Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound
FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm whi...
Uloženo v:
| Vydáno v: | IEEE transactions on neural networks Ročník 17; číslo 5; s. 1265 - 1277 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.09.2006
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 1045-9227, 1941-0093 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramer-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha>2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo on separating sources with distribution GG(alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals |
|---|---|
| AbstractList | FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramér-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha > 2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo et al. on separating sources with distribution GG (alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals.FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramér-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha > 2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo et al. on separating sources with distribution GG (alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals. FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramer-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha>2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo on separating sources with distribution GG(alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient, i.e., its accuracy given by the residual error variance attains the Cramér-Rao lower bound (CRB). The error is thus as small as possible. This result is rigorously proven under the assumption that the probability distribution of the independent signal components belongs to the class of generalized Gaussian (GG) distributions with parameter alpha, denoted GG(alpha) for alpha > 2. We name the algorithm efficient FastICA (EFICA). Computational complexity of a Matlab implementation of the algorithm is shown to be only slightly (about three times) higher than that of the standard symmetric FastICA. Simulations corroborate these claims and show superior performance of the algorithm compared with algorithm JADE of Cardoso and Souloumiac and nonparametric ICA of Boscolo et al. on separating sources with distribution GG (alpha) with arbitrary alpha, as well as on sources with bimodal distribution, and a good performance in separating linearly mixed speech signals. |
| Author | Koldovsky, Z. Oja, E. Tichavsky, P. |
| Author_xml | – sequence: 1 givenname: Z. surname: Koldovsky fullname: Koldovsky, Z. organization: Fac. of Nucl. Sci. & Phys. Eng., Czech Tech. Univ., Prague – sequence: 2 givenname: P. surname: Tichavsky fullname: Tichavsky, P. – sequence: 3 givenname: E. surname: Oja fullname: Oja, E. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18100830$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17001986$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9u1DAQxi1URP_AmQMS8gU4ZTtOYsc-blctVFoVCRWukeOMW6PEXmyvUB-B5-LFcNlFK3HoZeaT9ftmrPlOyZEPHgl5zWDBGKjz25ubRQ0gFrLjSrFn5ISpllUAqjkqGlpeqbrujslpSt8BWMtBvCDHrCtaSXFCwqW1zjj0mX7T0enSg6XL6S5El-9neqVTvl4tqQ2RXvsRN1hKgVZh3pSvFLX0enpILtFlztp55-9ovke6inr-_StWX3Sg6_ATI70IWz--JM-tnhK-2vcz8vXq8nb1qVp__lj2rCvTQpsrpc0gdAPWNgI6yQfOrUArmQU2DqYbjEE5IG-0lKMdat5ww8ujAhjrQWJzRj7s5m5i-LHFlPvZJYPTpD2GbeqlEnUtFWeFfP8kKaRUHW-ggG_34HaYcew30c06PvT_jlmAd3tAJ6MnG7U3Lh04yQDk30HnO87EkFJEe0Cgf4y1L7H2j7H2u1iLg__nMC7r7ILPUbvpCd-bnc8h4mGLkJ1qePMHkvyvjg |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1155_2011_506464 crossref_primary_10_3390_a14060165 crossref_primary_10_1088_0022_3727_40_19_033 crossref_primary_10_1016_j_aca_2009_09_019 crossref_primary_10_1109_LSP_2009_2035731 crossref_primary_10_1016_j_future_2019_07_005 crossref_primary_10_1016_j_jmva_2019_104568 crossref_primary_10_1109_JPROC_2009_2024776 crossref_primary_10_1016_j_dsp_2020_102827 crossref_primary_10_1002_hbm_20819 crossref_primary_10_4028_www_scientific_net_AMR_433_440_2551 crossref_primary_10_1109_JSTSP_2019_2938488 crossref_primary_10_1109_LSP_2022_3180680 crossref_primary_10_1109_TNNLS_2018_2806959 crossref_primary_10_1016_j_jfranklin_2025_107819 crossref_primary_10_1109_TNN_2007_908648 crossref_primary_10_1109_TNN_2006_889941 crossref_primary_10_1016_j_jedc_2022_104434 crossref_primary_10_1061__ASCE_WR_1943_5452_0001453 crossref_primary_10_1109_TMTT_2024_3460106 crossref_primary_10_1177_1077546311404730 crossref_primary_10_1109_ACCESS_2020_2976700 crossref_primary_10_1109_TNNLS_2013_2294492 crossref_primary_10_1109_TSP_2020_3022827 crossref_primary_10_1007_s12204_009_0204_2 crossref_primary_10_1007_s00034_014_9861_y crossref_primary_10_1109_TSP_2015_2468686 crossref_primary_10_3389_fninf_2018_00055 crossref_primary_10_1016_j_jphotobiol_2010_03_013 crossref_primary_10_1016_j_sigpro_2009_04_021 crossref_primary_10_1109_RBME_2012_2211076 crossref_primary_10_1007_s00034_013_9731_z crossref_primary_10_1016_j_proeng_2012_01_107 crossref_primary_10_1016_j_neucom_2009_12_001 crossref_primary_10_1109_TNN_2006_880980 crossref_primary_10_3390_sym13020172 crossref_primary_10_1007_s40745_016_0068_x crossref_primary_10_1007_s11517_015_1379_3 crossref_primary_10_1016_j_jneumeth_2017_03_008 crossref_primary_10_1007_s10921_011_0114_8 crossref_primary_10_1016_j_neucom_2013_07_047 crossref_primary_10_7554_eLife_90668 crossref_primary_10_1109_TNN_2007_914154 crossref_primary_10_1109_TSP_2018_2887185 crossref_primary_10_1155_2013_138057 crossref_primary_10_1016_j_jneumeth_2020_108638 crossref_primary_10_1198_004017008000000316 crossref_primary_10_1109_TNN_2007_891664 crossref_primary_10_1109_TSP_2009_2036049 crossref_primary_10_1080_2326263X_2020_1734401 crossref_primary_10_1109_JPROC_2015_2461624 crossref_primary_10_7554_eLife_90668_3 crossref_primary_10_1097_WNP_0b013e31821219f5 crossref_primary_10_1007_s00034_015_0078_5 crossref_primary_10_1016_j_sigpro_2018_05_017 crossref_primary_10_1002_wics_1550 crossref_primary_10_1155_2016_6203972 crossref_primary_10_1016_j_patcog_2017_10_006 crossref_primary_10_1109_TIFS_2012_2206386 crossref_primary_10_1109_TSP_2008_926104 crossref_primary_10_1016_j_compbiomed_2024_109430 crossref_primary_10_1109_TVLSI_2018_2886357 crossref_primary_10_1109_TSP_2010_2055859 crossref_primary_10_1109_TNN_2007_911747 crossref_primary_10_1049_iet_com_2010_0289 crossref_primary_10_1016_j_pnmrs_2014_06_002 crossref_primary_10_1016_j_neuroimage_2012_11_015 crossref_primary_10_1016_j_resuscitation_2010_08_034 crossref_primary_10_1515_revneuro_2016_0052 crossref_primary_10_1109_TIP_2007_906256 crossref_primary_10_1109_TSP_2015_2391071 crossref_primary_10_1016_j_bspc_2011_06_005 crossref_primary_10_1016_j_sigpro_2013_11_015 crossref_primary_10_1186_s13634_020_00697_0 crossref_primary_10_1109_JSTSP_2016_2594945 crossref_primary_10_1109_TSP_2014_2333563 crossref_primary_10_1007_s10548_016_0497_z crossref_primary_10_1109_TCDS_2018_2889223 crossref_primary_10_1002_ima_22680 crossref_primary_10_1016_j_neuroimage_2009_03_018 crossref_primary_10_1109_TSP_2022_3216106 crossref_primary_10_1016_j_bspc_2019_01_017 crossref_primary_10_1016_j_dsp_2019_102611 crossref_primary_10_1007_s11042_017_5542_8 crossref_primary_10_1016_j_eswa_2009_04_054 crossref_primary_10_1109_TCSI_2010_2046207 crossref_primary_10_1155_2014_324750 crossref_primary_10_1016_j_inffus_2017_08_004 crossref_primary_10_1109_TNN_2009_2035920 crossref_primary_10_1016_j_dsp_2016_09_007 crossref_primary_10_1007_s00034_017_0554_1 crossref_primary_10_1515_bmt_2010_705 crossref_primary_10_1007_s11571_011_9161_1 crossref_primary_10_1109_TNN_2007_908636 crossref_primary_10_1109_TSP_2018_2844203 crossref_primary_10_1016_j_jvcir_2016_02_006 crossref_primary_10_1016_j_medengphy_2008_04_017 crossref_primary_10_1088_0004_637X_747_1_12 crossref_primary_10_1109_TNNLS_2015_2412686 crossref_primary_10_1109_TVT_2020_3004175 crossref_primary_10_3390_s17061447 crossref_primary_10_1093_comjnl_bxaa175 crossref_primary_10_1016_j_neuroimage_2008_07_032 crossref_primary_10_1007_s00704_014_1099_x crossref_primary_10_1214_15_STS520 crossref_primary_10_1016_j_neuropsychologia_2023_108708 crossref_primary_10_1016_j_sigpro_2018_04_006 crossref_primary_10_1109_MSP_2013_2287951 crossref_primary_10_1016_j_sigpro_2020_107590 crossref_primary_10_1016_j_compbiomed_2025_110489 crossref_primary_10_1109_MSP_2014_2300511 crossref_primary_10_1002_acs_2702 crossref_primary_10_1002_hbm_26456 crossref_primary_10_1016_j_neucom_2008_08_014 crossref_primary_10_1016_j_pbiomolbio_2010_11_006 crossref_primary_10_1109_TSP_2024_3407162 crossref_primary_10_1016_j_sigpro_2011_03_009 crossref_primary_10_1371_journal_pone_0020227 crossref_primary_10_1109_TASL_2008_2011527 crossref_primary_10_1109_TASL_2010_2049411 crossref_primary_10_1109_LSP_2021_3135193 crossref_primary_10_1007_s00406_016_0721_6 crossref_primary_10_1109_TCSI_2016_2556122 crossref_primary_10_1016_j_neuroimage_2011_08_078 crossref_primary_10_1371_journal_pone_0093984 |
| Cites_doi | 10.1109/TNN.2003.820667 10.1109/78.752592 10.1109/SSP.2003.1289540 10.1109/SSP.2005.1628757 10.1016/0165-1684(94)90029-9 10.1109/TSP.2006.870561 10.1109/MWSCAS.2002.1186887 10.1049/ip-f-2.1993.0054 10.1109/TNN.2003.813843 10.1109/72.761722 10.1109/5.720250 10.1162/neco.1997.9.7.1483 10.1002/0471221317 10.1109/18.312156 10.1109/78.757233 10.1002/0470845899 10.1109/TSP.2004.834398 10.1109/78.599941 10.1002/9780470316436 10.1007/978-3-540-30110-3_22 10.1109/ICASSP.2006.1661415 10.1109/78.650095 |
| ContentType | Journal Article |
| Copyright | 2006 INIST-CNRS |
| Copyright_xml | – notice: 2006 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TNN.2006.875991 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
| EISSN | 1941-0093 |
| EndPage | 1277 |
| ExternalDocumentID | 17001986 18100830 10_1109_TNN_2006_875991 1687935 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c404t-9acb6a30ff360785b55f6ef81f01dbc7bcce8be53a88dfb2535c5bcc900d2b8e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 219 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240511600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1045-9227 |
| IngestDate | Fri Sep 05 12:39:42 EDT 2025 Fri Sep 05 05:13:42 EDT 2025 Wed Feb 19 01:43:47 EST 2025 Mon Jul 21 09:16:41 EDT 2025 Sat Nov 29 03:59:20 EST 2025 Tue Nov 18 22:00:29 EST 2025 Tue Aug 26 16:36:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Source separation Cramér-Rao lower bound (CRB) independent component analysis (ICA) Independent component analysis Error bound Blind deconvolution Neural network Computational complexity Algorithm FastICA blind source separation Algorithm analysis Blind separation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-9acb6a30ff360785b55f6ef81f01dbc7bcce8be53a88dfb2535c5bcc900d2b8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 17001986 |
| PQID | 68897530 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_68897530 crossref_primary_10_1109_TNN_2006_875991 crossref_citationtrail_10_1109_TNN_2006_875991 pascalfrancis_primary_18100830 pubmed_primary_17001986 ieee_primary_1687935 proquest_miscellaneous_896228951 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-09-01 |
| PublicationDateYYYYMMDD | 2006-09-01 |
| PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2006 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | porat (ref16) 1994 koldovsk (ref14) 0 cardoso (ref18) 1994 ref15 koldovsk (ref9) 2005; iii ref11 ref10 ref2 ref1 ref17 ref19 learned-miller (ref12) 2004; 4 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref13) 0 ref28 ref27 ref8 ref7 ref3 ref6 ref5 rao (ref4) 1973 |
| References_xml | – ident: ref11 doi: 10.1109/TNN.2003.820667 – year: 0 ident: ref13 publication-title: The FastICA MATLAB package – ident: ref23 doi: 10.1109/78.752592 – ident: ref27 doi: 10.1109/SSP.2003.1289540 – ident: ref8 doi: 10.1109/SSP.2005.1628757 – ident: ref1 doi: 10.1016/0165-1684(94)90029-9 – ident: ref10 doi: 10.1109/TSP.2006.870561 – ident: ref15 doi: 10.1109/MWSCAS.2002.1186887 – ident: ref5 doi: 10.1049/ip-f-2.1993.0054 – volume: 4 start-page: 1271 year: 2004 ident: ref12 article-title: ica using spacings estimates of entropy publication-title: J Mach Learn Res – year: 1994 ident: ref16 publication-title: Digital Signal Processing of Random Signals – ident: ref25 doi: 10.1109/TNN.2003.813843 – ident: ref7 doi: 10.1109/72.761722 – ident: ref17 doi: 10.1109/5.720250 – ident: ref6 doi: 10.1162/neco.1997.9.7.1483 – ident: ref2 doi: 10.1002/0471221317 – ident: ref20 doi: 10.1109/18.312156 – ident: ref19 doi: 10.1109/78.757233 – volume: iii start-page: 581 year: 2005 ident: ref9 article-title: cramr-rao lower bound for linear independent component analysis publication-title: Proc IEEE Int Conf Acoustics Speech and Signal Processing (ICASSP) – ident: ref3 doi: 10.1002/0470845899 – ident: ref22 doi: 10.1109/TSP.2004.834398 – start-page: 776 year: 1994 ident: ref18 article-title: on the performance of orthogonal source separation algorithms publication-title: Proc Euro Signal Processing Conf (EUSIPCO) – ident: ref21 doi: 10.1109/78.599941 – year: 1973 ident: ref4 publication-title: Linear Statistical Inference and its Applications doi: 10.1002/9780470316436 – ident: ref26 doi: 10.1007/978-3-540-30110-3_22 – ident: ref28 doi: 10.1109/ICASSP.2006.1661415 – ident: ref24 doi: 10.1109/78.650095 – year: 0 ident: ref14 publication-title: The EFICA MATLAB code |
| SSID | ssj0014506 |
| Score | 2.3500726 |
| Snippet | FastICA is one of the most popular algorithms for independent component analysis (ICA), demixing a set of statistically independent sources that have been... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1265 |
| SubjectTerms | Algorithm FastICA Algorithms Applied sciences Artificial Intelligence Asymptotic properties Automation blind deconvolution blind source separation Computational complexity Computational modeling Computer science; control theory; systems Computer Simulation Computing Methodologies Connectionism. Neural networks CramÉr-Rao lower bound (CRB) Data Interpretation, Statistical Deconvolution Errors Exact sciences and technology Independent component analysis independent component analysis (ICA) Information theory Lower bounds Matlab Models, Statistical Neural networks Pattern Recognition, Automated - methods Principal Component Analysis Probability distribution Signal processing Signal processing algorithms Signal Processing, Computer-Assisted Speech |
| Title | Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound |
| URI | https://ieeexplore.ieee.org/document/1687935 https://www.ncbi.nlm.nih.gov/pubmed/17001986 https://www.proquest.com/docview/68897530 https://www.proquest.com/docview/896228951 |
| Volume | 17 |
| WOSCitedRecordID | wos000240511600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0093 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0014506 issn: 1045-9227 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7trjjAgYWWR3kUHxDiQHadOH7kWKqtWGlVIbSg3iLHcWClbYLSdKX9Cfwu_hhjO20XiR64WYljW5kZecbj-T6AtzHTqbaFiCRPsgj34zjSqZRRifojGStNUXp0_Qs5n6vFIvt8AB-2tTDWWn_5zJ64ps_ll41Zu6Oy01goVCd-CIdSilCrtc0YpNzzaGJ0waMsSWQP4xPT7PRyPg9ZB_TN0R1yOKEu25q5-uk7m5FnV3F3I_UKf08VeC32O55-A5od_9_SH8HD3tEkk6AZj-HA1gMYTmoMspe35B3xVz_9mfoAjjfcDqQ39QE8uANUOITmzCNN4BTkGwbXKA3SVGRy_b1pr7ofSzLTq-58OiHoAZPzLbFuR9y4Te1aG_ATMum6QEpB0PUk01Yvf_9qoy-6IReOsI18dDxPT-Dr7Oxy-inqqRoik9K0izJtCqEZrSom0OngBeeVsJWKKxqXhZGFMVYVljOtVFkVCWfccHyYUVomhbLsKRzVuJ7nQARjqVFpTBWGhjimNrEDnbNSV6hFVIzgZCOz3PQ45o5O4zr38QzNcpS3Y9cUeZD3CN5vP_gZIDz2dx060e26BamNYPyXUuzeK4eNxOgI3my0JEfzdDkXXdtmvcqFUq50GXuQPT1UJhKMejlO_izo1274Xk1f_HtZL-F-OBByN95ewVHXru1ruGduuqtVO0YjWaixN5I_-jAM6w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-NgcR4YNBuUP5sfkCIB7I5cZw4j6FatYoSIVTQ3iLHcWDSmqA0ReIj8Ln4YpzttB0SfeDNSi62lTvLd77z7wfwymcylLqIvJgHiYf7se_JMI69Eu0nZqxURWnR9Wdxlomrq-TjHrzd3IXRWtviM31mmjaXXzZqZY7Kzv1IoDnxO3CXh2FA3W2tTc4g5JZJE-ML7iVBEPdAPj5NzudZ5vIO6J2jQ2SQQk2-NTE3qG9tR5ZfxVRHyiX-oMoxW-x2Pe0WNDn8v8k_goe9q0lSZxuPYU_XAximNYbZi5_kNbHFn_ZUfQCHa3YH0i_2ATy4BVU4hObCYk3gEOQLhteoD9JUJL352rTX3bcFmchlNx2nBH1gMt1Q63bE9NvUprWGPyFp1zlaCoLOJxm3cvH7V-t9kg2ZGco28s4wPR3B58nFfHzp9WQNngpp2HmJVEUkGa0qFqHbwQvOq0hXwq-oXxYqLpTSotCcSSHKqgg444rjw4TSMiiEZsewX-N8ngKJGAuVCH0qMDjEPqXyDeycjmWFdkSjEZytdZarHsncEGrc5DaioUmO-jb8mlHu9D2CN5sPvjsQj92iQ6O6rZjT2ghO_jKK7Xth0JEYHcHp2kpyXKAm6yJr3ayWeSSEubyMEmSHhEiiAONejoM_cfa17b4302f_ntYp3L-cf5jls2n2_jkcuOMhU__2Ava7dqVfwj31o7tetid2qfwBvD4PSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+variant+of+algorithm+FastICA+for+independent+component+analysis+attaining+the+Cram%C3%A9r-Rao+lower+bound&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Koldovsk%C3%BD%2C+Zbyn%C4%95k&rft.au=Tichavsk%C3%BD%2C+Petr&rft.au=Oja%2C+Erkki&rft.date=2006-09-01&rft.issn=1045-9227&rft.volume=17&rft.issue=5&rft.spage=1265&rft_id=info:doi/10.1109%2FTNN.2006.875991&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |