Bayesian Bootstrap Spike-and-Slab LASSO
The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification...
Saved in:
| Published in: | Journal of the American Statistical Association Vol. 118; no. 543; pp. 2013 - 2028 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria
Taylor & Francis
03.07.2023
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure. Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares very well in these comparisons, often providing substantial computational gains.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure. Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares very well in these comparisons, often providing substantial computational gains.
Supplementary materials
for this article are available online. The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure. Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares very well in these comparisons, often providing substantial computational gains. Supplementary materials for this article are available online. |
| Author | Ročková, Veronika Nie, Lizhen |
| Author_xml | – sequence: 1 givenname: Lizhen surname: Nie fullname: Nie, Lizhen organization: Department of Statistics, University of Chicago – sequence: 2 givenname: Veronika surname: Ročková fullname: Ročková, Veronika organization: Booth School of Business, University of Chicago |
| BookMark | eNqFkEtLAzEUhYNUsK3-BKHgQjdTk0wyyeDGtviCQhej4C5k8oDUaVKTKdJ_7wzVTRd6F_duvnO454zAwAdvALhEcIogh7cQFRgRWk4xxLhflCN6AoaI5izDjLwPwLBnsh46A6OU1rAbxvkQXM_l3iQn_WQeQpvaKLeTaus-TCa9zqpG1pPlrKpW5-DUyiaZi587Bm-PD6-L52y5enpZzJaZIpC0GddYQmmZLTgpeY1LUpeQ4cJAxmRtuaK8yLVipeQaGU4oIlorrQuWQ6vLOh-Dm4PvNobPnUmt2LikTNNIb8IuiRwSmPOS8rxDr47QddhF330nMC9KAhEnpKPuDpSKIaVorFCula0LvsvqGoGg6EsUvyWKvkTxU2KnpkfqbXQbGff_6u4POudtiBv5FWKjRSv3TYg2Sq9cF-Vvi29ux4dh |
| CitedBy_id | crossref_primary_10_1016_j_jmva_2025_105461 crossref_primary_10_1093_jrsssb_qkad005 crossref_primary_10_1002_sim_10196 crossref_primary_10_1002_sta4_70044 crossref_primary_10_1016_j_jmva_2025_105493 crossref_primary_10_1080_01621459_2025_2537461 crossref_primary_10_3390_e26090794 crossref_primary_10_1214_24_BA1430 crossref_primary_10_1214_25_BA1531 crossref_primary_10_1080_01621459_2023_2278201 crossref_primary_10_1080_02664763_2025_2511938 |
| Cites_doi | 10.1002/cjs.11570 10.1080/01621459.2017.1360778 10.1080/01621459.2016.1260469 10.1080/01621459.2012.682536 10.1198/016214508000000337 10.1080/01621459.2014.960967 10.1080/01621459.1994.10476894 10.1093/biomet/asp047 10.1214/aoms/1177730390 10.1214/12-STS399 10.1093/biomet/asq017 10.1080/10618600.2019.1593179 10.1080/01621459.2020.1765784 10.1111/j.2517-6161.1994.tb01956.x 10.1198/016214505000000051 10.1080/01621459.2018.1482754 10.1093/bioinformatics/btx684 10.1198/jcgs.2010.09049 10.1111/j.1469-8137.1912.tb05611.x 10.1093/biomet/asw042 10.1214/10-BA523 10.1080/01621459.2013.869223 10.1214/aop/1176989011 10.1088/1751-8113/40/16/005 10.1080/01621459.1988.10478694 10.1214/19-BA1149 10.1287/mksc.1120.0726 10.1002/0471725153 10.1080/01621459.1993.10476353 10.1093/bioinformatics/btx300 10.1214/12-AOAS571 10.1214/17-AOS1554 10.1214/12-BA703 |
| ContentType | Journal Article |
| Copyright | 2022 American Statistical Association 2022 2022 American Statistical Association |
| Copyright_xml | – notice: 2022 American Statistical Association 2022 – notice: 2022 American Statistical Association |
| DBID | AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| DOI | 10.1080/01621459.2022.2025815 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 2028 |
| ExternalDocumentID | 10_1080_01621459_2022_2025815 2025815 |
| Genre | Research Article |
| GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABTAI ABUFD ABXUL ABXYU ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB ADLSF ADMHG AEISY AENEX AEOZL AEPSL AEYOC AFFNX AFRVT AFVYC AFXHP AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P FJW GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P JAS K60 K6~ KYCEM LU7 M4Z MS~ MW2 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM ZGOLN ~S~ AAYXX CITATION 8BJ FQK JBE K9. 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-8d2a0af7f68498b294b90726e077abf8c5863dc79a8d1e84514ddcdd6730fd9b3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767685500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-1459 1537-274X |
| IngestDate | Fri Oct 03 00:11:52 EDT 2025 Fri Nov 14 18:39:03 EST 2025 Sat Nov 29 03:56:46 EST 2025 Tue Nov 18 22:29:39 EST 2025 Mon Oct 20 23:45:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 543 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-8d2a0af7f68498b294b90726e077abf8c5863dc79a8d1e84514ddcdd6730fd9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2869401844 |
| PQPubID | 41715 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2869401844 informaworld_taylorfrancis_310_1080_01621459_2022_2025815 crossref_citationtrail_10_1080_01621459_2022_2025815 crossref_primary_10_1080_01621459_2022_2025815 proquest_miscellaneous_3040389583 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-03 |
| PublicationDateYYYYMMDD | 2023-07-03 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | Lyddon S. (e_1_3_3_24_1) 2018 Johndrow J. E. (e_1_3_3_21_1) 2020; 21 Meyer D. (e_1_3_3_26_1) 2014; 1 Papandreou G. (e_1_3_3_34_1) 2010 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_37_1 e_1_3_3_35_1 Li Z. (e_1_3_3_23_1) 2019 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_40_1 Fong E. (e_1_3_3_14_1) 2019 Ročková V. (e_1_3_3_42_1) 2017 George E. I. (e_1_3_3_16_1) 1997; 7 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 Ando A. (e_1_3_3_2_1) 1963; 53 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_44_1 Xu M. (e_1_3_3_50_1) 2014 e_1_3_3_30_1 e_1_3_3_51_1 Plummer M. (e_1_3_3_36_1) 2006; 6 Geweke J. (e_1_3_3_17_1) 1991 e_1_3_3_19_1 Welling M. (e_1_3_3_49_1) 2011 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_15_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_41_1 Beygelzimer A. (e_1_3_3_5_1) 2013; 1 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_47_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_30_1 doi: 10.1002/cjs.11570 – ident: e_1_3_3_39_1 doi: 10.1080/01621459.2017.1360778 – ident: e_1_3_3_41_1 doi: 10.1080/01621459.2016.1260469 – ident: e_1_3_3_22_1 doi: 10.1080/01621459.2012.682536 – start-page: 2071 year: 2018 ident: e_1_3_3_24_1 article-title: Nonparametric Learning from Bayesian Models with Randomized Objective Functions publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_3_35_1 doi: 10.1198/016214508000000337 – ident: e_1_3_3_7_1 doi: 10.1080/01621459.2014.960967 – ident: e_1_3_3_32_1 – start-page: 571 volume-title: “Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities,” in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface year: 1991 ident: e_1_3_3_17_1 – ident: e_1_3_3_25_1 doi: 10.1080/01621459.1994.10476894 – year: 2017 ident: e_1_3_3_42_1 article-title: “SSLASSO: The Spike-and-Slab LASSO publication-title: ” – ident: e_1_3_3_18_1 doi: 10.1093/biomet/asp047 – start-page: 1858 year: 2010 ident: e_1_3_3_34_1 article-title: Gaussian Sampling by Local Perturbations publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_3_43_1 doi: 10.1214/aoms/1177730390 – ident: e_1_3_3_51_1 doi: 10.1214/12-STS399 – ident: e_1_3_3_10_1 doi: 10.1093/biomet/asq017 – ident: e_1_3_3_12_1 doi: 10.1080/10618600.2019.1593179 – ident: e_1_3_3_3_1 doi: 10.1080/01621459.2020.1765784 – volume: 21 start-page: 1 year: 2020 ident: e_1_3_3_21_1 article-title: “Bayes Shrinkage at GWAS Scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior,” publication-title: Journal of Machine Learning Research – ident: e_1_3_3_31_1 doi: 10.1111/j.2517-6161.1994.tb01956.x – start-page: 681 volume-title: “Bayesian Learning via Stochastic Gradient Langevin Dynamics,” in Proceedings of the 28th International Conference on Machine Learning (ICML-11 year: 2011 ident: e_1_3_3_49_1 – ident: e_1_3_3_19_1 doi: 10.1198/016214505000000051 – volume: 53 start-page: 55 year: 1963 ident: e_1_3_3_2_1 article-title: The “Life Cycle” Hypothesis of Saving: Aggregate Implications and Tests publication-title: The American Economic Review – ident: e_1_3_3_29_1 doi: 10.1080/01621459.2018.1482754 – ident: e_1_3_3_46_1 doi: 10.1093/bioinformatics/btx684 – ident: e_1_3_3_11_1 doi: 10.1198/jcgs.2010.09049 – volume: 7 start-page: 339 year: 1997 ident: e_1_3_3_16_1 article-title: “Approaches for Bayesian Variable Selection publication-title: Statistica Sinica – ident: e_1_3_3_20_1 doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: e_1_3_3_6_1 doi: 10.1093/biomet/asw042 – ident: e_1_3_3_8_1 doi: 10.1214/10-BA523 – ident: e_1_3_3_40_1 doi: 10.1080/01621459.2013.869223 – ident: e_1_3_3_37_1 doi: 10.1214/aop/1176989011 – ident: e_1_3_3_44_1 – ident: e_1_3_3_48_1 doi: 10.1088/1751-8113/40/16/005 – volume: 1 issue: 1 year: 2013 ident: e_1_3_3_5_1 article-title: “FNN: Fast Nearest Neighbor Search Algorithms and Applications publication-title: R package version – volume: 6 start-page: 7 year: 2006 ident: e_1_3_3_36_1 article-title: “CODA: Convergence Diagnosis and Output Analysis for MCMC,” publication-title: R News – ident: e_1_3_3_27_1 doi: 10.1080/01621459.1988.10478694 – ident: e_1_3_3_28_1 doi: 10.1214/19-BA1149 – ident: e_1_3_3_33_1 doi: 10.1287/mksc.1120.0726 – start-page: 3877 volume-title: “Bayesian Joint Spike-and-Slab Graphical Lasso,” in International Conference on Machine Learning year: 2019 ident: e_1_3_3_23_1 – ident: e_1_3_3_4_1 doi: 10.1002/0471725153 – ident: e_1_3_3_15_1 doi: 10.1080/01621459.1993.10476353 – ident: e_1_3_3_47_1 doi: 10.1093/bioinformatics/btx300 – start-page: 3356 year: 2014 ident: e_1_3_3_50_1 article-title: Distributed Bayesian Posterior Sampling via Moment Sharing publication-title: Advances in Neural Information Processing Systems – ident: e_1_3_3_45_1 – ident: e_1_3_3_13_1 doi: 10.1214/12-AOAS571 – ident: e_1_3_3_38_1 doi: 10.1214/17-AOS1554 – volume: 1 issue: 3 year: 2014 ident: e_1_3_3_26_1 article-title: “e1071: Misc Functions of the Department of Statistics (e1071), TU Wien,” publication-title: R package version – start-page: 1952 volume-title: “Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap,” in International Conference on Machine Learning year: 2019 ident: e_1_3_3_14_1 – ident: e_1_3_3_9_1 doi: 10.1214/12-BA703 |
| SSID | ssj0000788 |
| Score | 2.525358 |
| Snippet | The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2013 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian bootstrap Bayesian theory Bootstrap method data collection Measurement Optimization Posterior contraction Sampling Shrinkage Spike-and-Slab LASSO Statistics Truth Uncertainty Weighted likelihood bootstrap |
| Title | Bayesian Bootstrap Spike-and-Slab LASSO |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2025815 https://www.proquest.com/docview/2869401844 https://www.proquest.com/docview/3040389583 |
| Volume | 118 |
| WOSCitedRecordID | wos000767685500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: TFW dateStart: 19220301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keOjFt1itEkHwtNpsNtndoxWLBylCK_YW9gmiJKVNBf-9s3lUi0gPeg6TDbM7M99sZr5B6II4GmmtIcmJZYypjAmWkAXgRDgtYgURTbty2AQbDvlkIh7rasJ5XVbpc2hXEUWUvtobt1TzpiLuGlCK59f2bSbE91KRmJdt5hD6vWmOB89fvpiVkye9BPYiTQ_Pb29ZiU4r3KU_fHUZgAbb__DpO2irRp_BTXVcdtGGzfZQ2wPOiq95H1325Yf1jZVBP88Lfw8yDUbTl1eLYU08gjMTPHgqyAP0NLgb397jepgC1rRHC8wNkT3pmEs4FVwRQRXkxSSxPcakclzHPImMZkJyE1pOAUgZo41JwAU4I1R0iFpZntkjFITUUaaTiBnAH8qGkqhYK6m044AnVdRBtFFiqmumcT_w4i0NG0LSWg2pV0Naq6GDrpZi04pqY52A-L5DaVHecbhqIEkarZHtNtuZ1lY7TwlPBOSbnNIOOl8-BnvzP1FkZvMFvBa8HoC8mEfHf1j-BLX93Pqy7jfqolYxW9hTtKnfYbtnZ-UZ_gRKaOjs |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6igl58i9WqKwieom022U2OKpaKtRcregt5giht0Sr4753Zhw9EPOh5mSRMkplvsjPfELLPIk-dcxDkCCMoN4JRA1EAzVR0SljwaC4WzSbyfl_e3qrPtTCYVokxdCyJIgpbjZcbH6PrlLgjgClIsI11JgyLqZiQWGc-I8DXIn_-oHPzYY3zovckilCUqat4fhrmi3_6wl76zVoXLqiz-B-LXyILFQBNjssTs0ymwnCFzCPmLCmbV8nBiXkNWFuZnIxGE3wKGSdX47v7QGFSegXHJukhG-Qaue6cDU67tOqnQB1v8QmVnpmWiXnMJFfSMsUthMYsC608NzZKJ2SWepcrI307SA5YynvnfQZWIHpl03UyPRwNwwZJ2jzy3GVp7gGC2NA2zApnjXVRAqS0aYPwWovaVWTj2PPiQbdrTtJKDRrVoCs1NMjhu9i4ZNv4TUB93iI9KZ45YtmTRKe_yDbr_dTVxX3STGYKQk7JeYPsvX-GK4f_UcwwjJ5hWDB8gPOETDf_MP0umesOLnu6d96_2CLz2Ma-SANOm2R68vgctsmse4Gtf9wpDvQbJ2rtFg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZSwMxEA6iIr54i9WqKwg-Rdtsdjd59CqKpRSq6FvICaK0pYfgv3dmDw9EfNDnZZIwmUy-yc58Q8ghCzy21kKQk-iEcp0wqiEKoKkMViYGbjQb8mYTWacjHh5kt8wmHJdplRhDh4IoIvfVeLiHLlQZcSeAUpBfG8tMGNZSsURgmfkcQOcUjfy2df_hjLO89SSKUJSpinh-GubL9fSFvPSbs85voNbyP6x9hSyV8DM6Lexllcz4_hpZRMRZEDavk6Mz_eqxsjI6Gwwm-BAyjHrDxydPYU7aA6OJ2sgFuUHuWpe351e07KZALW_wCRWO6YYOWUgFl8IwyQ0Exiz1jSzTJgibiDR2NpNauKYXHJCUc9a5FHxAcNLEm2S2P-j7LRI1eeCZTePMAQAxvqmZSazRxgYBgNLENcIrJSpbUo1jx4tn1awYSUs1KFSDKtVQI8fvYsOCa-M3Afl5h9Qkf-QIRUcSFf8iW6-2U5XHdqyYSCUEnILzGjl4_wwHDv-i6L4fTGFYcHuA8hIRb_9h-n2y0L1oqfZ152aHLGIP-zwHOK6T2clo6nfJvH2BnR_t5eb8BlpJ68g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Bootstrap+Spike-and-Slab+LASSO&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Nie%2C+Lizhen&rft.au=Ro%C4%8Dkov%C3%A1%2C+Veronika&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=118&rft.issue=543&rft.spage=2013&rft.epage=2028&rft_id=info:doi/10.1080%2F01621459.2022.2025815&rft.externalDocID=2025815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |