Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems

We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy. In this procedure, a coarse grid of training points is used at the initial training stages, while more points are added at later stages based on the value of the resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua Jg. 59; H. 1; S. 345 - 359
Hauptverfasser: Anitescu, Cosmin, Atroshchenko, Elena, Alajlan, Naif, Rabczuk, Timon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Henderson Tech Science Press 2019
Schlagworte:
ISSN:1546-2226, 1546-2218, 1546-2226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for solving partial differential equations using artificial neural networks and an adaptive collocation strategy. In this procedure, a coarse grid of training points is used at the initial training stages, while more points are added at later stages based on the value of the residual at a larger set of evaluation points. This method increases the robustness of the neural network approximation and can result in significant computational savings, particularly when the solution is non-smooth. Numerical results are presented for benchmark problems for scalar-valued PDEs, namely Poisson and Helmholtz equations, as well as for an inverse acoustics problem.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2019.06641