Improving prediction of water quality indices using novel hybrid machine-learning algorithms
River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub...
Gespeichert in:
| Veröffentlicht in: | The Science of the total environment Jg. 721; S. 137612 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
15.06.2020
|
| Schlagworte: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values.
[Display omitted]
•16 novel hybrid data mining algorithm applied for WQI prediction•BA-RT algorithm outperformed while RFC-RT has the lowest prediction power.•Fecal coliform was the most effective predictor on WQI estimation.•The best input combination is not the same for all models. |
|---|---|
| AbstractList | River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQI
) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQI
. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R
= 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values. River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values. [Display omitted] •16 novel hybrid data mining algorithm applied for WQI prediction•BA-RT algorithm outperformed while RFC-RT has the lowest prediction power.•Fecal coliform was the most effective predictor on WQI estimation.•The best input combination is not the same for all models. River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIₛc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIₛc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R² = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values. River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values.River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several water quality variables simultaneously. Traditionally WQI calculations consume time and are often fraught with errors during derivations of sub-indices. In this study, 4 standalone (random forest (RF), M5P, random tree (RT), and reduced error pruning tree (REPT)) and 12 hybrid data-mining algorithms (combinations of standalones with bagging (BA), CV parameter selection (CVPS) and randomizable filtered classification (RFC)) were used to create Iran WQI (IRWQIsc) predictions. Six years (2012 to 2018) of monthly data from two water quality monitoring stations within the Talar catchment were compiled. Using Pearson correlation coefficients, 10 different input combinations were constructed. The data were divided into two groups (ratio 70:30) for model building (training dataset) and model validation (testing dataset) using a 10-fold cross-validation technique. The models were evaluated using several statistical and visual evaluation metrics. Result show that fecal coliform (FC) and total solids (TS) had the greatest and least effect on the prediction of IRWQIsc. The best input combinations varied among the algorithms; generally variables with very low correlations displayed weaker performance. Hybrid algorithms improved the prediction power of several of the standalone models, but not all. Hybrid BA-RT outperformed the other models (R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 0.941, PBIAS = 0.500). PBIAS indicated that all algorithms, with the exceptions of RT, BA-RT and CVPS-REPT, overestimated WQI values. |
| ArticleNumber | 137612 |
| Author | Kazakis, Nerantzis Khosravi, Khabat Tiefenbacher, John Nguyen, Hoang Bui, Duie Tien |
| Author_xml | – sequence: 1 givenname: Duie Tien orcidid: 0000-0001-5161-6479 surname: Bui fullname: Bui, Duie Tien email: buitiendieu@tdtu.edu.vn organization: Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam – sequence: 2 givenname: Khabat surname: Khosravi fullname: Khosravi, Khabat email: kkhosrav@uoguelph.ca organization: School of Engineering, University of Guelph, Guelph, Canada – sequence: 3 givenname: John orcidid: 0000-0001-9342-6550 surname: Tiefenbacher fullname: Tiefenbacher, John email: tief@txstate.edu organization: Department of Geography, Texas State University, San Marcos, TX 78666, USA – sequence: 4 givenname: Hoang orcidid: 0000-0001-6122-8314 surname: Nguyen fullname: Nguyen, Hoang email: nguyenhoang23@duytan.edu.vn organization: Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam – sequence: 5 givenname: Nerantzis surname: Kazakis fullname: Kazakis, Nerantzis email: kazakis@geo.auth.gr organization: Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki, Greece |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32169637$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9v2yAYh9HUaU27fYXNx12c8s9gDjtU1dZWqtRLd5uECH6dENmQAs6Ubz-spDv0Ei5IvM8PxO-5Qhc-eEDoG8FLgom42S6TdTlk8PslxbScMikI_YAWpJWqJpiKC7TAmLe1EkpeoquUtrgs2ZJP6JJRIpRgcoH-PI67GPbOr6tdhM7Z7IKvQl_9NRli9TqZweVD5XwZQaqmNJM-7GGoNodVdF01GrtxHuoBTPTz1AzrEF3ejOkz-tibIcGX036Nfv_6-XL3UD893z_e3T7VlmOea2WAWCsMbyRpO24pBiV534q257zvOG0IZxZDbxuxItQYbBRTTUNkD6uOWXaNvh_vLV95nSBlPbpkYRiMhzAlTXlpoqFtI8-jTErWUK5IQb-e0Gk1Qqd30Y0mHvRbeQX4cQRsDClF6HVxYuYCczRu0ATrWZbe6v-y9CxLH2WVvHyXf3vifPL2mITS6t5BnDnwtgiMYLPugjt7xz86p7Up |
| CitedBy_id | crossref_primary_10_3390_su13169124 crossref_primary_10_1007_s11356_024_32061_2 crossref_primary_10_1016_j_dynatmoce_2025_101579 crossref_primary_10_1016_j_jenvman_2024_121378 crossref_primary_10_2166_ws_2021_157 crossref_primary_10_7717_peerj_cs_591 crossref_primary_10_1016_j_gsd_2024_101156 crossref_primary_10_1016_j_envpol_2024_124015 crossref_primary_10_1007_s11356_022_22906_z crossref_primary_10_36937_cebel_2025_1999 crossref_primary_10_1016_j_ecolind_2021_108318 crossref_primary_10_1016_j_jenvman_2024_122903 crossref_primary_10_1109_ACCESS_2024_3428401 crossref_primary_10_1016_j_jenvman_2022_115923 crossref_primary_10_1016_j_ecoinf_2023_102122 crossref_primary_10_1016_j_scitotenv_2023_165960 crossref_primary_10_1155_2022_8425798 crossref_primary_10_1016_j_scitotenv_2022_156613 crossref_primary_10_1016_j_ecolind_2023_110755 crossref_primary_10_1016_j_jenvman_2024_123305 crossref_primary_10_3390_electronics14132609 crossref_primary_10_1007_s11600_023_01238_7 crossref_primary_10_1016_j_chemosphere_2024_141393 crossref_primary_10_1016_j_horiz_2022_100019 crossref_primary_10_1080_09715010_2024_2316615 crossref_primary_10_1016_j_gsd_2025_101413 crossref_primary_10_1007_s10661_024_13463_8 crossref_primary_10_1007_s12517_021_08036_9 crossref_primary_10_1007_s11356_023_29769_y crossref_primary_10_1080_10106049_2021_1988726 crossref_primary_10_2166_hydro_2025_025 crossref_primary_10_1007_s12665_023_11150_4 crossref_primary_10_1007_s41101_025_00348_1 crossref_primary_10_1016_j_jwpe_2025_108253 crossref_primary_10_1016_j_scitotenv_2022_160687 crossref_primary_10_1016_j_ecoinf_2024_102514 crossref_primary_10_3390_sym12061022 crossref_primary_10_1002_hyp_14565 crossref_primary_10_1007_s00477_021_02152_4 crossref_primary_10_1016_j_scitotenv_2020_141252 crossref_primary_10_1016_j_heliyon_2024_e33695 crossref_primary_10_1007_s00500_023_07953_z crossref_primary_10_3390_ijgi9100566 crossref_primary_10_3390_app15052277 crossref_primary_10_1016_j_rineng_2024_103840 crossref_primary_10_2166_wst_2023_331 crossref_primary_10_1007_s13201_024_02326_9 crossref_primary_10_1007_s00477_022_02262_7 crossref_primary_10_1007_s13201_024_02330_z crossref_primary_10_3390_w16243616 crossref_primary_10_1007_s11069_023_06106_7 crossref_primary_10_7717_peerj_cs_1000 crossref_primary_10_1016_j_jclepro_2022_135671 crossref_primary_10_1016_j_engappai_2025_111867 crossref_primary_10_1016_j_jclepro_2024_140889 crossref_primary_10_1371_journal_pwat_0000400 crossref_primary_10_1007_s11760_025_04635_1 crossref_primary_10_3390_w15122298 crossref_primary_10_1002_wer_10718 crossref_primary_10_1016_j_jwpe_2024_105840 crossref_primary_10_1007_s40899_022_00765_3 crossref_primary_10_1038_s41598_024_71576_z crossref_primary_10_1016_j_jenvman_2024_120091 crossref_primary_10_1016_j_jii_2021_100219 crossref_primary_10_1007_s40899_024_01092_5 crossref_primary_10_1016_j_ecolind_2023_110437 crossref_primary_10_3390_w13182457 crossref_primary_10_1007_s12145_022_00857_w crossref_primary_10_1007_s12517_021_08007_0 crossref_primary_10_1007_s11269_021_03051_7 crossref_primary_10_1007_s11270_023_06342_4 crossref_primary_10_1007_s12665_025_12173_9 crossref_primary_10_1007_s11069_023_06060_4 crossref_primary_10_3390_smartcities6050126 crossref_primary_10_3390_w16192818 crossref_primary_10_3390_environments12050158 crossref_primary_10_2166_wst_2023_237 crossref_primary_10_1007_s12665_024_11419_2 crossref_primary_10_1016_j_catena_2025_108954 crossref_primary_10_1016_j_ecoinf_2024_102868 crossref_primary_10_1111_phn_13264 crossref_primary_10_3390_w15091738 crossref_primary_10_1080_19942060_2020_1861987 crossref_primary_10_1007_s11356_021_14560_8 crossref_primary_10_3390_w15203543 crossref_primary_10_3390_w15203548 crossref_primary_10_1007_s10668_024_05209_w crossref_primary_10_1016_j_asoc_2023_110801 crossref_primary_10_1016_j_jclepro_2023_136885 crossref_primary_10_1007_s12517_022_11045_x crossref_primary_10_1007_s11356_021_14522_0 crossref_primary_10_1016_j_heliyon_2024_e35347 crossref_primary_10_3390_hydrology10050110 crossref_primary_10_1007_s13762_021_03596_5 crossref_primary_10_3390_app122211329 crossref_primary_10_1007_s12517_021_07079_2 crossref_primary_10_1080_17480930_2024_2348877 crossref_primary_10_1016_j_jconhyd_2021_103849 crossref_primary_10_3390_computation13010017 crossref_primary_10_3390_jmse12010159 crossref_primary_10_1016_j_rsma_2022_102260 crossref_primary_10_1007_s41101_024_00239_x crossref_primary_10_1007_s13762_021_03793_2 crossref_primary_10_1016_j_envsoft_2025_106560 crossref_primary_10_1016_j_rineng_2024_102831 crossref_primary_10_1007_s43832_025_00220_2 crossref_primary_10_1016_j_heliyon_2024_e31085 crossref_primary_10_1007_s13201_021_01528_9 crossref_primary_10_1016_j_aej_2025_03_022 crossref_primary_10_1007_s44211_023_00328_2 crossref_primary_10_1007_s11356_024_32984_w crossref_primary_10_1007_s11269_023_03613_x crossref_primary_10_1007_s11356_025_36062_7 crossref_primary_10_1186_s40068_023_00307_6 crossref_primary_10_3390_ijgi9080479 crossref_primary_10_3389_frwa_2020_562304 crossref_primary_10_1016_j_scitotenv_2020_144033 crossref_primary_10_1029_2022EA002320 crossref_primary_10_3390_w15020257 crossref_primary_10_1007_s11600_023_01169_3 crossref_primary_10_1109_ACCESS_2024_3502361 crossref_primary_10_1007_s11356_020_11047_w crossref_primary_10_1016_j_watres_2024_121777 crossref_primary_10_1016_j_jhydrol_2021_126100 crossref_primary_10_1080_10106049_2023_2167005 crossref_primary_10_1016_j_cej_2024_150297 crossref_primary_10_3390_computation11020016 crossref_primary_10_3390_ijerph192013702 crossref_primary_10_1007_s40808_022_01424_4 crossref_primary_10_1016_j_procs_2025_04_372 crossref_primary_10_1007_s12665_025_12388_w crossref_primary_10_1016_j_jwpe_2022_102920 crossref_primary_10_3389_fenvs_2023_1230778 crossref_primary_10_1088_1742_6596_2084_1_012007 crossref_primary_10_1016_j_gsd_2024_101309 crossref_primary_10_1016_j_jenvman_2023_117309 crossref_primary_10_1080_19942060_2024_2394638 crossref_primary_10_2166_wpt_2023_002 crossref_primary_10_2166_hydro_2024_291 crossref_primary_10_1007_s11269_023_03492_2 crossref_primary_10_1016_j_rineng_2025_104265 crossref_primary_10_1007_s11852_023_00975_7 crossref_primary_10_1038_s41598_021_02564_w crossref_primary_10_3390_app13137982 crossref_primary_10_1016_j_ecoinf_2023_102093 crossref_primary_10_1007_s13762_024_05944_7 crossref_primary_10_1016_j_ecoinf_2025_103087 crossref_primary_10_1007_s11356_024_32415_w crossref_primary_10_1016_j_csr_2025_105509 crossref_primary_10_1016_j_watres_2024_122520 crossref_primary_10_1007_s11356_023_30774_4 crossref_primary_10_1080_15715124_2021_1906261 crossref_primary_10_3390_f12091169 crossref_primary_10_3389_fenvs_2021_738322 crossref_primary_10_1016_j_envsoft_2021_105165 crossref_primary_10_1016_j_gsd_2023_101049 crossref_primary_10_3390_w14101552 crossref_primary_10_1016_j_catena_2023_107759 crossref_primary_10_1007_s00521_022_07112_9 crossref_primary_10_3390_w14111729 crossref_primary_10_3390_w14071067 crossref_primary_10_1007_s10653_024_02332_5 crossref_primary_10_1016_j_jenvman_2023_119866 crossref_primary_10_1016_j_watres_2022_119422 crossref_primary_10_3390_w16152107 crossref_primary_10_1007_s40808_022_01638_6 crossref_primary_10_1016_j_jwpe_2024_104789 crossref_primary_10_1002_hyp_14857 crossref_primary_10_1007_s12145_024_01670_3 crossref_primary_10_1016_j_gsd_2024_101221 crossref_primary_10_1007_s11356_025_36120_0 crossref_primary_10_1007_s11356_021_17064_7 crossref_primary_10_1016_j_jksuci_2021_06_003 crossref_primary_10_3390_w16030481 crossref_primary_10_3390_w14142211 crossref_primary_10_1109_ACCESS_2023_3305669 crossref_primary_10_1007_s11600_022_00952_y crossref_primary_10_1109_ACCESS_2022_3221430 crossref_primary_10_3390_su17020497 crossref_primary_10_1016_j_asej_2025_103478 crossref_primary_10_1016_j_jenvman_2023_119896 crossref_primary_10_1016_j_eswa_2024_124900 crossref_primary_10_1038_s41598_022_08875_w crossref_primary_10_1016_j_envpol_2023_121222 crossref_primary_10_1155_2022_3397972 crossref_primary_10_3390_machines12120867 crossref_primary_10_1186_s12302_024_00897_7 crossref_primary_10_1007_s11600_023_01089_2 crossref_primary_10_1016_j_ecoinf_2023_101999 crossref_primary_10_2166_wpt_2024_259 crossref_primary_10_1080_1573062X_2023_2209558 crossref_primary_10_2166_nh_2024_048 crossref_primary_10_1007_s43621_025_01464_7 crossref_primary_10_1007_s10668_023_03630_1 crossref_primary_10_1016_j_ecoinf_2023_101991 crossref_primary_10_1007_s11600_022_00738_2 crossref_primary_10_3390_su13179898 crossref_primary_10_1007_s12517_021_08003_4 crossref_primary_10_1016_j_psep_2022_10_005 crossref_primary_10_1080_10106049_2022_2032388 crossref_primary_10_1371_journal_pwat_0000259 crossref_primary_10_1007_s40808_025_02521_w crossref_primary_10_1007_s11270_025_07997_x crossref_primary_10_1016_j_envres_2023_117755 crossref_primary_10_2166_hydro_2024_132 crossref_primary_10_1007_s40808_022_01494_4 crossref_primary_10_1007_s11071_025_11185_1 crossref_primary_10_3389_fenvs_2022_1061835 crossref_primary_10_1016_j_jece_2024_112915 crossref_primary_10_3390_w15030475 crossref_primary_10_1007_s00500_022_07073_0 crossref_primary_10_2166_ws_2023_119 crossref_primary_10_1016_j_jhydrol_2023_129649 crossref_primary_10_1007_s40808_025_02543_4 crossref_primary_10_1016_j_rsase_2023_101088 crossref_primary_10_1016_j_autcon_2024_105882 crossref_primary_10_2478_jaes_2024_0032 crossref_primary_10_1016_j_scitotenv_2024_175424 crossref_primary_10_1109_ACCESS_2025_3560783 crossref_primary_10_1007_s10661_025_14350_6 crossref_primary_10_1007_s12517_021_07952_0 crossref_primary_10_1016_j_envpol_2023_122456 crossref_primary_10_1016_j_jwpe_2025_108330 crossref_primary_10_1007_s11356_022_18644_x crossref_primary_10_1007_s11356_024_33344_4 crossref_primary_10_3389_fenvs_2024_1434703 crossref_primary_10_1007_s10666_024_09980_y crossref_primary_10_1016_j_uclim_2023_101458 crossref_primary_10_1142_S2047684123500483 crossref_primary_10_1016_j_scitotenv_2023_169819 crossref_primary_10_3846_jcem_2025_23472 crossref_primary_10_1007_s11069_023_06260_y crossref_primary_10_1016_j_heha_2024_100114 crossref_primary_10_1016_j_ecolind_2024_112958 crossref_primary_10_1016_j_micrna_2024_208061 crossref_primary_10_3390_w13192790 crossref_primary_10_1007_s43926_025_00193_7 crossref_primary_10_1016_j_envpol_2024_124242 crossref_primary_10_1038_s41598_025_96941_4 crossref_primary_10_1186_s12302_025_01078_w crossref_primary_10_3389_fevo_2023_1108924 crossref_primary_10_1007_s11356_022_22375_4 crossref_primary_10_1016_j_heliyon_2024_e28527 crossref_primary_10_3390_w15050845 crossref_primary_10_1002_wer_1642 crossref_primary_10_1016_j_jwpe_2025_107235 crossref_primary_10_1016_j_apor_2023_103511 crossref_primary_10_3390_w14213408 crossref_primary_10_1016_j_ecoenv_2021_111992 crossref_primary_10_1016_j_psep_2024_10_054 crossref_primary_10_1016_j_rineng_2025_106665 crossref_primary_10_1016_j_chemosphere_2021_132324 crossref_primary_10_1016_j_scitotenv_2022_159714 crossref_primary_10_1016_j_envpol_2021_117734 crossref_primary_10_1016_j_ecolind_2022_109084 crossref_primary_10_3390_su16229848 crossref_primary_10_1007_s11270_023_06198_8 |
| Cites_doi | 10.1038/s41598-018-33755-7 10.1007/s00521-017-3112-7 10.1016/j.jhydrol.2012.05.031 10.1016/j.scitotenv.2017.02.226 10.1155/2015/521721 10.1007/s11269-014-0632-0 10.1155/2018/8971079 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 10.1007/s11069-016-2357-2 10.1039/c2em30676j 10.1007/s00521-016-2404-7 10.1016/j.compag.2019.105041 10.1016/j.marpolbul.2012.08.005 10.1007/s10661-019-7978-y 10.1016/j.aqpro.2015.02.139 10.1007/s11053-019-09465-w 10.1016/j.scitotenv.2019.133831 10.2166/hydro.2019.037 10.2166/wqrj.2018.025 10.1901/jaba.1998.31-593 10.1901/jaba.1985.18-343 10.1007/s11769-004-0025-z 10.1016/j.scitotenv.2017.09.293 10.13031/2013.23153 10.1007/s11269-018-1915-7 10.1080/10106049.2018.1489422 10.1016/j.envpol.2019.02.011 10.1007/s12665-018-7872-x 10.1007/s13201-018-0859-7 10.1016/j.jhydrol.2019.03.073 10.1016/j.watres.2019.115386 10.3390/w11061305 10.1016/j.jhydrol.2018.10.015 10.1007/s40808-015-0063-9 10.3390/w10091210 10.1007/s00477-016-1338-z 10.1016/j.jhydrol.2016.06.027 10.1007/s11356-014-3806-7 10.1016/j.jhydrol.2019.03.013 10.1007/s10040-019-02017-9 10.1016/j.jenvman.2016.09.082 10.1007/s12040-018-1047-8 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2020.137612 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 32169637 10_1016_j_scitotenv_2020_137612 S0048969720311232 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-9ae1cc6a45718d4c20e974f868f44fd425143c0efc56b12aa0a9395517febd3c3 |
| ISICitedReferencesCount | 292 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535469100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Nov 09 11:31:16 EST 2025 Sat Sep 27 20:00:28 EDT 2025 Wed Feb 19 02:31:00 EST 2025 Tue Nov 18 22:02:17 EST 2025 Sat Nov 29 07:21:46 EST 2025 Fri Feb 23 02:46:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Novel hybrid algorithms Data mining Water quality index Prediction |
| Language | English |
| License | Copyright © 2020 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c404t-9ae1cc6a45718d4c20e974f868f44fd425143c0efc56b12aa0a9395517febd3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5161-6479 0000-0001-9342-6550 0000-0001-6122-8314 |
| PMID | 32169637 |
| PQID | 2377352491 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2400452857 proquest_miscellaneous_2377352491 pubmed_primary_32169637 crossref_citationtrail_10_1016_j_scitotenv_2020_137612 crossref_primary_10_1016_j_scitotenv_2020_137612 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_137612 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-15 |
| PublicationDateYYYYMMDD | 2020-06-15 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tiwari, Babbar, Kaur (bb0415) 2018 Khosravi, Daggupati, Alami, Awadh, Ghareb, Panahi (bb0250) 2019; 167 Busico, Kazakis, Cuoco, Colombani, Tedesco, Voudouris, Mastrocicco (bb0095) 2020; 171 Sahoo, Patra, Khatua (bb8000) 2015; 4 Sakizadeh (bb0385) 2016; 2016 Hamzeh Haghibi, Nasrolahi, Parsaie (bb0190) 2018; 53 Rufino, Busico, Cuoco, Darrah, Tedesco (bb0380) 2019; 191 Chen, Pradhan, Li, Shahabi, Rizeei, Hou, Wang (bb0120) 2019; 28 Moriasi, Arnold, Van Liew, Binger, Harmel, Veith (bb0335) 2007; 50 Kisi, Zounemat-Kermani (bb0275) 2014; 28 Khozani, Khosravi, Pham, Kløve, Mohtar, Yaseen (bb0265) 2019; 21 Bui, Khosravi, Li, Shahabi, Panahi, Singh, Chapi (bb0080) 2018; 10 Yaseen, Ramal, Diop, Jaafar, Demir, Kisi (bb0450) 2018; 32 Harmel, Cooper, Slade, Haney, Arnold (bb0200) 2006; 49 Kahng, Iwata, Fischer, Page, Treadwell, Williams, Smith (bb0220) 1998; 31 De’ath, Fabricius (bb0135) 2000 Ghorbani, Deo, Karimi, Yaseen, Terzi (bb0170) 2017 Misaghi, Delgosha, Razzaghmanesh, Myers (bb0315) 2017; 589 Khosravi, Nohani, Maroufinia, Pourghasemi (bb0235) 2016; 83 Khosravi, Barzegar, Miraki, Adamowski, Daggupati, Pham (bb0255) 2019 Kisi, Dailr, Cimen, Shiri (bb9000) 2012; 450 Barzegar, Moghaddam, Adamowski, Fijani (bb0040) 2016; 31 Machiwal, Cloutier, Güler, Kazakis (bb0310) 2018; 77 Pham, Prakash, Khosravi, Chapi, Trinh, Ngo, Hosseini (bb0355) 2018; 34 Khosravi, Mao, Kisi, Yaseen, Shahid (bb0240) 2018; 567 Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (bb0125) 2018; 615 Touchette, MacDonald, Langer (bb0420) 1985; 18 Kapetas, Kazakis, Voudouris, McNicoll (bb0225) 2019; 695 Bournaris, Papathanasiou, Manos, Kazakis, Voudouris (bb0050) 2015; 15 Gholami, Ghachkanlu, Khosravi, Pirasteh (bb0165) 2019; 128 Wan Mohtar, Abdul Maulud, Muhammad, Sharil, Yaseen (bb0430) 2019; 248 Othman, M E, Mohamed (bb0350) 2012; 14 Hameed, Sharqi, Yaseen, Afan, Hussain, Elshafie (bb0185) 2016; 28 Vadiati, Asghari-Moghadam, Nakhaei, Adamowski, Akbarzadeh (bb0425) 2016; 184 Gazzaz, Yusoff, Zarin Aris, Juahir, Firuz (bb0160) 2012; 64 Chen, Liu (bb0105) 2015 Fathi, Zamani Ahmadmahmoodi, Bidaki (bb0145) 2018; 8 Gazzaz, Yusoff, Aris, Juahir, Ramli (bb0155) 2012; 64 Sharafati, Khosravi, Khosravinia, Ahmed, Salman, Yaseen (bb0400) 2019 Bui, Pradhan, Nampak, Bui, Tran, Nguyen (bb0075) 2016; 540 Khuan, Hamzah, Jailani (bb0270) 2002 Khosravi, Shahabi, Pham, Adamowski, Shirzadi, Pradhan (bb0260) 2019; 573 Termeh, Khosravi, Sartaj, Keesstra, Tsai, Dijksma, Pham (bb0410) 2019; 27 Ahmed, Shah (bb0010) 2015 Leong, Bahadori, Zhang, Ahmad (bb0290) 2019 Mohammadpour, Shaharuddin, Chang (bb0325) 2015; 2015 Iticescu, Georgescu, Murariu, Topa, Timofti, Pintilie, Arseni (bb0215) 2019; 11 Bui, Panahi, Shahabi, Singh, Shirzadi, Chapi, Khosravi (bb0085) 2018; 8 Li, Ali Abdulmohsin, Hasan, Kaiming, Al-Khateeb, Ghareb (bb0295) 2019; 31 Chen, Panahi, Khosravi, Pourghasemi, Rezaie (bb0115) 2019; 572 Yunus, Nakagoshi (bb0455) 2004; 14 Bui (10.1016/j.scitotenv.2020.137612_bb0085) 2018; 8 Gazzaz (10.1016/j.scitotenv.2020.137612_bb0160) 2012; 64 Kisi (10.1016/j.scitotenv.2020.137612_bb0275) 2014; 28 Sharafati (10.1016/j.scitotenv.2020.137612_bb0400) 2019 Tiwari (10.1016/j.scitotenv.2020.137612_bb0415) 2018 Sahoo (10.1016/j.scitotenv.2020.137612_bb8000) 2015; 4 Barzegar (10.1016/j.scitotenv.2020.137612_bb0040) 2016; 31 Bournaris (10.1016/j.scitotenv.2020.137612_bb0050) 2015; 15 Khozani (10.1016/j.scitotenv.2020.137612_bb0265) 2019; 21 De’ath (10.1016/j.scitotenv.2020.137612_bb0135) 2000 Moriasi (10.1016/j.scitotenv.2020.137612_bb0335) 2007; 50 Khosravi (10.1016/j.scitotenv.2020.137612_bb0260) 2019; 573 Yunus (10.1016/j.scitotenv.2020.137612_bb0455) 2004; 14 Hamzeh Haghibi (10.1016/j.scitotenv.2020.137612_bb0190) 2018; 53 Chen (10.1016/j.scitotenv.2020.137612_bb0105) 2015 Ghorbani (10.1016/j.scitotenv.2020.137612_bb0170) 2017 Bui (10.1016/j.scitotenv.2020.137612_bb0075) 2016; 540 Ahmed (10.1016/j.scitotenv.2020.137612_bb0010) 2015 Machiwal (10.1016/j.scitotenv.2020.137612_bb0310) 2018; 77 Khuan (10.1016/j.scitotenv.2020.137612_bb0270) 2002 Kahng (10.1016/j.scitotenv.2020.137612_bb0220) 1998; 31 Khosravi (10.1016/j.scitotenv.2020.137612_bb0250) 2019; 167 Khosravi (10.1016/j.scitotenv.2020.137612_bb0255) 2019 Pham (10.1016/j.scitotenv.2020.137612_bb0355) 2018; 34 Li (10.1016/j.scitotenv.2020.137612_bb0295) 2019; 31 Misaghi (10.1016/j.scitotenv.2020.137612_bb0315) 2017; 589 Wan Mohtar (10.1016/j.scitotenv.2020.137612_bb0430) 2019; 248 Gholami (10.1016/j.scitotenv.2020.137612_bb0165) 2019; 128 Chen (10.1016/j.scitotenv.2020.137612_bb0115) 2019; 572 Touchette (10.1016/j.scitotenv.2020.137612_bb0420) 1985; 18 Harmel (10.1016/j.scitotenv.2020.137612_bb0200) 2006; 49 Othman (10.1016/j.scitotenv.2020.137612_bb0350) 2012; 14 Hameed (10.1016/j.scitotenv.2020.137612_bb0185) 2016; 28 Kapetas (10.1016/j.scitotenv.2020.137612_bb0225) 2019; 695 Gazzaz (10.1016/j.scitotenv.2020.137612_bb0155) 2012; 64 Sakizadeh (10.1016/j.scitotenv.2020.137612_bb0385) 2016; 2016 Bui (10.1016/j.scitotenv.2020.137612_bb0080) 2018; 10 Mohammadpour (10.1016/j.scitotenv.2020.137612_bb0325) 2015; 2015 Fathi (10.1016/j.scitotenv.2020.137612_bb0145) 2018; 8 Termeh (10.1016/j.scitotenv.2020.137612_bb0410) 2019; 27 Choubin (10.1016/j.scitotenv.2020.137612_bb0125) 2018; 615 Chen (10.1016/j.scitotenv.2020.137612_bb0120) 2019; 28 Iticescu (10.1016/j.scitotenv.2020.137612_bb0215) 2019; 11 Khosravi (10.1016/j.scitotenv.2020.137612_bb0240) 2018; 567 Yaseen (10.1016/j.scitotenv.2020.137612_bb0450) 2018; 32 Leong (10.1016/j.scitotenv.2020.137612_bb0290) 2019 Rufino (10.1016/j.scitotenv.2020.137612_bb0380) 2019; 191 Khosravi (10.1016/j.scitotenv.2020.137612_bb0235) 2016; 83 Busico (10.1016/j.scitotenv.2020.137612_bb0095) 2020; 171 Kisi (10.1016/j.scitotenv.2020.137612_bb9000) 2012; 450 Vadiati (10.1016/j.scitotenv.2020.137612_bb0425) 2016; 184 |
| References_xml | – volume: 21 start-page: 798 year: 2019 end-page: 811 ident: bb0265 article-title: Determination of compound channel apparent shear stress: application of novel data mining models publication-title: J. Hydroinf. – volume: 31 start-page: 593 year: 1998 end-page: 604 ident: bb0220 article-title: Temporal distributions of problem behavior based on scatter plot analysis publication-title: J. Appl. Behav. Anal. – volume: 11 start-page: 1305 year: 2019 ident: bb0215 article-title: Lower Danube water quality quantified through WQI and multivariate analysis publication-title: Water – volume: 14 start-page: 3164 year: 2012 end-page: 3173 ident: bb0350 article-title: Trend analysis of a tropical urban river water quality in Malaysia publication-title: J. Environ. Monit. – volume: 567 start-page: 165 year: 2018 end-page: 179 ident: bb0240 article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile publication-title: J. Hydrol. – year: 2018 ident: bb0415 article-title: Performance evaluation of two ANFIS models for predicting water quality index of river Satluj (India) publication-title: Advances in civil engineering – volume: 64 start-page: 2409 year: 2012 end-page: 2420 ident: bb0155 article-title: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors publication-title: Mar. Pollut. Bull. – volume: 14 start-page: 153 year: 2004 end-page: 161 ident: bb0455 article-title: Effects of seasonality on streamflow and water quality of the Pinang River in Penang Island, Malaysia publication-title: Chin. Geogr. Sci. – volume: 53 start-page: 3 year: 2018 end-page: 13 ident: bb0190 article-title: Water quality prediction using machine learning methods publication-title: Water Quality Research Journal – year: 2015 ident: bb0105 article-title: Water quality modeling in reservoirs using multivariate linear regression and two neural network models publication-title: Advances in Artificial Neural Systems – volume: 28 start-page: 1239 year: 2019 end-page: 1258 ident: bb0120 article-title: Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis publication-title: Nat. Resour. Res. – volume: 77 start-page: 681 year: 2018 ident: bb0310 article-title: A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection publication-title: Environmental Earth Science – volume: 615 start-page: 272 year: 2018 end-page: 281 ident: bb0125 article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques publication-title: Sci. Total Environ. – volume: 27 start-page: 2511 year: 2019 end-page: 2534 ident: bb0410 article-title: Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping publication-title: Hydrogeol. J. – volume: 167 year: 2019 ident: bb0250 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq publication-title: Comput. Electron. Agric. – volume: 8 year: 2018 ident: bb0085 article-title: Novel hybrid evolutionary algorithms for spatial prediction of floods publication-title: Sci. Rep. – volume: 10 start-page: 1210 year: 2018 ident: bb0080 article-title: New hybrids of anfis with several optimization algorithms for flood susceptibility modeling publication-title: Water – volume: 31 start-page: 827 year: 2019 end-page: 837 ident: bb0295 article-title: Hybrid soft computing approach for determining quality indicator: Euphrates River publication-title: Neural Comput. & Applic. – year: 2019 ident: bb0255 article-title: Stochastic modeling of groundwater fluoride contamination: introducing lazy learners publication-title: Groundwater – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: bb0335 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE – volume: 184 start-page: 255 year: 2016 end-page: 270 ident: bb0425 article-title: A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices publication-title: J. Environ. Manag. – volume: 8 start-page: 210 year: 2018 ident: bb0145 article-title: Water quality evaluation using water quality index and multivariate methods, Beheshtabad River, Iran publication-title: Appl Water Sci – volume: 695 start-page: 133831 year: 2019 ident: bb0225 article-title: Water allocation coordination and governance in multi-stakeholder environments: insights from Axios Delta, Greece publication-title: Sci. Total Environ. – volume: 15 start-page: 289 year: 2015 end-page: 306 ident: bb0050 article-title: Support of irrigation water use and eco-friendly decision process in agricultural production planning publication-title: Oper. Res. – year: 2019 ident: bb0290 article-title: Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM) publication-title: International Journal of River Basin Management – volume: 83 start-page: 1 year: 2016 end-page: 41 ident: bb0235 article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria method publication-title: Nat. Hazards – volume: 191 start-page: 768 year: 2019 ident: bb0380 article-title: Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy publication-title: Environ. Monit. Assess. – volume: 31 start-page: 2705 year: 2016 end-page: 2718 ident: bb0040 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch. Env. Res. Risk A. – volume: 171 year: 2020 ident: bb0095 article-title: A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses publication-title: Water Res. – volume: 49 start-page: 689 year: 2006 end-page: 701 ident: bb0200 article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds publication-title: Transactions of the American Society of Agricultural and Biological Engineers – year: 2002 ident: bb0270 article-title: Prediction of water quality index (WQI) based on artificial neural network (ANN) publication-title: Student Conference on Research and Development, Shah Alam, Malaysia, Malaysia – volume: 28 start-page: 893 year: 2016 end-page: 905 ident: bb0185 article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia publication-title: Neural Computing and Application – volume: 28 start-page: 2655 year: 2014 end-page: 2675 ident: bb0275 article-title: Comparison of two different adaptive neuro-fuzzy inference systems in modelling daily reference evapotranspiration publication-title: Water Resour. Manag. – volume: 128 start-page: 42 year: 2019 ident: bb0165 article-title: Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method publication-title: Journal of Earth System Science – year: 2000 ident: bb0135 article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis publication-title: Ecology – volume: 450 start-page: 48 year: 2012 end-page: 58 ident: bb9000 article-title: Suspended sediment modeling using genetic programming and soft computing techniques publication-title: J. Hydrol. – volume: 248 start-page: 133 year: 2019 end-page: 144 ident: bb0430 article-title: Spatial and temporal risk quotient based river assessment for water resources management publication-title: Environ. Pollut. – volume: 32 start-page: 2227 year: 2018 end-page: 2245 ident: bb0450 article-title: Hybrid adaptive neuro-fuzzu models for water quality index estimation publication-title: Water Resour. Manag. – volume: 2015 start-page: 6208 year: 2015 ident: bb0325 article-title: Prediction of water quality index in constructed wetlands using support vector machine publication-title: Environ. Sci. Pollut. Res. – start-page: 1 year: 2019 end-page: 18 ident: bb0400 article-title: The potential of novel data mining models for global solar radiation prediction publication-title: Int. J. Environ. Sci. Technol. – start-page: 1 year: 2017 end-page: 15 ident: bb0170 article-title: Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey publication-title: Stoch. Environ. Res. Risk Assess. – volume: 34 start-page: 1385 year: 2018 end-page: 1407 ident: bb0355 article-title: A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling publication-title: Geocarto International – volume: 589 start-page: 107 year: 2017 end-page: 116 ident: bb0315 article-title: Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River publication-title: Sci. Total Environ. – volume: 540 start-page: 317 year: 2016 end-page: 330 ident: bb0075 article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modelling in a high-frequency tropical area publication-title: J. Hydrol. – year: 2015 ident: bb0010 article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River publication-title: Journal of King Saud University – Engineering Sciences – volume: 572 start-page: 435 year: 2019 end-page: 448 ident: bb0115 article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization publication-title: J. Hydrol. – volume: 64 start-page: 2409 year: 2012 end-page: 2420 ident: bb0160 article-title: Artificial neural network modeling of the water quality index for Kinta River using water quality variables as predictors publication-title: Mar. Pollut. Bull. – volume: 4 start-page: 1099 year: 2015 end-page: 1106 ident: bb8000 article-title: Inference of Water Quality Index Using ANFIA and PCA publication-title: Aquatic Procedia – volume: 2016 start-page: 8 year: 2016 ident: bb0385 article-title: Artificial intelligence for the prediction of water quality index in groundwater systems publication-title: Earth Syst. Environ. – volume: 18 start-page: 343 year: 1985 end-page: 351 ident: bb0420 article-title: A scatter plot for identifying stimulus control of problem behavior publication-title: J. Appl. Behav. Anal. – volume: 573 start-page: 311 year: 2019 end-page: 323 ident: bb0260 article-title: A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods publication-title: J. Hydrol. – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0085 article-title: Novel hybrid evolutionary algorithms for spatial prediction of floods publication-title: Sci. Rep. doi: 10.1038/s41598-018-33755-7 – year: 2002 ident: 10.1016/j.scitotenv.2020.137612_bb0270 article-title: Prediction of water quality index (WQI) based on artificial neural network (ANN) – volume: 31 start-page: 827 issue: 3 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0295 article-title: Hybrid soft computing approach for determining quality indicator: Euphrates River publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-017-3112-7 – volume: 49 start-page: 689 issue: 3 year: 2006 ident: 10.1016/j.scitotenv.2020.137612_bb0200 article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds publication-title: Transactions of the American Society of Agricultural and Biological Engineers – volume: 450 start-page: 48 year: 2012 ident: 10.1016/j.scitotenv.2020.137612_bb9000 article-title: Suspended sediment modeling using genetic programming and soft computing techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.05.031 – volume: 589 start-page: 107 issue: 2017 year: 2017 ident: 10.1016/j.scitotenv.2020.137612_bb0315 article-title: Introducing a water quality index for assessing water for irrigation purposes: a case study of the Ghezel Ozan River publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.226 – year: 2015 ident: 10.1016/j.scitotenv.2020.137612_bb0105 article-title: Water quality modeling in reservoirs using multivariate linear regression and two neural network models publication-title: Advances in Artificial Neural Systems doi: 10.1155/2015/521721 – volume: 28 start-page: 2655 issue: 9 year: 2014 ident: 10.1016/j.scitotenv.2020.137612_bb0275 article-title: Comparison of two different adaptive neuro-fuzzy inference systems in modelling daily reference evapotranspiration publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0632-0 – year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0415 article-title: Performance evaluation of two ANFIS models for predicting water quality index of river Satluj (India) publication-title: Advances in civil engineering doi: 10.1155/2018/8971079 – year: 2000 ident: 10.1016/j.scitotenv.2020.137612_bb0135 article-title: Classification and regression trees: a powerful yet simple technique for ecological data analysis publication-title: Ecology doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 – year: 2015 ident: 10.1016/j.scitotenv.2020.137612_bb0010 article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River publication-title: Journal of King Saud University – Engineering Sciences – year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0290 article-title: Prediction of water quality index (WQI) using support vector machine (SVM) and least square-support vector machine (LS-SVM) publication-title: International Journal of River Basin Management – volume: 83 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.scitotenv.2020.137612_bb0235 article-title: A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria method publication-title: Nat. Hazards doi: 10.1007/s11069-016-2357-2 – volume: 14 start-page: 3164 year: 2012 ident: 10.1016/j.scitotenv.2020.137612_bb0350 article-title: Trend analysis of a tropical urban river water quality in Malaysia publication-title: J. Environ. Monit. doi: 10.1039/c2em30676j – start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2020.137612_bb0170 article-title: Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey publication-title: Stoch. Environ. Res. Risk Assess. – year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0255 article-title: Stochastic modeling of groundwater fluoride contamination: introducing lazy learners publication-title: Groundwater – volume: 28 start-page: 893 year: 2016 ident: 10.1016/j.scitotenv.2020.137612_bb0185 article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia publication-title: Neural Computing and Application doi: 10.1007/s00521-016-2404-7 – volume: 167 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0250 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105041 – volume: 64 start-page: 2409 year: 2012 ident: 10.1016/j.scitotenv.2020.137612_bb0155 article-title: Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2012.08.005 – volume: 191 start-page: 768 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0380 article-title: Evaluating the suitability of urban groundwater resources for drinking water and irrigation purposes: an integrated approach in the Agro-Aversano area of Southern Italy publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7978-y – volume: 4 start-page: 1099 year: 2015 ident: 10.1016/j.scitotenv.2020.137612_bb8000 article-title: Inference of Water Quality Index Using ANFIA and PCA publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2015.02.139 – volume: 28 start-page: 1239 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0120 article-title: Novel hybrid integration approach of bagging-based fisher’s linear discriminant function for groundwater potential analysis publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09465-w – volume: 695 start-page: 133831 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0225 article-title: Water allocation coordination and governance in multi-stakeholder environments: insights from Axios Delta, Greece publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.133831 – volume: 21 start-page: 798 issue: 5 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0265 article-title: Determination of compound channel apparent shear stress: application of novel data mining models publication-title: J. Hydroinf. doi: 10.2166/hydro.2019.037 – volume: 53 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0190 article-title: Water quality prediction using machine learning methods publication-title: Water Quality Research Journal doi: 10.2166/wqrj.2018.025 – volume: 31 start-page: 593 year: 1998 ident: 10.1016/j.scitotenv.2020.137612_bb0220 article-title: Temporal distributions of problem behavior based on scatter plot analysis publication-title: J. Appl. Behav. Anal. doi: 10.1901/jaba.1998.31-593 – volume: 18 start-page: 343 year: 1985 ident: 10.1016/j.scitotenv.2020.137612_bb0420 article-title: A scatter plot for identifying stimulus control of problem behavior publication-title: J. Appl. Behav. Anal. doi: 10.1901/jaba.1985.18-343 – volume: 14 start-page: 153 issue: 2 year: 2004 ident: 10.1016/j.scitotenv.2020.137612_bb0455 article-title: Effects of seasonality on streamflow and water quality of the Pinang River in Penang Island, Malaysia publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-004-0025-z – volume: 615 start-page: 272 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0125 article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.293 – volume: 50 start-page: 885 year: 2007 ident: 10.1016/j.scitotenv.2020.137612_bb0335 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – volume: 32 start-page: 2227 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0450 article-title: Hybrid adaptive neuro-fuzzu models for water quality index estimation publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-1915-7 – volume: 34 start-page: 1385 issue: 13 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0355 article-title: A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling publication-title: Geocarto International doi: 10.1080/10106049.2018.1489422 – start-page: 1 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0400 article-title: The potential of novel data mining models for global solar radiation prediction publication-title: Int. J. Environ. Sci. Technol. – volume: 248 start-page: 133 issue: 2019 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0430 article-title: Spatial and temporal risk quotient based river assessment for water resources management publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.011 – volume: 77 start-page: 681 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0310 article-title: A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection publication-title: Environmental Earth Science doi: 10.1007/s12665-018-7872-x – volume: 8 start-page: 210 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0145 article-title: Water quality evaluation using water quality index and multivariate methods, Beheshtabad River, Iran publication-title: Appl Water Sci doi: 10.1007/s13201-018-0859-7 – volume: 15 start-page: 289 year: 2015 ident: 10.1016/j.scitotenv.2020.137612_bb0050 article-title: Support of irrigation water use and eco-friendly decision process in agricultural production planning publication-title: Oper. Res. – volume: 573 start-page: 311 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0260 article-title: A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.073 – volume: 171 year: 2020 ident: 10.1016/j.scitotenv.2020.137612_bb0095 article-title: A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses publication-title: Water Res. doi: 10.1016/j.watres.2019.115386 – volume: 11 start-page: 1305 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0215 article-title: Lower Danube water quality quantified through WQI and multivariate analysis publication-title: Water doi: 10.3390/w11061305 – volume: 567 start-page: 165 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0240 article-title: Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.10.015 – volume: 2016 start-page: 8 issue: 2 year: 2016 ident: 10.1016/j.scitotenv.2020.137612_bb0385 article-title: Artificial intelligence for the prediction of water quality index in groundwater systems publication-title: Earth Syst. Environ. doi: 10.1007/s40808-015-0063-9 – volume: 10 start-page: 1210 issue: 9 year: 2018 ident: 10.1016/j.scitotenv.2020.137612_bb0080 article-title: New hybrids of anfis with several optimization algorithms for flood susceptibility modeling publication-title: Water doi: 10.3390/w10091210 – volume: 31 start-page: 2705 issue: 10 year: 2016 ident: 10.1016/j.scitotenv.2020.137612_bb0040 article-title: Comparison of machine learning models for predicting fluoride contamination in groundwater publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-016-1338-z – volume: 540 start-page: 317 year: 2016 ident: 10.1016/j.scitotenv.2020.137612_bb0075 article-title: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modelling in a high-frequency tropical area publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.06.027 – volume: 64 start-page: 2409 issue: 11 year: 2012 ident: 10.1016/j.scitotenv.2020.137612_bb0160 article-title: Artificial neural network modeling of the water quality index for Kinta River using water quality variables as predictors publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2012.08.005 – volume: 2015 start-page: 6208 issue: 22 year: 2015 ident: 10.1016/j.scitotenv.2020.137612_bb0325 article-title: Prediction of water quality index in constructed wetlands using support vector machine publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3806-7 – volume: 572 start-page: 435 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0115 article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.013 – volume: 27 start-page: 2511 issue: 7 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0410 article-title: Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping publication-title: Hydrogeol. J. doi: 10.1007/s10040-019-02017-9 – volume: 184 start-page: 255 issue: 2 year: 2016 ident: 10.1016/j.scitotenv.2020.137612_bb0425 article-title: A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.09.082 – volume: 128 start-page: 42 issue: 2 year: 2019 ident: 10.1016/j.scitotenv.2020.137612_bb0165 article-title: Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method publication-title: Journal of Earth System Science doi: 10.1007/s12040-018-1047-8 |
| SSID | ssj0000781 |
| Score | 2.687705 |
| Snippet | River water quality assessment is one of the most important tasks to enhance water resources management plans. A water quality index (WQI) considers several... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 137612 |
| SubjectTerms | algorithms data collection Data mining fecal bacteria Iran model validation monitoring Novel hybrid algorithms Prediction pruning river water total solids trees water management water quality Water quality index watersheds |
| Title | Improving prediction of water quality indices using novel hybrid machine-learning algorithms |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2020.137612 https://www.ncbi.nlm.nih.gov/pubmed/32169637 https://www.proquest.com/docview/2377352491 https://www.proquest.com/docview/2400452857 |
| Volume | 721 |
| WOSCitedRecordID | wos000535469100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9NAFB26uwqCiFZX68cygm8lJR-TTOLbIpVVoQiu0AchTCaTbUtNSpvU7V_wV3snd5Lsuq6riC-hhExnknNy587NPXMJeZUlgHLqJ5YuggILFN-zIr3jUBiEvlLMZ4FK6mITfDIJp9PoY6_3vdHCbJc8z8Pz82j1X6GGcwC2ls7-Bdztn8IJ-A2gwxFgh-MfAd-FCVZr_RWmcQm_Cb0fIoootdgv1SZiWNWxgrzYquVwttPyreHXOr9SWcsmaiKWZ8V6Xs7MxuaLjmCNZTCJBmWhpZUXtHPtYr9CPXs115WEOvXZh1mxWYstZhTMRCLaFnBVpvJENJy6mDI8Oat2aC1PCmFmXhO4cHV9GwulmxhNu6KoQQvNwAAHmLM7UmiUQx7BdIHK-sZqcxRWX5kBMBixGIEDATcNdzzSfY8cMKQmX_vy9tqfdI-6QxfMm_Yv98iBy_0ILOTB8bvx9H03r_MQ6y-aEV7KFvxld9f5OtetZWqf5vQ-uWcWI_QYSfSA9FTeJ7exPOmuTw7HHZJwmQF70yd3MdhLUcP2kHxpOUc7ztEiozXnqOEcNZyjNedozTmKnKM_c452nHtEPr8dn745sUzZDksym5VWJJQjZSCYD35PyqRrK1i0ZvD2Z4xlKUwS4KNLW2XSDxLHFcIWkReB584zlaSe9A7Jfl7k6gmhtpsmUSaE9CV4uj5PbFekirFURykCVw5I0DzgWJo97XVplWXcJC8u4haZWCMTIzIDYrcNV7ity81NXjcIxsY7Ra8zBurd3Phlg3kM9lt_lBO5KqpN7HqcwyKIRc5vrmF15QOwoQPyGAnTjtpznQAmUf70X4b3jNzp3tDnZL9cV-oFuSW35XyzPiJ7fBoemdfhB9sE3kA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+prediction+of+water+quality+indices+using+novel+hybrid+machine-learning+algorithms&rft.jtitle=The+Science+of+the+total+environment&rft.au=Bui%2C+Duie+Tien&rft.au=Khosravi%2C+Khabat&rft.au=Tiefenbacher%2C+John&rft.au=Nguyen%2C+Hoang&rft.date=2020-06-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=721&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.137612&rft.externalDocID=S0048969720311232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |