Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound

FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm whi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 17; číslo 5; s. 1265 - 1277
Hlavní autoři: Koldovsky, Z., Tichavsky, P., Oja, E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.09.2006
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227, 1941-0093
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramer-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha>2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo on separating sources with distribution GG(alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
DOI:10.1109/TNN.2006.875991