3428401
crossref_primary_10_1016_j_jenvman_2022_115923
crossref_primary_10_1016_j_ecoinf_2023_102122
crossref_primary_10_1016_j_scitotenv_2023_165960
crossref_primary_10_1155_2022_8425798
crossref_primary_10_1016_j_scitotenv_2022_156613
crossref_primary_10_1016_j_ecolind_2023_110755
crossref_primary_10_1016_j_jenvman_2024_123305
crossref_primary_10_3390_electronics14132609
crossref_primary_10_1007_s11600_023_01238_7
crossref_primary_10_1016_j_chemosphere_2024_141393
crossref_primary_10_1016_j_horiz_2022_100019
crossref_primary_10_1080_09715010_2024_2316615
crossref_primary_10_1016_j_gsd_2025_101413
crossref_primary_10_1007_s10661_024_13463_8
crossref_primary_10_1007_s12517_021_08036_9
crossref_primary_10_1007_s11356_023_29769_y
crossref_primary_10_1080_10106049_2021_1988726
crossref_primary_10_2166_hydro_2025_025
crossref_primary_10_1007_s12665_023_11150_4
crossref_primary_10_1007_s41101_025_00348_1
crossref_primary_10_1016_j_jwpe_2025_108253
crossref_primary_10_1016_j_scitotenv_2022_160687
crossref_primary_10_1016_j_ecoinf_2024_102514
crossref_primary_10_3390_sym12061022
crossref_primary_10_1002_hyp_14565
crossref_primary_10_1007_s00477_021_02152_4
crossref_primary_10_1016_j_scitotenv_2020_141252
crossref_primary_10_1016_j_heliyon_2024_e33695
crossref_primary_10_1007_s00500_023_07953_z
crossref_primary_10_3390_ijgi9100566
crossref_primary_10_3390_app15052277
crossref_primary_10_1016_j_rineng_2024_103840
crossref_primary_10_2166_wst_2023_331
crossref_primary_10_1007_s13201_024_02326_9
crossref_primary_10_1007_s00477_022_02262_7
crossref_primary_10_1007_s13201_024_02330_z
crossref_primary_10_3390_w16243616
crossref_primary_10_1007_s11069_023_06106_7
crossref_primary_10_7717_peerj_cs_1000
crossref_primary_10_1016_j_jclepro_2022_135671
crossref_primary_10_1016_j_engappai_2025_111867
crossref_primary_10_1016_j_jclepro_2024_140889
crossref_primary_10_1371_journal_pwat_0000400
crossref_primary_10_1007_s11760_025_04635_1
crossref_primary_10_3390_w15122298
crossref_primary_10_1002_wer_10718
crossref_primary_10_1016_j_jwpe_2024_105840
crossref_primary_10_1007_s40899_022_00765_3
crossref_primary_10_1038_s41598_024_71576_z
crossref_primary_10_1016_j_jenvman_2024_120091
crossref_primary_10_1016_j_jii_2021_100219
crossref_primary_10_1007_s40899_024_01092_5
crossref_primary_10_1016_j_ecolind_2023_110437
crossref_primary_10_3390_w13182457
crossref_primary_10_1007_s12145_022_00857_w
crossref_primary_10_1007_s12517_021_08007_0
crossref_primary_10_1007_s11269_021_03051_7
crossref_primary_10_1007_s11270_023_06342_4
crossref_primary_10_1007_s12665_025_12173_9
crossref_primary_10_1007_s11069_023_06060_4
crossref_primary_10_3390_smartcities6050126
crossref_primary_10_3390_w16192818
crossref_primary_10_3390_environments12050158
crossref_primary_10_2166_wst_2023_237
crossref_primary_10_1007_s12665_024_11419_2
crossref_primary_10_1016_j_catena_2025_108954
crossref_primary_10_1016_j_ecoinf_2024_102868
crossref_primary_10_1111_phn_13264
crossref_primary_10_3390_w15091738
crossref_primary_10_1080_19942060_2020_1861987
crossref_primary_10_1007_s11356_021_14560_8
crossref_primary_10_3390_w15203543
crossref_primary_10_3390_w15203548
crossref_primary_10_1007_s10668_024_05209_w
crossref_primary_10_1016_j_asoc_2023_110801
crossref_primary_10_1016_j_jclepro_2023_136885
crossref_primary_10_1007_s12517_022_11045_x
crossref_primary_10_1007_s11356_021_14522_0
crossref_primary_10_1016_j_heliyon_2024_e35347
crossref_primary_10_3390_hydrology10050110
crossref_primary_10_1007_s13762_021_03596_5
crossref_primary_10_3390_app122211329
crossref_primary_10_1007_s12517_021_07079_2
crossref_primary_10_1080_17480930_2024_2348877
crossref_primary_10_1016_j_jconhyd_2021_103849
crossref_primary_10_3390_computation13010017
crossref_primary_10_3390_jmse12010159
crossref_primary_10_1016_j_rsma_2022_102260
crossref_primary_10_1007_s41101_024_00239_x
crossref_primary_10_1007_s13762_021_03793_2
crossref_primary_10_1016_j_envsoft_2025_106560
crossref_primary_10_1016_j_rineng_2024_102831
crossref_primary_10_1007_s43832_025_00220_2
crossref_primary_10_1016_j_heliyon_2024_e31085
crossref_primary_10_1007_s13201_021_01528_9
crossref_primary_10_1016_j_aej_2025_03_022
crossref_primary_10_1007_s44211_023_00328_2
crossref_primary_10_1007_s11356_024_32984_w
crossref_primary_10_1007_s11269_023_03613_x
crossref_primary_10_1007_s11356_025_36062_7
crossref_primary_10_1186_s40068_023_00307_6
crossref_primary_10_3390_ijgi9080479
crossref_primary_10_3389_frwa_2020_562304
crossref_primary_10_1016_j_scitotenv_2020_144033
crossref_primary_10_1029_2022EA002320
crossref_primary_10_3390_w15020257
crossref_primary_10_1007_s11600_023_01169_3
crossref_primary_10_1109_ACCESS_2024_3502361
crossref_primary_10_1007_s11356_020_11047_w
crossref_primary_10_1016_j_watres_2024_121777
crossref_primary_10_1016_j_jhydrol_2021_126100
crossref_primary_10_1080_10106049_2023_2167005
crossref_primary_10_1016_j_cej_2024_150297
crossref_primary_10_3390_computation11020016
crossref_primary_10_3390_ijerph192013702
crossref_primary_10_1007_s40808_022_01424_4
crossref_primary_10_1016_j_procs_2025_04_372
crossref_primary_10_1007_s12665_025_12388_w
crossref_primary_10_1016_j_jwpe_2022_102920
crossref_primary_10_3389_fenvs_2023_1230778
crossref_primary_10_1088_1742_6596_2084_1_012007
crossref_primary_10_1016_j_gsd_2024_101309
crossref_primary_10_1016_j_jenvman_2023_117309
crossref_primary_10_1080_19942060_2024_2394638
crossref_primary_10_2166_wpt_2023_002
crossref_primary_10_2166_hydro_2024_291
crossref_primary_10_1007_s11269_023_03492_2
crossref_primary_10_1016_j_rineng_2025_104265
crossref_primary_10_1007_s11852_023_00975_7
crossref_primary_10_1038_s41598_021_02564_w
crossref_primary_10_3390_app13137982
crossref_primary_10_1016_j_ecoinf_2023_102093
crossref_primary_10_1007_s13762_024_05944_7
crossref_primary_10_1016_j_ecoinf_2025_103087
crossref_primary_10_1007_s11356_024_32415_w
crossref_primary_10_1016_j_csr_2025_105509
crossref_primary_10_1016_j_watres_2024_122520
crossref_primary_10_1007_s11356_023_30774_4
crossref_primary_10_1080_15715124_2021_1906261
crossref_primary_10_3390_f12091169
crossref_primary_10_3389_fenvs_2021_738322
crossref_primary_10_1016_j_envsoft_2021_105165
crossref_primary_10_1016_j_gsd_2023_101049
crossref_primary_10_3390_w14101552
crossref_primary_10_1016_j_catena_2023_107759
crossref_primary_10_1007_s00521_022_07112_9
crossref_primary_10_3390_w14111729
crossref_primary_10_3390_w14071067
crossref_primary_10_1007_s10653_024_02332_5
crossref_primary_10_1016_j_jenvman_2023_119866
crossref_primary_10_1016_j_watres_2022_119422
crossref_primary_10_3390_w16152107
crossref_primary_10_1007_s40808_022_01638_6
crossref_primary_10_1016_j_jwpe_2024_104789
crossref_primary_10_1002_hyp_14857
crossref_primary_10_1007_s12145_024_01670_3
crossref_primary_10_1016_j_gsd_2024_101221
crossref_primary_10_1007_s11356_025_36120_0
crossref_primary_10_1007_s11356_021_17064_7
crossref_primary_10_1016_j_jksuci_2021_06_003
crossref_primary_10_3390_w16030481
crossref_primary_10_3390_w14142211
crossref_primary_10_1109_ACCESS_2023_3305669
crossref_primary_10_1007_s11600_022_00952_y
crossref_primary_10_1109_ACCESS_2022_3221430
crossref_primary_10_3390_su17020497
crossref_primary_10_1016_j_asej_2025_103478
crossref_primary_10_1016_j_jenvman_2023_119896
crossref_primary_10_1016_j_eswa_2024_124900
crossref_primary_10_1038_s41598_022_08875_w
crossref_primary_10_1016_j_envpol_2023_121222
crossref_primary_10_1155_2022_3397972
crossref_primary_10_3390_machines12120867
crossref_primary_10_1186_s12302_024_00897_7
crossref_primary_10_1007_s11600_023_01089_2
crossref_primary_10_1016_j_ecoinf_2023_101999
crossref_primary_10_2166_wpt_2024_259
crossref_primary_10_1080_1573062X_2023_2209558
crossref_primary_10_2166_nh_2024_048
crossref_primary_10_1007_s43621_025_01464_7
crossref_primary_10_1007_s10668_023_03630_1
crossref_primary_10_1016_j_ecoinf_2023_101991
crossref_primary_10_1007_s11600_022_00738_2
crossref_primary_10_3390_su13179898
crossref_primary_10_1007_s12517_021_08003_4
crossref_primary_10_1016_j_psep_2022_10_005
crossref_primary_10_1080_10106049_2022_2032388
crossref_primary_10_1371_journal_pwat_0000259
crossref_primary_10_1007_s40808_025_02521_w
crossref_primary_10_1007_s11270_025_07997_x
crossref_primary_10_1016_j_envres_2023_117755
crossref_primary_10_2166_hydro_2024_132
crossref_primary_10_1007_s40808_022_01494_4
crossref_primary_10_1007_s11071_025_11185_1
crossref_primary_10_3389_fenvs_2022_1061835
crossref_primary_10_1016_j_jece_2024_112915
crossref_primary_10_3390_w15030475
crossref_primary_10_1007_s00500_022_07073_0
crossref_primary_10_2166_ws_2023_119
crossref_primary_10_1016_j_jhydrol_2023_129649
crossref_primary_10_1007_s40808_025_02543_4
crossref_primary_10_1016_j_rsase_2023_101088
crossref_primary_10_1016_j_autcon_2024_105882
crossref_primary_10_2478_jaes_2024_0032
crossref_primary_10_1016_j_scitotenv_2024_175424
crossref_primary_10_1109_ACCESS_2025_3560783
crossref_primary_10_1007_s10661_025_14350_6
crossref_primary_10_1007_s12517_021_07952_0
crossref_primary_10_1016_j_envpol_2023_122456
crossref_primary_10_1016_j_jwpe_2025_108330
crossref_primary_10_1007_s11356_022_18644_x
crossref_primary_10_1007_s11356_024_33344_4
crossref_primary_10_3389_fenvs_2024_1434703
crossref_primary_10_1007_s10666_024_09980_y
crossref_primary_10_1016_j_uclim_2023_101458
crossref_primary_10_1142_S2047684123500483
crossref_primary_10_1016_j_scitotenv_2023_169819
crossref_primary_10_3846_jcem_2025_23472
crossref_primary_10_1007_s11069_023_06260_y
crossref_primary_10_1016_j_heha_2024_100114
crossref_primary_10_1016_j_ecolind_2024_112958
crossref_primary_10_1016_j_micrna_2024_208061
crossref_primary_10_3390_w13192790
crossref_primary_10_1007_s43926_025_00193_7
crossref_primary_10_1016_j_envpol_2024_124242
crossref_primary_10_1038_s41598_025_96941_4
crossref_primary_10_1186_s12302_025_01078_w
crossref_primary_10_3389_fevo_2023_1108924
crossref_primary_10_1007_s11356_022_22375_4
crossref_primary_10_1016_j_heliyon_2024_e28527
crossref_primary_10_3390_w15050845
crossref_primary_10_1002_wer_1642
crossref_primary_10_1016_j_jwpe_2025_107235
crossref_primary_10_1016_j_apor_2023_103511
crossref_primary_10_3390_w14213408
crossref_primary_10_1016_j_ecoenv_2021_111992
crossref_primary_10_1016_j_psep_2024_10_054
crossref_primary_10_1016_j_rineng_2025_106665
crossref_primary_10_1016_j_chemosphere_2021_132324
crossref_primary_10_1016_j_scitotenv_2022_159714
crossref_primary_10_1016_j_envpol_2021_117734
crossref_primary_10_1016_j_ecolind_2022_109084
crossref_primary_10_3390_su16229848
crossref_primary_10_1007_s11270_023_06198_8
Cites_doi 10.1038/s41598-018-33755-7
10.1007/s00521-017-3112-7
10.1016/j.jhydrol.2012.05.031
10.1016/j.scitotenv.2017.02.226
10.1155/2015/521721
10.1007/s11269-014-0632-0
10.1155/2018/8971079
10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
10.1007/s11069-016-2357-2
10.1039/c2em30676j
10.1007/s00521-016-2404-7
10.1016/j.compag.2019.105041
10.1016/j.marpolbul.2012.08.005
10.1007/s10661-019-7978-y
10.1016/j.aqpro.2015.02.139
10.1007/s11053-019-09465-w
10.1016/j.scitotenv.2019.133831
10.2166/hydro.2019.037
10.2166/wqrj.2018.025
10.1901/jaba.1998.31-593
10.1901/jaba.1985.18-343
10.1007/s11769-004-0025-z
10.1016/j.scitotenv.2017.09.293
10.13031/2013.23153
10.1007/s11269-018-1915-7
10.1080/10106049.2018.1489422
10.1016/j.envpol.2019.02.011
10.1007/s12665-018-7872-x
10.1007/s13201-018-0859-7
10.1016/j.jhydrol.2019.03.073
10.1016/j.watres.2019.115386
10.3390/w11061305
10.1016/j.jhydrol.2018.10.015
10.1007/s40808-015-0063-9
10.3390/w10091210
10.1007/s00477-016-1338-z
10.1016/j.jhydrol.2016.06.027
10.1007/s11356-014-3806-7
10.1016/j.jhydrol.2019.03.013
10.1007/s10040-019-02017-9
10.1016/j.jenvman.2016.09.082
10.1007/s12040-018-1047-8
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2020.137612
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 32169637
10_1016_j_scitotenv_2020_137612
S0048969720311232
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-9ae1cc6a45718d4c20e974f868f44fd425143c0efc56b12aa0a9395517febd3c3
ISICitedReferencesCount 292
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535469100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sun Nov 09 11:31:16 EST 2025
Sat Sep 27 20:00:28 EDT 2025
Wed Feb 19 02:31:00 EST 2025
Tue Nov 18 22:02:17 EST 2025
Sat Nov 29 07:21:46 EST 2025
Fri Feb 23 02:46:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Novel hybrid algorithms
Data mining
Water quality index
Prediction
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-9ae1cc6a45718d4c20e974f868f44fd425143c0efc56b12aa0a9395517febd3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5161-6479
0000-0001-9342-6550
0000-0001-6122-8314
PMID 32169637
PQID 2377352491
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2400452857
proquest_miscellaneous_2377352491
pubmed_primary_32169637
crossref_citationtrail_10_1016_j_scitotenv_2020_137612
crossref_primary_10_1016_j_scitotenv_2020_137612
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_137612
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tiwari, Babbar, Kaur (bb0415) 2018
Khosravi, Daggupati, Alami, Awadh, Ghareb, Panahi (bb0250) 2019; 167
Busico, Kazakis, Cuoco, Colombani, Tedesco, Voudouris, Mastrocicco (bb0095) 2020; 171
Sahoo, Patra, Khatua (bb8000) 2015; 4
Sakizadeh (bb0385) 2016; 2016
Hamzeh Haghibi, Nasrolahi, Parsaie (bb0190) 2018; 53
Rufino, Busico, Cuoco, Darrah, Tedesco (bb0380) 2019; 191
Chen, Pradhan, Li, Shahabi, Rizeei, Hou, Wang (bb0120) 2019; 28
Moriasi, Arnold, Van Liew, Binger, Harmel, Veith (bb0335) 2007; 50
Kisi, Zounemat-Kermani (bb0275) 2014; 28
Khozani, Khosravi, Pham, Kløve, Mohtar, Yaseen (bb0265) 2019; 21
Bui, Khosravi, Li, Shahabi, Panahi, Singh, Chapi (bb0080) 2018; 10
Yaseen, Ramal, Diop, Jaafar, Demir, Kisi (bb0450) 2018; 32
Harmel, Cooper, Slade, Haney, Arnold (bb0200) 2006; 49
Kahng, Iwata, Fischer, Page, Treadwell, Williams, Smith (bb0220) 1998; 31
De’ath, Fabricius (bb0135) 2000
Ghorbani, Deo, Karimi, Yaseen, Terzi (bb0170) 2017
Misaghi, Delgosha, Razzaghmanesh, Myers (bb0315) 2017; 589
Khosravi, Nohani, Maroufinia, Pourghasemi (bb0235) 2016; 83
Khosravi, Barzegar, Miraki, Adamowski, Daggupati, Pham (bb0255) 2019
Kisi, Dailr, Cimen, Shiri (bb9000) 2012; 450
Barzegar, Moghaddam, Adamowski, Fijani (bb0040) 2016; 31
Machiwal, Cloutier, Güler, Kazakis (bb0310) 2018; 77
Pham, Prakash, Khosravi, Chapi, Trinh, Ngo, Hosseini (bb0355) 2018; 34
Khosravi, Mao, Kisi, Yaseen, Shahid (bb0240) 2018; 567
Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (bb0125) 2018; 615
Touchette, MacDonald, Langer (bb0420) 1985; 18
Kapetas, Kazakis, Voudouris, McNicoll (bb0225) 2019; 695
Bournaris, Papathanasiou, Manos, Kazakis, Voudouris (bb0050) 2015; 15
Gholami, Ghachkanlu, Khosravi, Pirasteh (bb0165) 2019; 128
Wan Mohtar, Abdul Maulud, Muhammad, Sharil, Yaseen (bb0430) 2019; 248
Othman, M E, Mohamed (bb0350) 2012; 14
Hameed, Sharqi, Yaseen, Afan, Hussain, Elshafie (bb0185) 2016; 28
Vadiati, Asghari-Moghadam, Nakhaei, Adamowski, Akbarzadeh (bb0425) 2016; 184
Gazzaz, Yusoff, Zarin Aris, Juahir, Firuz (bb0160) 2012; 64
Chen, Liu (bb0105) 2015
Fathi, Zamani Ahmadmahmoodi, Bidaki (bb0145) 2018; 8
Gazzaz, Yusoff, Aris, Juahir, Ramli (bb0155) 2012; 64
Sharafati, Khosravi, Khosravinia, Ahmed, Salman, Yaseen (bb0400) 2019
Bui, Pradhan, Nampak, Bui, Tran, Nguyen (bb0075) 2016; 540
Khuan, Hamzah, Jailani (bb0270) 2002
Khosravi, Shahabi, Pham, Adamowski, Shirzadi, Pradhan (bb0260) 2019; 573
Termeh, Khosravi, Sartaj, Keesstra, Tsai, Dijksma, Pham (bb0410) 2019; 27
Ahmed, Shah (bb0010) 2015
Leong, Bahadori, Zhang, Ahmad (bb0290) 2019
Mohammadpour, Shaharuddin, Chang (bb0325) 2015; 2015
Iticescu, Georgescu, Murariu, Topa, Timofti, Pintilie, Arseni (bb0215) 2019; 11
Bui, Panahi, Shahabi, Singh, Shirzadi, Chapi, Khosravi (bb0085) 2018; 8
Li, Ali Abdulmohsin, Hasan, Kaiming, Al-Khateeb, Ghareb (bb0295) 2019; 31
Chen, Panahi, Khosravi, Pourghasemi, Rezaie (bb0115) 2019; 572
Yunus, Nakagoshi (bb0455) 2004; 14
Bui (10.1016/j.scitotenv.2020.137612_bb0085) 2018; 8
Gazzaz (10.1016/j.scitotenv.2020.137612_bb0160) 2012; 64
Kisi (10.1016/j.scitotenv.2020.137612_bb0275) 2014; 28
Sharafati (10.1016/j.scitotenv.2020.137612_bb0400) 2019
Tiwari (10.1016/j.scitotenv.2020.137612_bb0415) 2018
Sahoo (10.1016/j.scitotenv.2020.137612_bb8000) 2015; 4
Barzegar (10.1016/j.scitotenv.2020.137612_bb0040) 2016; 31
Bournaris (10.1016/j.scitotenv.2020.137612_bb0050) 2015; 15
Khozani (10.1016/j.scitotenv.2020.137612_bb0265) 2019; 21
De’ath (10.1016/j.scitotenv.2020.137612_bb0135) 2000
Moriasi (10.1016/j.scitotenv.2020.137612_bb0335) 2007; 50
Khosravi (10.1016/j.scitotenv.2020.137612_bb0260) 2019; 573
Yunus (10.1016/j.scitotenv.2020.137612_bb0455) 2004; 14
Hamzeh Haghibi (10.1016/j.scitotenv.2020.137612_bb0190) 2018; 53
Chen (10.1016/j.scitotenv.2020.137612_bb0105) 2015
Ghorbani (10.1016/j.scitotenv.2020.137612_bb0170) 2017
Bui (10.1016/j.scitotenv.2020.137612_bb0075) 2016; 540
Ahmed (10.1016/j.scitotenv.2020.137612_bb0010) 2015
Machiwal (10.1016/j.scitotenv.2020.137612_bb0310) 2018; 77
Khuan (10.1016/j.scitotenv.2020.137612_bb0270) 2002
Kahng (10.1016/j.scitotenv.2020.137612_bb0220) 1998; 31
Khosravi (10.1016/j.scitotenv.2020.137612_bb0250) 2019; 167
Khosravi (10.1016/j.scitotenv.2020.137612_bb0255) 2019
Pham (10.1016/j.scitotenv.2020.137612_bb0355) 2018; 34
Li (10.1016/j.scitotenv.2020.137612_bb0295) 2019; 31
Misaghi (10.1016/j.scitotenv.2020.137612_bb0315) 2017; 589
Wan Mohtar (10.1016/j.scitotenv.2020.137612_bb0430) 2019; 248
Gholami (10.1016/j.scitotenv.2020.137612_bb0165) 2019; 128
Chen (10.1016/j.scitotenv.2020.137612_bb0115) 2019; 572
Touchette (10.1016/j.scitotenv.2020.137612_bb0420) 1985; 18
Harmel (10.1016/j.scitotenv.2020.137612_bb0200) 2006; 49
Othman (10.1016/j.scitotenv.2020.137612_bb0350) 2012; 14
Hameed (10.1016/j.scitotenv.2020.137612_bb0185) 2016; 28
Kapetas (10.1016/j.scitotenv.2020.137612_bb0225) 2019; 695
Gazzaz (10.1016/j.scitotenv.2020.137612_bb0155) 2012; 64
Sakizadeh (10.1016/j.scitotenv.2020.137612_bb0385) 2016; 2016
Bui (10.1016/j.scitotenv.2020.137612_bb0080) 2018; 10
Mohammadpour (10.1016/j.scitotenv.2020.137612_bb0325) 2015; 2015
Fathi (10.1016/j.scitotenv.2020.137612_bb0145) 2018; 8
Termeh (10.1016/j.scitotenv.2020.137612_bb0410) 2019; 27
Choubin (10.1016/j.scitotenv.2020.137612_bb0125) 2018; 615
Chen (10.1016/j.scitotenv.2020.137612_bb0120) 2019; 28
Iticescu (10.1016/j.scitotenv.2020.137612_bb0215) 2019; 11
Khosravi (10.1016/j.scitotenv.2020.137612_bb0240) 2018; 567
Yaseen (10.1016/j.scitotenv.2020.137612_bb0450) 2018; 32
Leong (10.1016/j.scitotenv.2020.137612_bb0290) 2019
Rufino (10.1016/j.scitotenv.2020.137612_bb0380) 2019; 191
Khosravi (10.1016/j.scitotenv.2020.137612_bb0235) 2016; 83
Busico (10.1016/j.scitotenv.2020.137612_bb0095) 2020; 171
Kisi (10.1016/j.scitotenv.2020.137612_bb9000) 2012; 450
Vadiati (10.1016/j.scitotenv.2020.137612_bb0425) 2016; 184
References_xml – volume: 21
  start-page: 798
  year: 2019
  end-page: 811
  ident: bb0265
  article-title: Determination of compound channel apparent shear stress: application of novel data mining models
  publication-title: J. Hydroinf.
– volume: 31
  start-page: 593
  year: 1998
  end-page: 604
  ident: bb0220
  article-title: Temporal distributions of problem behavior based on scatter plot analysis
  publication-title: J. Appl. Behav. Anal.
– volume: 11
  start-page: 1305
  year: 2019
  ident: bb0215
  article-title: Lower Danube water quality quantified through WQI and multivariate analysis
  publication-title: Water
– volume: 14
  start-page: 3164
  year: 2012
  end-page: 3173
  ident: bb0350
  article-title: Trend analysis of a tropical urban river water quality in Malaysia
  publication-title: J. Environ. Monit.
– volume: 567
  start-page: 165
  year: 2018
  end-page: 179
  ident: bb0240
  article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile
  publication-title: J. Hydrol.
– year: 2018
  ident: bb0415
  article-title: Performance evaluation of two ANFIS models for predicting water quality index of river Satluj (India)
  publication-title: Advances in civil engineering
– volume: 64
  start-page: 2409
  year: 2012
  end-page: 2420
  ident: bb0155
  article-title: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors
  publication-title: Mar. Pollut. Bull.
– volume: 14
  start-page: 153
  year: 2004
  end-page: 161
  ident: bb0455
  article-title: Effects of seasonality on streamflow and water quality of the Pinang River in Penang Island, Malaysia
  publication-title: Chin. Geogr. Sci.
– volume: 53
  start-page: 3
  year: 2018
  end-page: 13
  ident: bb0190
  article-title: Water quality prediction using machine learning methods
  publication-title: Water Quality Research Journal
– year: 2015
  ident: bb0105
  article-title: Water quality modeling in reservoirs using multivariate linear regression and two neural network models
  publication-title: Advances in Artificial Neural Systems
– volume: 28
  start-page: 1239
  year: 2019
  end-page: 1258
  ident: bb0120
  article-title: Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis
  publication-title: Nat. Resour. Res.
– volume: 77
  start-page: 681
  year: 2018
  ident: bb0310
  article-title: A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection
  publication-title: Environmental Earth Science
– volume: 615
  start-page: 272
  year: 2018
  end-page: 281
  ident: bb0125
  article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 2511
  year: 2019
  end-page: 2534
  ident: bb0410
  article-title: Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping
  publication-title: Hydrogeol. J.
– volume: 167
  year: 2019
  ident: bb0250
  article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq
  publication-title: Comput. Electron. Agric.
– volume: 8
  year: 2018
  ident: bb0085
  article-title: Novel hybrid evolutionary algorithms for spatial prediction of floods
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1210
  year: 2018
  ident: bb0080
  article-title: New hybrids of anfis with several optimization algorithms for flood susceptibility modeling
  publication-title: Water
– volume: 31
  start-page: 827
  year: 2019
  end-page: 837
  ident: bb0295
  article-title: Hybrid soft computing approach for determining quality indicator: Euphrates River
  publication-title: Neural Comput. & Applic.
– year: 2019
  ident: bb0255
  article-title: Stochastic modeling of groundwater fluoride contamination: introducing lazy learners
  publication-title: Groundwater
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: bb0335
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
– volume: 184
  start-page: 255
  year: 2016
  end-page: 270
  ident: bb0425
  article-title: A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices
  publication-title: J. Environ. Manag.
– volume: 8
  start-page: 210
  year: 2018
  ident: bb0145
  article-title: Water quality evaluation using water quality index and multivariate methods, Beheshtabad River, Iran
  publication-title: Appl Water Sci
– volume: 695
  start-page: 133831
  year: 2019
  ident: bb0225
  article-title: Water allocation coordination and governance in multi-stakeholder environments: insights from Axios Delta, Greece
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 289
  year: 2015
  end-page: 306
  ident: bb0050
  article-title: Support of irrigation water use and eco-friendly decision process in agricultural production planning
  publication-title: Oper. Res.
– year: 2019
  ident: bb0290
  article-title: Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM)
  publication-title: International Journal of River Basin Management
– volume: 83
  start-page: 1
  year: 2016
  end-page: 41
  ident: bb0235
  article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria method
  publication-title: Nat. Hazards
– volume: 191
  start-page: 768
  year: 2019
  ident: bb0380
  article-title: Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy
  publication-title: Environ. Monit. Assess.
– volume: 31
  start-page: 2705
  year: 2016
  end-page: 2718
  ident: bb0040
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch. Env. Res. Risk A.
– volume: 171
  year: 2020
  ident: bb0095
  article-title: A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses
  publication-title: Water Res.
– volume: 49
  start-page: 689
  year: 2006
  end-page: 701
  ident: bb0200
  article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds
  publication-title: Transactions of the American Society of Agricultural and Biological Engineers
– year: 2002
  ident: bb0270
  article-title: Prediction of water quality index (WQI) based on artificial neural network (ANN)
  publication-title: Student Conference on Research and Development, Shah Alam, Malaysia, Malaysia
– volume: 28
  start-page: 893
  year: 2016
  end-page: 905
  ident: bb0185
  article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia
  publication-title: Neural Computing and Application
– volume: 28
  start-page: 2655
  year: 2014
  end-page: 2675
  ident: bb0275
  article-title: Comparison of two different adaptive neuro-fuzzy inference systems in modelling daily reference evapotranspiration
  publication-title: Water Resour. Manag.
– volume: 128
  start-page: 42
  year: 2019
  ident: bb0165
  article-title: Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method
  publication-title: Journal of Earth System Science
– year: 2000
  ident: bb0135
  article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis
  publication-title: Ecology
– volume: 450
  start-page: 48
  year: 2012
  end-page: 58
  ident: bb9000
  article-title: Suspended sediment modeling using genetic programming and soft computing techniques
  publication-title: J. Hydrol.
– volume: 248
  start-page: 133
  year: 2019
  end-page: 144
  ident: bb0430
  article-title: Spatial and temporal risk quotient based river assessment for water resources management
  publication-title: Environ. Pollut.
– volume: 32
  start-page: 2227
  year: 2018
  end-page: 2245
  ident: bb0450
  article-title: Hybrid adaptive neuro-fuzzu models for water quality index estimation
  publication-title: Water Resour. Manag.
– volume: 2015
  start-page: 6208
  year: 2015
  ident: bb0325
  article-title: Prediction of water quality index in constructed wetlands using support vector machine
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 1
  year: 2019
  end-page: 18
  ident: bb0400
  article-title: The potential of novel data mining models for global solar radiation prediction
  publication-title: Int. J. Environ. Sci. Technol.
– start-page: 1
  year: 2017
  end-page: 15
  ident: bb0170
  article-title: Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 34
  start-page: 1385
  year: 2018
  end-page: 1407
  ident: bb0355
  article-title: A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling
  publication-title: Geocarto International
– volume: 589
  start-page: 107
  year: 2017
  end-page: 116
  ident: bb0315
  article-title: Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River
  publication-title: Sci. Total Environ.
– volume: 540
  start-page: 317
  year: 2016
  end-page: 330
  ident: bb0075
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modelling in a high-frequency tropical area
  publication-title: J. Hydrol.
– year: 2015
  ident: bb0010
  article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River
  publication-title: Journal of King Saud University – Engineering Sciences
– volume: 572
  start-page: 435
  year: 2019
  end-page: 448
  ident: bb0115
  article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization
  publication-title: J. Hydrol.
– volume: 64
  start-page: 2409
  year: 2012
  end-page: 2420
  ident: bb0160
  article-title: Artificial neural network modeling of the water quality index for Kinta River using water quality variables as predictors
  publication-title: Mar. Pollut. Bull.
– volume: 4
  start-page: 1099
  year: 2015
  end-page: 1106
  ident: bb8000
  article-title: Inference of Water Quality Index Using ANFIA and PCA
  publication-title: Aquatic Procedia
– volume: 2016
  start-page: 8
  year: 2016
  ident: bb0385
  article-title: Artificial intelligence for the prediction of water quality index in groundwater systems
  publication-title: Earth Syst. Environ.
– volume: 18
  start-page: 343
  year: 1985
  end-page: 351
  ident: bb0420
  article-title: A scatter plot for identifying stimulus control of problem behavior
  publication-title: J. Appl. Behav. Anal.
– volume: 573
  start-page: 311
  year: 2019
  end-page: 323
  ident: bb0260
  article-title: A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods
  publication-title: J. Hydrol.
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0085
  article-title: Novel hybrid evolutionary algorithms for spatial prediction of floods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33755-7
– year: 2002
  ident: 10.1016/j.scitotenv.2020.137612_bb0270
  article-title: Prediction of water quality index (WQI) based on artificial neural network (ANN)
– volume: 31
  start-page: 827
  issue: 3
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0295
  article-title: Hybrid soft computing approach for determining quality indicator: Euphrates River
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-017-3112-7
– volume: 49
  start-page: 689
  issue: 3
  year: 2006
  ident: 10.1016/j.scitotenv.2020.137612_bb0200
  article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds
  publication-title: Transactions of the American Society of Agricultural and Biological Engineers
– volume: 450
  start-page: 48
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137612_bb9000
  article-title: Suspended sediment modeling using genetic programming and soft computing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.05.031
– volume: 589
  start-page: 107
  issue: 2017
  year: 2017
  ident: 10.1016/j.scitotenv.2020.137612_bb0315
  article-title: Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.02.226
– year: 2015
  ident: 10.1016/j.scitotenv.2020.137612_bb0105
  article-title: Water quality modeling in reservoirs using multivariate linear regression and two neural network models
  publication-title: Advances in Artificial Neural Systems
  doi: 10.1155/2015/521721
– volume: 28
  start-page: 2655
  issue: 9
  year: 2014
  ident: 10.1016/j.scitotenv.2020.137612_bb0275
  article-title: Comparison of two different adaptive neuro-fuzzy inference systems in modelling daily reference evapotranspiration
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0632-0
– year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0415
  article-title: Performance evaluation of two ANFIS models for predicting water quality index of river Satluj (India)
  publication-title: Advances in civil engineering
  doi: 10.1155/2018/8971079
– year: 2000
  ident: 10.1016/j.scitotenv.2020.137612_bb0135
  article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
– year: 2015
  ident: 10.1016/j.scitotenv.2020.137612_bb0010
  article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River
  publication-title: Journal of King Saud University – Engineering Sciences
– year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0290
  article-title: Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM)
  publication-title: International Journal of River Basin Management
– volume: 83
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137612_bb0235
  article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria method
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2357-2
– volume: 14
  start-page: 3164
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137612_bb0350
  article-title: Trend analysis of a tropical urban river water quality in Malaysia
  publication-title: J. Environ. Monit.
  doi: 10.1039/c2em30676j
– start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2020.137612_bb0170
  article-title: Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey
  publication-title: Stoch. Environ. Res. Risk Assess.
– year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0255
  article-title: Stochastic modeling of groundwater fluoride contamination: introducing lazy learners
  publication-title: Groundwater
– volume: 28
  start-page: 893
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137612_bb0185
  article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia
  publication-title: Neural Computing and Application
  doi: 10.1007/s00521-016-2404-7
– volume: 167
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0250
  article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105041
– volume: 64
  start-page: 2409
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137612_bb0155
  article-title: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2012.08.005
– volume: 191
  start-page: 768
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0380
  article-title: Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7978-y
– volume: 4
  start-page: 1099
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137612_bb8000
  article-title: Inference of Water Quality Index Using ANFIA and PCA
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2015.02.139
– volume: 28
  start-page: 1239
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0120
  article-title: Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09465-w
– volume: 695
  start-page: 133831
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0225
  article-title: Water allocation coordination and governance in multi-stakeholder environments: insights from Axios Delta, Greece
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.133831
– volume: 21
  start-page: 798
  issue: 5
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0265
  article-title: Determination of compound channel apparent shear stress: application of novel data mining models
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2019.037
– volume: 53
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0190
  article-title: Water quality prediction using machine learning methods
  publication-title: Water Quality Research Journal
  doi: 10.2166/wqrj.2018.025
– volume: 31
  start-page: 593
  year: 1998
  ident: 10.1016/j.scitotenv.2020.137612_bb0220
  article-title: Temporal distributions of problem behavior based on scatter plot analysis
  publication-title: J. Appl. Behav. Anal.
  doi: 10.1901/jaba.1998.31-593
– volume: 18
  start-page: 343
  year: 1985
  ident: 10.1016/j.scitotenv.2020.137612_bb0420
  article-title: A scatter plot for identifying stimulus control of problem behavior
  publication-title: J. Appl. Behav. Anal.
  doi: 10.1901/jaba.1985.18-343
– volume: 14
  start-page: 153
  issue: 2
  year: 2004
  ident: 10.1016/j.scitotenv.2020.137612_bb0455
  article-title: Effects of seasonality on streamflow and water quality of the Pinang River in Penang Island, Malaysia
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-004-0025-z
– volume: 615
  start-page: 272
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0125
  article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.293
– volume: 50
  start-page: 885
  year: 2007
  ident: 10.1016/j.scitotenv.2020.137612_bb0335
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– volume: 32
  start-page: 2227
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0450
  article-title: Hybrid adaptive neuro-fuzzu models for water quality index estimation
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1915-7
– volume: 34
  start-page: 1385
  issue: 13
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0355
  article-title: A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling
  publication-title: Geocarto International
  doi: 10.1080/10106049.2018.1489422
– start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0400
  article-title: The potential of novel data mining models for global solar radiation prediction
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 248
  start-page: 133
  issue: 2019
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0430
  article-title: Spatial and temporal risk quotient based river assessment for water resources management
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.02.011
– volume: 77
  start-page: 681
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0310
  article-title: A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection
  publication-title: Environmental Earth Science
  doi: 10.1007/s12665-018-7872-x
– volume: 8
  start-page: 210
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0145
  article-title: Water quality evaluation using water quality index and multivariate methods, Beheshtabad River, Iran
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-018-0859-7
– volume: 15
  start-page: 289
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137612_bb0050
  article-title: Support of irrigation water use and eco-friendly decision process in agricultural production planning
  publication-title: Oper. Res.
– volume: 573
  start-page: 311
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0260
  article-title: A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.073
– volume: 171
  year: 2020
  ident: 10.1016/j.scitotenv.2020.137612_bb0095
  article-title: A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115386
– volume: 11
  start-page: 1305
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0215
  article-title: Lower Danube water quality quantified through WQI and multivariate analysis
  publication-title: Water
  doi: 10.3390/w11061305
– volume: 567
  start-page: 165
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0240
  article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.10.015
– volume: 2016
  start-page: 8
  issue: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137612_bb0385
  article-title: Artificial intelligence for the prediction of water quality index in groundwater systems
  publication-title: Earth Syst. Environ.
  doi: 10.1007/s40808-015-0063-9
– volume: 10
  start-page: 1210
  issue: 9
  year: 2018
  ident: 10.1016/j.scitotenv.2020.137612_bb0080
  article-title: New hybrids of anfis with several optimization algorithms for flood susceptibility modeling
  publication-title: Water
  doi: 10.3390/w10091210
– volume: 31
  start-page: 2705
  issue: 10
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137612_bb0040
  article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1338-z
– volume: 540
  start-page: 317
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137612_bb0075
  article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modelling in a high-frequency tropical area
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.027
– volume: 64
  start-page: 2409
  issue: 11
  year: 2012
  ident: 10.1016/j.scitotenv.2020.137612_bb0160
  article-title: Artificial neural network modeling of the water quality index for Kinta River using water quality variables as predictors
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2012.08.005
– volume: 2015
  start-page: 6208
  issue: 22
  year: 2015
  ident: 10.1016/j.scitotenv.2020.137612_bb0325
  article-title: Prediction of water quality index in constructed wetlands using support vector machine
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3806-7
– volume: 572
  start-page: 435
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0115
  article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.013
– volume: 27
  start-page: 2511
  issue: 7
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0410
  article-title: Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-019-02017-9
– volume: 184
  start-page: 255
  issue: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2020.137612_bb0425
  article-title: A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.09.082
– volume: 128
  start-page: 42
  issue: 2
  year: 2019
  ident: 10.1016/j.scitotenv.2020.137612_bb0165
  article-title: Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method
  publication-title: Journal of Earth System Science
  doi: 10.1007/s12040-018-1047-8
SSID ssj0000781
Score 2.687705
Snippet River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137612
SubjectTerms algorithms
data collection
Data mining
fecal bacteria
Iran
model validation
monitoring
Novel hybrid algorithms
Prediction
pruning
river water
total solids
trees
water management
water quality
Water quality index
watersheds
Title Improving prediction of water quality indices using novel hybrid machine-learning algorithms
URI https://dx.doi.org/10.1016/j.scitotenv.2020.137612
https://www.ncbi.nlm.nih.gov/pubmed/32169637
https://www.proquest.com/docview/2377352491
https://www.proquest.com/docview/2400452857
Volume 721
WOSCitedRecordID wos000535469100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9NAFB26uwqCiFZX68cygm8lJR-TTOLbIpVVoQiu0AchTCaTbUtNSpvU7V_wV3snd5Lsuq6riC-hhExnknNy587NPXMJeZUlgHLqJ5YuggILFN-zIr3jUBiEvlLMZ4FK6mITfDIJp9PoY6_3vdHCbJc8z8Pz82j1X6GGcwC2ls7-Bdztn8IJ-A2gwxFgh-MfAd-FCVZr_RWmcQm_Cb0fIoootdgv1SZiWNWxgrzYquVwttPyreHXOr9SWcsmaiKWZ8V6Xs7MxuaLjmCNZTCJBmWhpZUXtHPtYr9CPXs115WEOvXZh1mxWYstZhTMRCLaFnBVpvJENJy6mDI8Oat2aC1PCmFmXhO4cHV9GwulmxhNu6KoQQvNwAAHmLM7UmiUQx7BdIHK-sZqcxRWX5kBMBixGIEDATcNdzzSfY8cMKQmX_vy9tqfdI-6QxfMm_Yv98iBy_0ILOTB8bvx9H03r_MQ6y-aEV7KFvxld9f5OtetZWqf5vQ-uWcWI_QYSfSA9FTeJ7exPOmuTw7HHZJwmQF70yd3MdhLUcP2kHxpOUc7ztEiozXnqOEcNZyjNedozTmKnKM_c452nHtEPr8dn745sUzZDksym5VWJJQjZSCYD35PyqRrK1i0ZvD2Z4xlKUwS4KNLW2XSDxLHFcIWkReB584zlaSe9A7Jfl7k6gmhtpsmUSaE9CV4uj5PbFekirFURykCVw5I0DzgWJo97XVplWXcJC8u4haZWCMTIzIDYrcNV7ity81NXjcIxsY7Ra8zBurd3Phlg3kM9lt_lBO5KqpN7HqcwyKIRc5vrmF15QOwoQPyGAnTjtpznQAmUf70X4b3jNzp3tDnZL9cV-oFuSW35XyzPiJ7fBoemdfhB9sE3kA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+prediction+of+water+quality+indices+using+novel+hybrid+machine-learning+algorithms&rft.jtitle=The+Science+of+the+total+environment&rft.au=Bui%2C+Duie+Tien&rft.au=Khosravi%2C+Khabat&rft.au=Tiefenbacher%2C+John&rft.au=Nguyen%2C+Hoang&rft.date=2020-06-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=721&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.137612&rft.externalDocID=S0048969720311232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon