Bayesian Bootstrap Spike-and-Slab LASSO

The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 118; no. 543; pp. 2013 - 2028
Main Authors: Nie, Lizhen, Ročková, Veronika
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 03.07.2023
Taylor & Francis Ltd
Subjects:
ISSN:0162-1459, 1537-274X, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure. Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares very well in these comparisons, often providing substantial computational gains. Supplementary materials for this article are available online.
AbstractList The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure. Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares very well in these comparisons, often providing substantial computational gains. Supplementary materials for this article are available online.
The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the computational burden, optimization strategies have been proposed that quickly find local posterior modes. Trading off uncertainty quantification for computational speed, these strategies have enabled spike-and-slab deployments at scales that would be previously unfeasible. We build on one recent development in this strand of work: the Spike-and-Slab LASSO procedure. Instead of optimization, however, we explore multiple avenues for posterior sampling, some traditional and some new. Intrigued by the speed of Spike-and-Slab LASSO mode detection, we explore the possibility of sampling from an approximate posterior by performing MAP optimization on many independently perturbed datasets. To this end, we explore Bayesian bootstrap ideas and introduce a new class of jittered Spike-and-Slab LASSO priors with random shrinkage targets. These priors are a key constituent of the Bayesian Bootstrap Spike-and-Slab LASSO (BB-SSL) method proposed here. BB-SSL turns fast optimization into approximate posterior sampling. Beyond its scalability, we show that BB-SSL has a strong theoretical support. Indeed, we find that the induced pseudo-posteriors contract around the truth at a near-optimal rate in sparse normal-means and in high-dimensional regression. We compare our algorithm to the traditional Stochastic Search Variable Selection (under Laplace priors) as well as many state-of-the-art methods for shrinkage priors. We show, both in simulations and on real data, that our method fares very well in these comparisons, often providing substantial computational gains. Supplementary materials for this article are available online.
Author Ročková, Veronika
Nie, Lizhen
Author_xml – sequence: 1
  givenname: Lizhen
  surname: Nie
  fullname: Nie, Lizhen
  organization: Department of Statistics, University of Chicago
– sequence: 2
  givenname: Veronika
  surname: Ročková
  fullname: Ročková, Veronika
  organization: Booth School of Business, University of Chicago
BookMark eNqFkEtLAzEUhYNUsK3-BKHgQjdTk0wyyeDGtviCQhej4C5k8oDUaVKTKdJ_7wzVTRd6F_duvnO454zAwAdvALhEcIogh7cQFRgRWk4xxLhflCN6AoaI5izDjLwPwLBnsh46A6OU1rAbxvkQXM_l3iQn_WQeQpvaKLeTaus-TCa9zqpG1pPlrKpW5-DUyiaZi587Bm-PD6-L52y5enpZzJaZIpC0GddYQmmZLTgpeY1LUpeQ4cJAxmRtuaK8yLVipeQaGU4oIlorrQuWQ6vLOh-Dm4PvNobPnUmt2LikTNNIb8IuiRwSmPOS8rxDr47QddhF330nMC9KAhEnpKPuDpSKIaVorFCula0LvsvqGoGg6EsUvyWKvkTxU2KnpkfqbXQbGff_6u4POudtiBv5FWKjRSv3TYg2Sq9cF-Vvi29ux4dh
CitedBy_id crossref_primary_10_1016_j_jmva_2025_105461
crossref_primary_10_1093_jrsssb_qkad005
crossref_primary_10_1002_sim_10196
crossref_primary_10_1002_sta4_70044
crossref_primary_10_1016_j_jmva_2025_105493
crossref_primary_10_1080_01621459_2025_2537461
crossref_primary_10_3390_e26090794
crossref_primary_10_1214_24_BA1430
crossref_primary_10_1214_25_BA1531
crossref_primary_10_1080_01621459_2023_2278201
crossref_primary_10_1080_02664763_2025_2511938
Cites_doi 10.1002/cjs.11570
10.1080/01621459.2017.1360778
10.1080/01621459.2016.1260469
10.1080/01621459.2012.682536
10.1198/016214508000000337
10.1080/01621459.2014.960967
10.1080/01621459.1994.10476894
10.1093/biomet/asp047
10.1214/aoms/1177730390
10.1214/12-STS399
10.1093/biomet/asq017
10.1080/10618600.2019.1593179
10.1080/01621459.2020.1765784
10.1111/j.2517-6161.1994.tb01956.x
10.1198/016214505000000051
10.1080/01621459.2018.1482754
10.1093/bioinformatics/btx684
10.1198/jcgs.2010.09049
10.1111/j.1469-8137.1912.tb05611.x
10.1093/biomet/asw042
10.1214/10-BA523
10.1080/01621459.2013.869223
10.1214/aop/1176989011
10.1088/1751-8113/40/16/005
10.1080/01621459.1988.10478694
10.1214/19-BA1149
10.1287/mksc.1120.0726
10.1002/0471725153
10.1080/01621459.1993.10476353
10.1093/bioinformatics/btx300
10.1214/12-AOAS571
10.1214/17-AOS1554
10.1214/12-BA703
ContentType Journal Article
Copyright 2022 American Statistical Association 2022
2022 American Statistical Association
Copyright_xml – notice: 2022 American Statistical Association 2022
– notice: 2022 American Statistical Association
DBID AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
DOI 10.1080/01621459.2022.2025815
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 2028
ExternalDocumentID 10_1080_01621459_2022_2025815
2025815
Genre Research Article
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
ID FETCH-LOGICAL-c404t-8d2a0af7f68498b294b90726e077abf8c5863dc79a8d1e84514ddcdd6730fd9b3
IEDL.DBID TFW
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767685500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Fri Oct 03 00:11:52 EDT 2025
Fri Nov 14 18:39:03 EST 2025
Sat Nov 29 03:56:46 EST 2025
Tue Nov 18 22:29:39 EST 2025
Mon Oct 20 23:45:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 543
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-8d2a0af7f68498b294b90726e077abf8c5863dc79a8d1e84514ddcdd6730fd9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2869401844
PQPubID 41715
PageCount 16
ParticipantIDs proquest_journals_2869401844
informaworld_taylorfrancis_310_1080_01621459_2022_2025815
crossref_citationtrail_10_1080_01621459_2022_2025815
crossref_primary_10_1080_01621459_2022_2025815
proquest_miscellaneous_3040389583
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Lyddon S. (e_1_3_3_24_1) 2018
Johndrow J. E. (e_1_3_3_21_1) 2020; 21
Meyer D. (e_1_3_3_26_1) 2014; 1
Papandreou G. (e_1_3_3_34_1) 2010
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_37_1
e_1_3_3_35_1
Li Z. (e_1_3_3_23_1) 2019
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_40_1
Fong E. (e_1_3_3_14_1) 2019
Ročková V. (e_1_3_3_42_1) 2017
George E. I. (e_1_3_3_16_1) 1997; 7
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
Ando A. (e_1_3_3_2_1) 1963; 53
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_44_1
Xu M. (e_1_3_3_50_1) 2014
e_1_3_3_30_1
e_1_3_3_51_1
Plummer M. (e_1_3_3_36_1) 2006; 6
Geweke J. (e_1_3_3_17_1) 1991
e_1_3_3_19_1
Welling M. (e_1_3_3_49_1) 2011
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_15_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
Beygelzimer A. (e_1_3_3_5_1) 2013; 1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_47_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_30_1
  doi: 10.1002/cjs.11570
– ident: e_1_3_3_39_1
  doi: 10.1080/01621459.2017.1360778
– ident: e_1_3_3_41_1
  doi: 10.1080/01621459.2016.1260469
– ident: e_1_3_3_22_1
  doi: 10.1080/01621459.2012.682536
– start-page: 2071
  year: 2018
  ident: e_1_3_3_24_1
  article-title: Nonparametric Learning from Bayesian Models with Randomized Objective Functions
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_3_35_1
  doi: 10.1198/016214508000000337
– ident: e_1_3_3_7_1
  doi: 10.1080/01621459.2014.960967
– ident: e_1_3_3_32_1
– start-page: 571
  volume-title: “Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities,” in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface
  year: 1991
  ident: e_1_3_3_17_1
– ident: e_1_3_3_25_1
  doi: 10.1080/01621459.1994.10476894
– year: 2017
  ident: e_1_3_3_42_1
  article-title: “SSLASSO: The Spike-and-Slab LASSO
  publication-title:
– ident: e_1_3_3_18_1
  doi: 10.1093/biomet/asp047
– start-page: 1858
  year: 2010
  ident: e_1_3_3_34_1
  article-title: Gaussian Sampling by Local Perturbations
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_3_43_1
  doi: 10.1214/aoms/1177730390
– ident: e_1_3_3_51_1
  doi: 10.1214/12-STS399
– ident: e_1_3_3_10_1
  doi: 10.1093/biomet/asq017
– ident: e_1_3_3_12_1
  doi: 10.1080/10618600.2019.1593179
– ident: e_1_3_3_3_1
  doi: 10.1080/01621459.2020.1765784
– volume: 21
  start-page: 1
  year: 2020
  ident: e_1_3_3_21_1
  article-title: “Bayes Shrinkage at GWAS Scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior,”
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_31_1
  doi: 10.1111/j.2517-6161.1994.tb01956.x
– start-page: 681
  volume-title: “Bayesian Learning via Stochastic Gradient Langevin Dynamics,” in Proceedings of the 28th International Conference on Machine Learning (ICML-11
  year: 2011
  ident: e_1_3_3_49_1
– ident: e_1_3_3_19_1
  doi: 10.1198/016214505000000051
– volume: 53
  start-page: 55
  year: 1963
  ident: e_1_3_3_2_1
  article-title: The “Life Cycle” Hypothesis of Saving: Aggregate Implications and Tests
  publication-title: The American Economic Review
– ident: e_1_3_3_29_1
  doi: 10.1080/01621459.2018.1482754
– ident: e_1_3_3_46_1
  doi: 10.1093/bioinformatics/btx684
– ident: e_1_3_3_11_1
  doi: 10.1198/jcgs.2010.09049
– volume: 7
  start-page: 339
  year: 1997
  ident: e_1_3_3_16_1
  article-title: “Approaches for Bayesian Variable Selection
  publication-title: Statistica Sinica
– ident: e_1_3_3_20_1
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: e_1_3_3_6_1
  doi: 10.1093/biomet/asw042
– ident: e_1_3_3_8_1
  doi: 10.1214/10-BA523
– ident: e_1_3_3_40_1
  doi: 10.1080/01621459.2013.869223
– ident: e_1_3_3_37_1
  doi: 10.1214/aop/1176989011
– ident: e_1_3_3_44_1
– ident: e_1_3_3_48_1
  doi: 10.1088/1751-8113/40/16/005
– volume: 1
  issue: 1
  year: 2013
  ident: e_1_3_3_5_1
  article-title: “FNN: Fast Nearest Neighbor Search Algorithms and Applications
  publication-title: R package version
– volume: 6
  start-page: 7
  year: 2006
  ident: e_1_3_3_36_1
  article-title: “CODA: Convergence Diagnosis and Output Analysis for MCMC,”
  publication-title: R News
– ident: e_1_3_3_27_1
  doi: 10.1080/01621459.1988.10478694
– ident: e_1_3_3_28_1
  doi: 10.1214/19-BA1149
– ident: e_1_3_3_33_1
  doi: 10.1287/mksc.1120.0726
– start-page: 3877
  volume-title: “Bayesian Joint Spike-and-Slab Graphical Lasso,” in International Conference on Machine Learning
  year: 2019
  ident: e_1_3_3_23_1
– ident: e_1_3_3_4_1
  doi: 10.1002/0471725153
– ident: e_1_3_3_15_1
  doi: 10.1080/01621459.1993.10476353
– ident: e_1_3_3_47_1
  doi: 10.1093/bioinformatics/btx300
– start-page: 3356
  year: 2014
  ident: e_1_3_3_50_1
  article-title: Distributed Bayesian Posterior Sampling via Moment Sharing
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_3_45_1
– ident: e_1_3_3_13_1
  doi: 10.1214/12-AOAS571
– ident: e_1_3_3_38_1
  doi: 10.1214/17-AOS1554
– volume: 1
  issue: 3
  year: 2014
  ident: e_1_3_3_26_1
  article-title: “e1071: Misc Functions of the Department of Statistics (e1071), TU Wien,”
  publication-title: R package version
– start-page: 1952
  volume-title: “Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap,” in International Conference on Machine Learning
  year: 2019
  ident: e_1_3_3_14_1
– ident: e_1_3_3_9_1
  doi: 10.1214/12-BA703
SSID ssj0000788
Score 2.525358
Snippet The impracticality of posterior sampling has prevented the widespread adoption of spike-and-slab priors in high-dimensional applications. To alleviate the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2013
SubjectTerms Algorithms
Bayesian analysis
Bayesian bootstrap
Bayesian theory
Bootstrap method
data collection
Measurement
Optimization
Posterior contraction
Sampling
Shrinkage
Spike-and-Slab LASSO
Statistics
Truth
Uncertainty
Weighted likelihood bootstrap
Title Bayesian Bootstrap Spike-and-Slab LASSO
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2022.2025815
https://www.proquest.com/docview/2869401844
https://www.proquest.com/docview/3040389583
Volume 118
WOSCitedRecordID wos000767685500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yfNiL3-J0SgXBp2g_0jR5dOLwYQxhU_dW0iYFUdqxdYL_vXdpOx0ie9Dnck25y939kt79jpCL0IMAgEXtgN4kZcrz7SB3CslFMKG9MLN9a0-DaDgUk4l8qKsJ53VZJZ6hs4oowsZqdG6VzJuKuGtAKcivjW0mPvZS-aGwbeaQ-tE1x_3nr1gc2cmTKEFRpOnh-e0tK9lphbv0R6y2Cai__Q-fvkO2avTp3FTbZZdsmHyPtBFwVnzN--Sypz4MNlY6vaIo8R5k6oymL6-Gwpp0BHvGGSAV5AF57N-Nb-9pPUyBpsxlJRXaV67KoowLJkXiS5bAudjnxo0ilWQiDQUPdBpJBRYyggGQ0jrVmkMIyLRMgkPSyovcHBHHyJQjjANoGDIdJIq7WvAoyQxjWnKvQ1ijxDitmcZx4MVb7DWEpLUaYlRDXKuhQ66WYtOKamOdgPxuobi0dxxZNZAkDtbIdhtzxrXXzmNfcAnnTcFYh5wvH4O_4U8UlZtiAa-FqAcgLxTB8R-WPyFtnFtv636DLmmVs4U5JZvpO5h7dmb38Cc7lubz
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yBffitzidWkHwqdqPNE0enTgm1r1s6t5C26QgSjtmJ_jfe9ePuSGyB30ul4S75O6X9O53hJx7NjgATGoH9CZMGtpO0cjdhODCKVe2lxR1a0-B3-_z0UjM18JgWiXeoZOSKKLw1Xi48TG6Tom7ApiCBNtYZ-JgMZXjcawzX_Ug1iJ__rD7_O2N_aL3JIqYKFNX8fw2zEJ8WmAv_eGtixDU3fyPxW-RjQqAGtfljtkmKzrdIU3EnCVl8y656ISfGmsrjU6W5fgUMjYG45dXbcKk5gC2jREgG-QeeezeDm96ZtVPwYypRXOTKye0wsRPGKeCR46gEVyNHaYt3w-jhMceZ66KfRGCkTSngKWUipVi4AUSJSJ3nzTSLNUHxNAiZojkAB16VLlRyCzFmR8lmlIlmN0itNaijCuycex58SbtmpO0UoNENchKDS1yORMbl2wbywTEvIlkXjxzJGVPEukukW3X9pTVwX2XDmcCrpyc0hY5m32GI4f_UcJUZ1MYFhwf4DyPu4d_mP6UrPeGD4EM7vr3R6SJbeyLNGC3TRr5ZKqPyVr8AaafnBQb-gv88-sd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yRfbitzidWkHwqbq2aZo8OnUojjHY1L2FtklAlK5sneB_710_pkPEB30ul4S7y-WX9O53hJz6DgQATGoH9CZsGjpu3sjdhsOFU64c3-R1a4_doNfjo5Hol9mE0zKtEu_QpiCKyGM1bu5UmSoj7gJQCvJrY5mJi7VUrs-xzHwZoDNDJx92nj6DcZC3nkQRG2WqIp6fhlk4nhbIS78F6_wE6qz_w9o3yFoJP63Lwl82yZJOtkgdEWdB2LxNztrhu8bKSqs9Hmf4EJJag_T5Rdswpz0Ap7G6yAW5Qx46N8OrW7vspmDHtEUzmys3bIUmMIxTwSNX0Aguxi7TrSAII8NjnzNPxYEIwUSaU0BSSsVKMYgBRonI2yW1ZJzoPWJpETPEcYANfaq8KGQtxVkQGU2pEsxpEFopUcYl1Th2vHiVTsVIWqpBohpkqYYGOZ-LpQXXxm8C4quFZJY_cpiiI4n0fpFtVuaU5badSpczARdOTmmDnMw_w4bDvyhhosczGBbCHqA8n3v7f5j-mKz2rzuye9e7PyB17GGf5wB7TVLLJjN9SFbiN7D85Ch35w80dunP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Bootstrap+Spike-and-Slab+LASSO&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Nie%2C+Lizhen&rft.au=Ro%C4%8Dkov%C3%A1%2C+Veronika&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=118&rft.issue=543&rft.spage=2013&rft.epage=2028&rft_id=info:doi/10.1080%2F01621459.2022.2025815&rft.externalDocID=2025815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon