Using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms

Accurately predicting key combustion phenomena in reactive-flow simulations, e.g., lean blow-out, extinction/ignition limits and pollutant formation, necessitates the use of detailed chemical kinetics. The large size and high levels of numerical stiffness typically present in chemical kinetic models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame Jg. 198; S. 186 - 204
Hauptverfasser: Curtis, Nicholas J., Niemeyer, Kyle E., Sung, Chih-Jen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Inc 01.12.2018
Elsevier BV
Schlagworte:
ISSN:0010-2180, 1556-2921
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurately predicting key combustion phenomena in reactive-flow simulations, e.g., lean blow-out, extinction/ignition limits and pollutant formation, necessitates the use of detailed chemical kinetics. The large size and high levels of numerical stiffness typically present in chemical kinetic models relevant to transportation/power-generation applications make the efficient evaluation/factorization of the chemical kinetic Jacobian and thermochemical source-terms critical to the performance of reactive-flow codes. Here we investigate the performance of vectorized evaluation of constant-pressure/volume thermochemical source-term and sparse/dense chemical kinetic Jacobians using single-instruction, multiple-data (SIMD) and single-instruction, multiple thread (SIMT) paradigms. These are implemented in pyJac, an open-source, reproducible code generation platform. Selected chemical kinetic models covering the range of sizes typically used in reactive-flow simulations were used for demonstration. A new formulation of the chemical kinetic governing equations was derived and verified, resulting in Jacobian sparsities of 28.6–92.0% for the tested models. Speedups of 3.40–4.08 ×  were found for shallow-vectorized OpenCL source-rate evaluation compared with a parallel OpenMP code on an avx2 central processing unit (CPU), increasing to 6.63–9.44 ×  and 3.03–4.23 ×  for sparse and dense chemical kinetic Jacobian evaluation, respectively. Furthermore, the effect of data-ordering was investigated and a storage pattern specifically formulated for vectorized evaluation was proposed; as well, the effect of the constant pressure/volume assumptions and varying vector widths were studied on source-term evaluation performance. Speedups reached up to 17.60 ×  and 45.13 ×  for dense and sparse evaluation on the GPU, and up to 55.11 ×  and 245.63 ×  on the CPU over a first-order finite-difference Jacobian approach. Further, dense Jacobian evaluation was up to 19.56 ×  and 2.84 ×  times faster than a previous version of pyJac on a CPU and GPU, respectively. Finally, future directions for vectorized chemical kinetic evaluation and sparse linear-algebra techniques were discussed.
AbstractList Accurately predicting key combustion phenomena in reactive-flow simulations, e.g., lean blow-out, extinction/ignition limits and pollutant formation, necessitates the use of detailed chemical kinetics. The large size and high levels of numerical stiffness typically present in chemical kinetic models relevant to transportation/power-generation applications make the efficient evaluation/factorization of the chemical kinetic Jacobian and thermochemical source-terms critical to the performance of reactive-flow codes. Here we investigate the performance of vectorized evaluation of constant-pressure/volume thermochemical source-term and sparse/dense chemical kinetic Jacobians using single-instruction, multiple-data (SIMD) and single-instruction, multiple thread (SIMT) paradigms. These are implemented in pyJac, an open-source, reproducible code generation platform. Selected chemical kinetic models covering the range of sizes typically used in reactive-flow simulations were used for demonstration. A new formulation of the chemical kinetic governing equations was derived and verified, resulting in Jacobian sparsities of 28.6–92.0% for the tested models. Speedups of 3.40–4.08 × were found for shallow-vectorized OpenCL source-rate evaluation compared with a parallel OpenMP code on an avx2 central processing unit (CPU), increasing to 6.63–9.44 × and 3.03–4.23 × for sparse and dense chemical kinetic Jacobian evaluation, respectively. Furthermore, the effect of data-ordering was investigated and a storage pattern specifically formulated for vectorized evaluation was proposed; as well, the effect of the constant pressure/volume assumptions and varying vector widths were studied on source-term evaluation performance. Speedups reached up to 17.60 × and 45.13 × for dense and sparse evaluation on the GPU, and up to 55.11 × and 245.63 × on the CPU over a first-order finite-difference Jacobian approach. Further, dense Jacobian evaluation was up to 19.56 × and 2.84 × times faster than a previous version of pyJac on a CPU and GPU, respectively. Finally, future directions for vectorized chemical kinetic evaluation and sparse linear-algebra techniques were discussed.
Author Niemeyer, Kyle E.
Curtis, Nicholas J.
Sung, Chih-Jen
Author_xml – sequence: 1
  givenname: Nicholas J.
  orcidid: 0000-0002-0303-4711
  surname: Curtis
  fullname: Curtis, Nicholas J.
  email: nicholas.curtis@uconn.edu
  organization: Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
– sequence: 2
  givenname: Kyle E.
  orcidid: 0000-0003-4425-7097
  surname: Niemeyer
  fullname: Niemeyer, Kyle E.
  organization: School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA
– sequence: 3
  givenname: Chih-Jen
  surname: Sung
  fullname: Sung, Chih-Jen
  organization: Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
BookMark eNqNkU1PHDEMhqOKSl2g_yEq5xmc-U5PVHy0IFAP3Z4jT8ZTsp1Jtkl2Ef31zbKoQpw4xYpeP7YeH7ID6ywx9klALkA0p6tcu7nfhDhOOFNegOhykDlA944tRF03WSELccAWAAKyQnTwgR2GsAKAtirLBXv4GYz9xX9c311wtMOuWPIt6ei8-YvROMuj47TFaYOReFijD8T1Pc1G48R_G0vRaH6D2vUGLZ8xeqMpPMHiPfnZ_Q8Ht_GaeEyf4Zi9H3EK9PH5PWLLq8vl-bfs9vvX6_Mvt5muoIpZ14849FJiCaBRCkAiBKh72VdtUY167MauwEaM1TA0dVsO0LZ1q2VV9LXoyyN2sseuvfuzoRDVKi1h00RVJD3QNbJtU-rzPqW9C8HTqNbezOgflQC186xW6qVntfOsQKrkOTWfvWrWJj6Zix7N9DbExR5BycTWkFdBG7KaBuPTKdTgzFsw_wCjRKe8
CitedBy_id crossref_primary_10_3390_en14092710
crossref_primary_10_1016_j_combustflame_2018_09_008
crossref_primary_10_1080_13647830_2022_2153739
crossref_primary_10_1016_j_proci_2022_07_222
crossref_primary_10_1016_j_combustflame_2024_113740
crossref_primary_10_1016_j_cpc_2022_108409
crossref_primary_10_1155_2020_2685238
Cites_doi 10.1016/j.cpc.2017.02.004
10.1016/j.cpc.2018.01.015
10.1137/15M1026237
10.1137/S1064827595295337
10.1016/j.combustflame.2013.06.022
10.1016/j.combustflame.2005.02.015
10.1017/S002211201000039X
10.1002/kin.20603
10.1137/0910062
10.1016/j.jocs.2012.08.017
10.1016/j.combustflame.2014.11.004
10.1039/B614712G
10.1016/j.combustflame.2014.11.003
10.1016/j.combustflame.2007.10.020
10.1145/1089014.1089020
10.1038/s41928-017-0005-9
10.1016/j.jcp.2013.09.025
10.1021/ef300747n
10.1016/S0010-2180(01)00252-8
10.2514/1.B34874
10.1016/j.combustflame.2017.02.005
10.1016/j.pecs.2008.10.002
10.1109/TPDS.2010.106
10.1080/13647830.2011.631032
10.1016/j.combustflame.2010.02.020
10.1016/j.cpc.2012.10.013
10.1080/13647830.2010.499964
10.1137/080717717
10.1080/13647830802245177
10.1109/99.660313
10.1016/j.combustflame.2018.03.017
10.1016/j.combustflame.2009.12.022
10.1016/j.compchemeng.2014.09.016
10.1137/S0895479895291765
10.1002/kin.550260408
10.1016/j.combustflame.2014.07.023
10.1016/j.parco.2011.09.001
10.1016/j.proci.2014.05.113
10.1016/j.combustflame.2012.02.016
10.1145/2560359
10.1016/j.combustflame.2018.09.008
10.1145/2692916.2555258
10.1016/S0010-2180(01)00352-2
10.1007/s10766-014-0320-y
10.1016/0010-2180(92)90034-M
10.1016/j.combustflame.2010.10.020
10.1016/j.combustflame.2006.10.004
10.1109/MM.2008.31
10.1016/j.combustflame.2011.01.024
ContentType Journal Article
Copyright 2018 The Combustion Institute
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018 The Combustion Institute
– notice: Copyright Elsevier BV Dec 2018
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.combustflame.2018.09.008
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1556-2921
EndPage 204
ExternalDocumentID 10_1016_j_combustflame_2018_09_008
S0010218018303997
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c404t-8bfadb99a300ca910aeea005b9b4724fcf8f82a61f4dd6573d07757c942b51b3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452581400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-2180
IngestDate Sun Nov 09 07:29:53 EST 2025
Sat Nov 29 07:28:22 EST 2025
Tue Nov 18 21:38:57 EST 2025
Fri Feb 23 02:27:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sparse
Jacobian
SIMD
SIMT
Chemical kinetics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-8bfadb99a300ca910aeea005b9b4724fcf8f82a61f4dd6573d07757c942b51b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0303-4711
0000-0003-4425-7097
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0010218018303997?via%3Dihub
PQID 2155086977
PQPubID 2045271
PageCount 19
ParticipantIDs proquest_journals_2155086977
crossref_primary_10_1016_j_combustflame_2018_09_008
crossref_citationtrail_10_1016_j_combustflame_2018_09_008
elsevier_sciencedirect_doi_10_1016_j_combustflame_2018_09_008
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Combustion and flame
PublicationYear 2018
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Curtis, Niemeyer, Sung (bib0024) 2017; 179
Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Sorensen (bib0069) 1999
Burke, Chaos, Ju, Dryer, Klippenstein (bib0065) 2011; 44
R.J. Hogan, Adept v1.1, 2015, (Available at
Linford, Michalakes, Vachharajani, Sandu (bib0048) 2011; 22
Pepiot-Desjardins, Pitsch (bib0005) 2008; 154
Pepiot-Desjardins, Pitsch (bib0011) 2008; 12
N.J. Curtis, K.E. Niemeyer, Fileset for testing thread-safety of TChem, figshare, Jan. 2017. doi
Youssefi (bib0031) 2011
Le, Cambier, Cole (bib0040) 2013; 184
Lu, Law (bib0009) 2007; 148
G. Travis CI, Travis CI - test and deploy your code with confidence, 2018
Pharr, Mark (bib0078) 2012
compounds, 2007
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, GRI-Mech 3.0, 1999
Accessed on 02/19/18 (2015).
McNenly, Whitesides, Flowers (bib0070) 2015; 35
D.G. Goodwin, H.K. Moffat, R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, 2017
Ahmed, Mauß, Moréac, Zeuch (bib0010) 2007; 9
Wanner, Hairer (bib0044) 1996
Niemeyer, Curtis, Sung (bib0018) 2017; 215
Perini, Galligani, Reitz (bib0033) 2012; 26
Safta, Najm, Knio (bib0029) 2011
Dijkmans, Schietekat, Van Geem, Marin (bib0035) 2014; 71
Sarathy, Park, Weber, Wang, Veloo, Davis, Togbe, Westbrook, Park, Dayma, Luo, Oehlschlaeger, Egolfopoulos, Lu, Pitz, Sung, Dagaut (bib0068) 2013; 160
M. Babej, P. Jääskeläinen, Debugging auto vectorizer, 2018, (Private Communication). Archived on POCL mailing list.
Hiremath, Ren, Pope (bib0006) 2010; 14
Hochbruck, Lubich, Selhofer (bib0045) 1998; 19
NVIDIA, CUDA C programming guide, version 9.0, 2018
Lu, Law (bib0001) 2009; 35
Dagum, Menon (bib0060) 1998; 5
N.J. Curtis, A minimum working example showing the failure of simple OpenCL code on the NVIDIA Linux x64 Tesla 375.26 Driver, 2018
Hogan (bib0057) 2014; 40
Westbrook, Naik, Herbinet, Pitz, Mehl, Sarathy, Curran (bib0002) 2011; 158
.
Stone, Davis (bib0041) 2013; 29
Sewerin, Rigopoulos (bib0023) 2015; 162
G.G. Howes, Parallel performance and optimization
Gou, Sun, Chen, Ju (bib0015) 2010; 157
Stone, Alferman, Niemeyer (bib0025) 2018; 226
Intel® Corporation, Vectorizer knobs
(b). Accessed on 02/19/18 (2015).
Bauer, Treichler, Aiken (bib0036) 2014; 49
Niemeyer, Sung (bib0022) 2014; 256
Slides from Iowa High Performance Computing Summer School, University of Iowa, 08/2010 - Accessed on 02/19/18.
Klöckner (bib0053) 2014
Spafford, Meredith, Vetter, Chen, Grout, Sankaran (bib0003) 2010
doi
N.J. Curtis, K.E. Niemeyer, pyJac v2.0.0-beta.0, Jun. 2018.
Curtis, Niemeyer, Sung (bib0008) 2015; 162
Lu, Law (bib0004) 2006; 144
C
N.J. Curtis, K.E. Niemeyer, C.-J. Sung, Data, plotting scripts, and figures for “using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms” (Jun 2018).
Gao, Liu, Ren, Lu (bib0019) 2015; 162
Version 2.3.0. doi
H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-temperature combustion reaction model of H
Shi, Green, Wong, Oluwole (bib0038) 2011; 158
Lattner, Adve (bib0063) 2004
Hochbruck, Ostermann, Schweitzer (bib0046) 2009; 47
Turns (bib0052) 2012
clMathLibraries, clmathlibraries
Jääskeläinen, de La Lama, Schnetter, Raiskila, Takala, Berg (bib0059) 2015; 43
Niemeyer, Sung, Raju (bib0007) 2010; 157
Turányi, Tomlin (bib0016) 2016
Intel® Corporation, Using vector data types
Stone, Gohara, Shi (bib0027) 2010; 12
Niemeyer, Sung, Fotache, Lee (bib0039) 2011
Accessed 03-06-18 (2017).
MichaelE1000, Bug report on NVIDIA forums
Schwer, Tolsma, Green, Barton (bib0017) 2002; 128
Bisetti (bib0032) 2012; 16
Lu, Ju, Law (bib0014) 2001; 126
Klöckner, Pinto, Lee, Catanzaro, Ivanov, Fasih (bib0055) 2012; 38
Accessed: 03-12-18 (2018).
NVIDIA, Achieved occupancy, 2018, Achieved Occupancy.
N.J. Curtis, K.E. Niemeyer, pyJac v1.0.6, Feb. 2018. doi
Hansen, Sutherland (bib0034) 2018; 193
Maas, Pope (bib0012) 1992; 88
Lu, Yoo, Chen, Law (bib0037) 2010; 652
Lam, Goussis (bib0013) 1994; 26
Lindholm, Nickolls, Oberman, Montrym (bib0028) 2008; 28
Demmel, Eisenstat, Gilbert, Li, Liu (bib0020) 1999; 20
Shi, Green, Wong, Oluwole (bib0021) 2012; 159
Yonkee, Sutherland (bib0043) 2016; 38
Kroshko, Spiteri (bib0049) 2013; 4
NVIDIA Corporation, Dense linear algebra on GPUs
Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine, der Vorst (bib0071) 1994
Brown, Byrne, Hindmarsh (bib0042) 1989; 10
Intel® Corporation, OpenCL™drivers and runtimes for Intel® architecture, 2018
Gray, Shenoy (bib0050) 2000
Khan, Hounshell, Fuchs (bib0026) 2018; 1
Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, Woodward (bib0047) 2005; 31
CO/C
Kroshko (10.1016/j.combustflame.2018.09.008_bib0049) 2013; 4
Bisetti (10.1016/j.combustflame.2018.09.008_bib0032) 2012; 16
Khan (10.1016/j.combustflame.2018.09.008_bib0026) 2018; 1
Pharr (10.1016/j.combustflame.2018.09.008_bib0078) 2012
Hochbruck (10.1016/j.combustflame.2018.09.008_bib0046) 2009; 47
Turns (10.1016/j.combustflame.2018.09.008_bib0052) 2012
Jääskeläinen (10.1016/j.combustflame.2018.09.008_bib0059) 2015; 43
Lattner (10.1016/j.combustflame.2018.09.008_sbref0056) 2004
Sewerin (10.1016/j.combustflame.2018.09.008_bib0023) 2015; 162
10.1016/j.combustflame.2018.09.008_bib0051
Lu (10.1016/j.combustflame.2018.09.008_bib0014) 2001; 126
10.1016/j.combustflame.2018.09.008_bib0054
Klöckner (10.1016/j.combustflame.2018.09.008_bib0055) 2012; 38
10.1016/j.combustflame.2018.09.008_bib0056
10.1016/j.combustflame.2018.09.008_bib0058
Niemeyer (10.1016/j.combustflame.2018.09.008_bib0007) 2010; 157
Brown (10.1016/j.combustflame.2018.09.008_bib0042) 1989; 10
Curtis (10.1016/j.combustflame.2018.09.008_bib0008) 2015; 162
Turányi (10.1016/j.combustflame.2018.09.008_bib0016) 2016
Sarathy (10.1016/j.combustflame.2018.09.008_bib0068) 2013; 160
Dijkmans (10.1016/j.combustflame.2018.09.008_bib0035) 2014; 71
Maas (10.1016/j.combustflame.2018.09.008_bib0012) 1992; 88
Hindmarsh (10.1016/j.combustflame.2018.09.008_bib0047) 2005; 31
Lu (10.1016/j.combustflame.2018.09.008_bib0037) 2010; 652
Stone (10.1016/j.combustflame.2018.09.008_bib0041) 2013; 29
Curtis (10.1016/j.combustflame.2018.09.008_bib0024) 2017; 179
Barrett (10.1016/j.combustflame.2018.09.008_sbref0061) 1994
Wanner (10.1016/j.combustflame.2018.09.008_bib0044) 1996
10.1016/j.combustflame.2018.09.008_bib0081
Niemeyer (10.1016/j.combustflame.2018.09.008_bib0018) 2017; 215
10.1016/j.combustflame.2018.09.008_bib0080
Gray (10.1016/j.combustflame.2018.09.008_bib0050) 2000
10.1016/j.combustflame.2018.09.008_bib0082
Niemeyer (10.1016/j.combustflame.2018.09.008_bib0039) 2011
Stone (10.1016/j.combustflame.2018.09.008_bib0027) 2010; 12
Klöckner (10.1016/j.combustflame.2018.09.008_bib0053) 2014
Hogan (10.1016/j.combustflame.2018.09.008_bib0057) 2014; 40
Pepiot-Desjardins (10.1016/j.combustflame.2018.09.008_bib0005) 2008; 154
Spafford (10.1016/j.combustflame.2018.09.008_bib0003) 2010
Lu (10.1016/j.combustflame.2018.09.008_bib0009) 2007; 148
Hochbruck (10.1016/j.combustflame.2018.09.008_bib0045) 1998; 19
Anderson (10.1016/j.combustflame.2018.09.008_bib0069) 1999
Shi (10.1016/j.combustflame.2018.09.008_bib0038) 2011; 158
Burke (10.1016/j.combustflame.2018.09.008_bib0065) 2011; 44
Ahmed (10.1016/j.combustflame.2018.09.008_bib0010) 2007; 9
10.1016/j.combustflame.2018.09.008_bib0072
Gou (10.1016/j.combustflame.2018.09.008_bib0015) 2010; 157
10.1016/j.combustflame.2018.09.008_bib0030
10.1016/j.combustflame.2018.09.008_bib0074
10.1016/j.combustflame.2018.09.008_bib0073
10.1016/j.combustflame.2018.09.008_bib0076
10.1016/j.combustflame.2018.09.008_bib0075
Bauer (10.1016/j.combustflame.2018.09.008_bib0036) 2014; 49
Le (10.1016/j.combustflame.2018.09.008_bib0040) 2013; 184
Yonkee (10.1016/j.combustflame.2018.09.008_bib0043) 2016; 38
10.1016/j.combustflame.2018.09.008_bib0077
Lindholm (10.1016/j.combustflame.2018.09.008_bib0028) 2008; 28
10.1016/j.combustflame.2018.09.008_bib0079
McNenly (10.1016/j.combustflame.2018.09.008_bib0070) 2015; 35
Safta (10.1016/j.combustflame.2018.09.008_bib0029) 2011
Shi (10.1016/j.combustflame.2018.09.008_bib0021) 2012; 159
Linford (10.1016/j.combustflame.2018.09.008_bib0048) 2011; 22
Niemeyer (10.1016/j.combustflame.2018.09.008_bib0022) 2014; 256
Lu (10.1016/j.combustflame.2018.09.008_bib0001) 2009; 35
Westbrook (10.1016/j.combustflame.2018.09.008_sbref0002) 2011; 158
Youssefi (10.1016/j.combustflame.2018.09.008_sbref0030) 2011
Lam (10.1016/j.combustflame.2018.09.008_bib0013) 1994; 26
Demmel (10.1016/j.combustflame.2018.09.008_bib0020) 1999; 20
Hiremath (10.1016/j.combustflame.2018.09.008_bib0006) 2010; 14
10.1016/j.combustflame.2018.09.008_bib0061
Dagum (10.1016/j.combustflame.2018.09.008_bib0060) 1998; 5
10.1016/j.combustflame.2018.09.008_bib0062
Schwer (10.1016/j.combustflame.2018.09.008_bib0017) 2002; 128
Perini (10.1016/j.combustflame.2018.09.008_bib0033) 2012; 26
Hansen (10.1016/j.combustflame.2018.09.008_sbref0033) 2018; 193
Pepiot-Desjardins (10.1016/j.combustflame.2018.09.008_bib0011) 2008; 12
10.1016/j.combustflame.2018.09.008_bib0064
Gao (10.1016/j.combustflame.2018.09.008_bib0019) 2015; 162
10.1016/j.combustflame.2018.09.008_bib0067
Lu (10.1016/j.combustflame.2018.09.008_bib0004) 2006; 144
10.1016/j.combustflame.2018.09.008_bib0066
Stone (10.1016/j.combustflame.2018.09.008_bib0025) 2018; 226
References_xml – year: 2016
  ident: bib0016
  article-title: Analysis of kinetic reaction mechanisms
– volume: 1
  start-page: 14
  year: 2018
  end-page: 21
  ident: bib0026
  article-title: Science and research policy at the end of Moore’s law
  publication-title: Nat. Electron.
– reference: Intel® Corporation, OpenCL™drivers and runtimes for Intel® architecture, 2018, (
– volume: 148
  start-page: 117
  year: 2007
  end-page: 126
  ident: bib0009
  article-title: Diffusion coefficient reduction through species bundling
  publication-title: Combust. Flame
– volume: 256
  start-page: 854
  year: 2014
  end-page: 871
  ident: bib0022
  article-title: Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 39
  year: 2008
  end-page: 55
  ident: bib0028
  article-title: NVIDIA Tesla: A unified graphics and computing architecture
  publication-title: IEEE Micro
– reference: Intel® Corporation, Using vector data types,
– volume: 71
  start-page: 521
  year: 2014
  end-page: 531
  ident: bib0035
  article-title: GPU based simulation of reactive mixtures with detailed chemistry in combination with tabulation and an analytical Jacobian
  publication-title: Comput. Chem. Eng.
– volume: 31
  start-page: 363
  year: 2005
  end-page: 396
  ident: bib0047
  article-title: Sundials: suite of nonlinear and differential/algebraic equation solvers
  publication-title: ACM Trans. Math. Softw.
– volume: 5
  start-page: 46
  year: 1998
  end-page: 55
  ident: bib0060
  article-title: OpenMP: an industry standard API for shared-memory programming
  publication-title: Comput. Sci. Eng. IEEE
– reference: N.J. Curtis, K.E. Niemeyer, Fileset for testing thread-safety of TChem, figshare, Jan. 2017. doi:
– reference: G. Travis CI, Travis CI - test and deploy your code with confidence, 2018, (
– volume: 14
  start-page: 619
  year: 2010
  end-page: 652
  ident: bib0006
  article-title: A greedy algorithm for species selection in dimension reduction of combustion chemistry
  publication-title: Combust. Theor. Model.
– volume: 159
  start-page: 2388
  year: 2012
  end-page: 2397
  ident: bib0021
  article-title: Accelerating multi-dimensional combustion simulations using GPU and hybrid explicit/implicit ODE integration
  publication-title: Combust. Flame
– year: 1999
  ident: bib0069
  article-title: LAPACK users’ guide
– reference: ).
– reference: . Accessed on 02/19/18 (2015).
– year: 2011
  ident: bib0029
  article-title: TChem - a software toolkit for the analysis of complex kinetic models
  publication-title: Technical Report
– year: 2011
  ident: bib0039
  article-title: Turbulence-chemistry closure method using graphics processing units: a preliminary test
  publication-title: Fall 2011 Technical Meeting of the Eastern States Section of the Combustion Institute
– reference: ). Accessed: 03-12-18 (2018).
– volume: 652
  start-page: 45—64
  year: 2010
  ident: bib0037
  article-title: Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis
  publication-title: J. Fluid Mech.
– volume: 126
  start-page: 1445
  year: 2001
  end-page: 1455
  ident: bib0014
  article-title: Complex CSP for chemistry reduction and analysis
  publication-title: Combust. Flame
– start-page: 3
  year: 2000
  end-page: 10
  ident: bib0050
  article-title: Rules of thumb in data engineering
  publication-title: Proceedings of the 16th International Conference on Data Engineering
– volume: 154
  start-page: 67
  year: 2008
  end-page: 81
  ident: bib0005
  article-title: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms
  publication-title: Combust. Flame
– volume: 38
  start-page: S264
  year: 2016
  end-page: S281
  ident: bib0043
  article-title: PoKiTT: Exposing task and data parallelism on heterogeneous architectures for detailed chemical kinetics, transport, and thermodynamics calculations
  publication-title: SIAM J. Sci. Comput.
– volume: 22
  start-page: 119
  year: 2011
  end-page: 131
  ident: bib0048
  article-title: Automatic generation of multicore chemical kernels
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 35
  start-page: 581
  year: 2015
  end-page: 587
  ident: bib0070
  article-title: Faster solvers for large kinetic mechanisms using adaptive preconditioners
  publication-title: Proc. Combust. Inst.
– reference: NVIDIA Corporation, Dense linear algebra on GPUs, (
– volume: 20
  start-page: 720
  year: 1999
  end-page: 755
  ident: bib0020
  article-title: A supernodal approach to sparse partial pivoting
  publication-title: SIAM J. Matrix Analys. Appl.
– reference: clMathLibraries, clmathlibraries, (
– volume: 215
  start-page: 188
  year: 2017
  end-page: 203
  ident: bib0018
  article-title: pyJac: analytical Jacobian generator for chemical kinetics
  publication-title: Comput. Phys. Comm.
– volume: 226
  start-page: 18
  year: 2018
  end-page: 29
  ident: bib0025
  article-title: Accelerating finite-rate chemical kinetics with coprocessors: comparing vectorization methods on GPUs, MICs, and CPUs
  publication-title: Comput. Phys. Comm.
– volume: 29
  start-page: 764
  year: 2013
  end-page: 773
  ident: bib0041
  article-title: Techniques for solving stiff chemical kinetics on graphical processing units
  publication-title: J. Propul. Power
– volume: 10
  start-page: 1038
  year: 1989
  end-page: 1051
  ident: bib0042
  article-title: VODE: a variable-coefficient ODE solver
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 157
  start-page: 1760
  year: 2010
  end-page: 1770
  ident: bib0007
  article-title: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis
  publication-title: Combust. Flame
– reference: NVIDIA, Achieved occupancy, 2018, Achieved Occupancy.
– year: 2014
  ident: bib0053
  article-title: Loo.py: transformation-based code generation for GPUs and CPUs
  publication-title: in: Proc. ARRAY ’14: ACM SIGPLAN Workshop Libr., Lang., Compil. Array Progr., Assoc. Comput. Mach.
– volume: 158
  start-page: 836
  year: 2011
  end-page: 847
  ident: bib0038
  article-title: Redesigning combustion modeling algorithms for the graphics processing unit (GPU): chemical kinetic rate evaluation and ordinary differential equation integration
  publication-title: Combust. Flame
– reference: NVIDIA, CUDA C programming guide, version 9.0, 2018, (
– volume: 19
  start-page: 1552
  year: 1998
  end-page: 1574
  ident: bib0045
  article-title: Exponential integrators for large systems of differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 44
  start-page: 444
  year: 2011
  end-page: 474
  ident: bib0065
  article-title: Comprehensive H
  publication-title: Int. J. Chem. Kinet.
– volume: 193
  start-page: 257
  year: 2018
  end-page: 271
  ident: bib0034
  article-title: On the consistency of state vectors and Jacobian matrices
  publication-title: Combust. Flame
– reference: /CO/C
– volume: 12
  start-page: 66
  year: 2010
  end-page: 73
  ident: bib0027
  article-title: OpenCL: A parallel programming standard for heterogeneous computing systems
  publication-title: IEEE Des. Test
– volume: 4
  start-page: 377
  year: 2013
  end-page: 385
  ident: bib0049
  article-title: Efficient SIMD solution of multiple systems of stiff IVPs
  publication-title: J. Comput. Sci
– volume: 128
  start-page: 270
  year: 2002
  end-page: 291
  ident: bib0017
  article-title: On upgrading the numerics in combustion chemistry codes
  publication-title: Combust. Flame
– reference: G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, GRI-Mech 3.0, 1999, (
– volume: 162
  start-page: 1358
  year: 2015
  end-page: 1374
  ident: bib0008
  article-title: An automated target species selection method for dynamic adaptive chemistry simulations
  publication-title: Combust. Flame
– year: 2011
  ident: bib0031
  publication-title: Development of analytic tools for computational flame diagnostics
– reference: D.G. Goodwin, H.K. Moffat, R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, 2017, (
– volume: 35
  start-page: 192
  year: 2009
  end-page: 215
  ident: bib0001
  article-title: Toward accommodating realistic fuel chemistry in large-scale computations
  publication-title: Prog. Energy Combust. Sci.
– year: 1996
  ident: bib0044
  article-title: Solving ordinary differential equations ii: stiff and differential-algebraic problems
– reference: –C
– volume: 49
  start-page: 119
  year: 2014
  end-page: 130
  ident: bib0036
  article-title: Singe: Leveraging warp specialization for high performance on GPUs
  publication-title: SIGPLAN Not.
– start-page: 1
  year: 2012
  end-page: 13
  ident: bib0078
  article-title: ispc: a SPMD compiler for high-performance CPU programming
  publication-title: Innovative Parallel Computing (InPar)
– start-page: 75
  year: 2004
  ident: bib0063
  article-title: LLVM: A compilation framework for lifelong program analysis & transformation
  publication-title: Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime Optimization
– volume: 158
  start-page: 742
  year: 2011
  end-page: 755
  ident: bib0002
  article-title: Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels
  publication-title: Combust. Flame
– volume: 38
  start-page: 157
  year: 2012
  end-page: 174
  ident: bib0055
  article-title: PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation
  publication-title: Parallel Comput.
– start-page: 122
  year: 2010
  end-page: 131
  ident: bib0003
  article-title: Accelerating S3D: A GPGPU case study
  publication-title: Proceedings of the Euro-Par 2009 Parallel Processing Workshops
– volume: 144
  start-page: 24
  year: 2006
  end-page: 36
  ident: bib0004
  article-title: Linear time reduction of large kinetic mechanisms with directed relation graph:
  publication-title: Combust. Flame
– reference: N.J. Curtis, K.E. Niemeyer, pyJac v1.0.6, Feb. 2018. doi:
– year: 1994
  ident: bib0071
  article-title: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
– volume: 162
  start-page: 1375
  year: 2015
  end-page: 1394
  ident: bib0023
  article-title: A methodology for the integration of stiff chemical kinetics on GPUs
  publication-title: Combust. Flame
– reference: R.J. Hogan, Adept v1.1, 2015, (Available at
– reference: N.J. Curtis, K.E. Niemeyer, pyJac v2.0.0-beta.0, Jun. 2018.
– volume: 26
  start-page: 461
  year: 1994
  end-page: 486
  ident: bib0013
  article-title: The CSP method for simplying kinetics
  publication-title: Int. J. Chem. Kinet.
– volume: 40
  start-page: 26
  year: 2014
  ident: bib0057
  article-title: Fast reverse-mode automatic differentiation using expression templates in C++
  publication-title: ACM Trans. Math. Software
– reference: compounds, 2007, (
– volume: 179
  start-page: 312
  year: 2017
  end-page: 324
  ident: bib0024
  article-title: An investigation of GPU-based stiff chemical kinetics integration methods
  publication-title: Combust. Flame
– year: 2012
  ident: bib0052
  article-title: An introduction to combustion: concepts and applications
– reference: ). Slides from Iowa High Performance Computing Summer School, University of Iowa, 08/2010 - Accessed on 02/19/18.
– reference: Intel® Corporation, Vectorizer knobs,
– volume: 9
  start-page: 1107
  year: 2007
  end-page: 1126
  ident: bib0010
  article-title: A comprehensive and compact
  publication-title: Phys. Chem. Chem. Phys.
– reference: ). Accessed 03-06-18 (2017).
– reference: (b). Accessed on 02/19/18 (2015).
– volume: 43
  start-page: 752
  year: 2015
  end-page: 785
  ident: bib0059
  article-title: pocl: A performance-portable OpenCL implementation
  publication-title: Int. J. Parallel Program.
– reference: H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. High-temperature combustion reaction model of H
– volume: 12
  start-page: 1089
  year: 2008
  end-page: 1108
  ident: bib0011
  article-title: An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms
  publication-title: Combust. Theor. Model.
– volume: 157
  start-page: 1111
  year: 2010
  end-page: 1121
  ident: bib0015
  article-title: A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms
  publication-title: Combust. Flame
– volume: 184
  start-page: 596
  year: 2013
  end-page: 606
  ident: bib0040
  article-title: GPU-based flow simulation with detailed chemical kinetics
  publication-title: Comput. Phys. Comm.
– reference: .
– volume: 160
  start-page: 2712
  year: 2013
  end-page: 2728
  ident: bib0068
  article-title: A comprehensive experimental and modeling study of iso-pentanol combustion
  publication-title: Combust. Flame
– volume: 16
  start-page: 387
  year: 2012
  end-page: 418
  ident: bib0032
  article-title: Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions
  publication-title: Combust. Theor. Model.
– reference: ). Version 2.3.0. doi:
– volume: 47
  start-page: 786
  year: 2009
  end-page: 803
  ident: bib0046
  article-title: Exponential Rosenbrock-type methods
  publication-title: SIAM J. Numer. Anal.
– volume: 162
  start-page: 287
  year: 2015
  end-page: 295
  ident: bib0019
  article-title: A dynamic adaptive method for hybrid integration of stiff chemistry
  publication-title: Combust. Flame
– reference: G.G. Howes, Parallel performance and optimization, (
– reference: N.J. Curtis, K.E. Niemeyer, C.-J. Sung, Data, plotting scripts, and figures for “using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms” (Jun 2018).
– volume: 88
  start-page: 239
  year: 1992
  end-page: 264
  ident: bib0012
  article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space
  publication-title: Combust. Flame
– volume: 26
  start-page: 4804
  year: 2012
  end-page: 4822
  ident: bib0033
  article-title: An analytical Jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms
  publication-title: Energy Fuels
– reference: MichaelE1000, Bug report on NVIDIA forums, (
– reference: N.J. Curtis, A minimum working example showing the failure of simple OpenCL code on the NVIDIA Linux x64 Tesla 375.26 Driver, 2018, (
– reference: M. Babej, P. Jääskeläinen, Debugging auto vectorizer, 2018, (Private Communication). Archived on POCL mailing list.
– reference: ). doi:
– ident: 10.1016/j.combustflame.2018.09.008_bib0064
– year: 1994
  ident: 10.1016/j.combustflame.2018.09.008_sbref0061
– volume: 215
  start-page: 188
  year: 2017
  ident: 10.1016/j.combustflame.2018.09.008_bib0018
  article-title: pyJac: analytical Jacobian generator for chemical kinetics
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.02.004
– volume: 226
  start-page: 18
  year: 2018
  ident: 10.1016/j.combustflame.2018.09.008_bib0025
  article-title: Accelerating finite-rate chemical kinetics with coprocessors: comparing vectorization methods on GPUs, MICs, and CPUs
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2018.01.015
– volume: 38
  start-page: S264
  issue: 5
  year: 2016
  ident: 10.1016/j.combustflame.2018.09.008_bib0043
  article-title: PoKiTT: Exposing task and data parallelism on heterogeneous architectures for detailed chemical kinetics, transport, and thermodynamics calculations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1026237
– volume: 19
  start-page: 1552
  issue: 5
  year: 1998
  ident: 10.1016/j.combustflame.2018.09.008_bib0045
  article-title: Exponential integrators for large systems of differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595295337
– volume: 160
  start-page: 2712
  issue: 12
  year: 2013
  ident: 10.1016/j.combustflame.2018.09.008_bib0068
  article-title: A comprehensive experimental and modeling study of iso-pentanol combustion
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2013.06.022
– volume: 144
  start-page: 24
  issue: 1–2
  year: 2006
  ident: 10.1016/j.combustflame.2018.09.008_bib0004
  article-title: Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2005.02.015
– volume: 652
  start-page: 45—64
  year: 2010
  ident: 10.1016/j.combustflame.2018.09.008_bib0037
  article-title: Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211201000039X
– volume: 44
  start-page: 444
  issue: 7
  year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_bib0065
  article-title: Comprehensive H2/O2 kinetic model for high-pressure combustion
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20603
– ident: 10.1016/j.combustflame.2018.09.008_bib0080
– year: 2014
  ident: 10.1016/j.combustflame.2018.09.008_bib0053
  article-title: Loo.py: transformation-based code generation for GPUs and CPUs
– ident: 10.1016/j.combustflame.2018.09.008_bib0074
– volume: 10
  start-page: 1038
  issue: 5
  year: 1989
  ident: 10.1016/j.combustflame.2018.09.008_bib0042
  article-title: VODE: a variable-coefficient ODE solver
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0910062
– ident: 10.1016/j.combustflame.2018.09.008_bib0051
– volume: 4
  start-page: 377
  issue: 5
  year: 2013
  ident: 10.1016/j.combustflame.2018.09.008_bib0049
  article-title: Efficient SIMD solution of multiple systems of stiff IVPs
  publication-title: J. Comput. Sci
  doi: 10.1016/j.jocs.2012.08.017
– volume: 12
  start-page: 66
  issue: 3
  year: 2010
  ident: 10.1016/j.combustflame.2018.09.008_bib0027
  article-title: OpenCL: A parallel programming standard for heterogeneous computing systems
  publication-title: IEEE Des. Test
– year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_bib0029
  article-title: TChem - a software toolkit for the analysis of complex kinetic models
– volume: 162
  start-page: 1358
  issue: 4
  year: 2015
  ident: 10.1016/j.combustflame.2018.09.008_bib0008
  article-title: An automated target species selection method for dynamic adaptive chemistry simulations
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.11.004
– volume: 9
  start-page: 1107
  issue: 9
  year: 2007
  ident: 10.1016/j.combustflame.2018.09.008_bib0010
  article-title: A comprehensive and compact n-heptane oxidation model derived using chemical lumping
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B614712G
– volume: 162
  start-page: 1375
  issue: 4
  year: 2015
  ident: 10.1016/j.combustflame.2018.09.008_bib0023
  article-title: A methodology for the integration of stiff chemical kinetics on GPUs
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.11.003
– volume: 154
  start-page: 67
  issue: 1–2
  year: 2008
  ident: 10.1016/j.combustflame.2018.09.008_bib0005
  article-title: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2007.10.020
– ident: 10.1016/j.combustflame.2018.09.008_bib0061
– start-page: 122
  year: 2010
  ident: 10.1016/j.combustflame.2018.09.008_bib0003
  article-title: Accelerating S3D: A GPGPU case study
– volume: 31
  start-page: 363
  issue: 3
  year: 2005
  ident: 10.1016/j.combustflame.2018.09.008_bib0047
  article-title: Sundials: suite of nonlinear and differential/algebraic equation solvers
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1089014.1089020
– ident: 10.1016/j.combustflame.2018.09.008_bib0079
– ident: 10.1016/j.combustflame.2018.09.008_bib0081
– volume: 1
  start-page: 14
  issue: 1
  year: 2018
  ident: 10.1016/j.combustflame.2018.09.008_bib0026
  article-title: Science and research policy at the end of Moore’s law
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0005-9
– ident: 10.1016/j.combustflame.2018.09.008_bib0054
– volume: 256
  start-page: 854
  year: 2014
  ident: 10.1016/j.combustflame.2018.09.008_bib0022
  article-title: Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.09.025
– volume: 26
  start-page: 4804
  issue: 8
  year: 2012
  ident: 10.1016/j.combustflame.2018.09.008_bib0033
  article-title: An analytical Jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms
  publication-title: Energy Fuels
  doi: 10.1021/ef300747n
– ident: 10.1016/j.combustflame.2018.09.008_bib0058
– ident: 10.1016/j.combustflame.2018.09.008_bib0075
– volume: 126
  start-page: 1445
  issue: 1–2
  year: 2001
  ident: 10.1016/j.combustflame.2018.09.008_bib0014
  article-title: Complex CSP for chemistry reduction and analysis
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(01)00252-8
– volume: 29
  start-page: 764
  issue: 4
  year: 2013
  ident: 10.1016/j.combustflame.2018.09.008_bib0041
  article-title: Techniques for solving stiff chemical kinetics on graphical processing units
  publication-title: J. Propul. Power
  doi: 10.2514/1.B34874
– year: 2012
  ident: 10.1016/j.combustflame.2018.09.008_bib0052
– volume: 179
  start-page: 312
  year: 2017
  ident: 10.1016/j.combustflame.2018.09.008_bib0024
  article-title: An investigation of GPU-based stiff chemical kinetics integration methods
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.02.005
– volume: 35
  start-page: 192
  issue: 2
  year: 2009
  ident: 10.1016/j.combustflame.2018.09.008_bib0001
  article-title: Toward accommodating realistic fuel chemistry in large-scale computations
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.10.002
– volume: 22
  start-page: 119
  issue: 1
  year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_bib0048
  article-title: Automatic generation of multicore chemical kernels
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2010.106
– start-page: 3
  year: 2000
  ident: 10.1016/j.combustflame.2018.09.008_bib0050
  article-title: Rules of thumb in data engineering
– volume: 16
  start-page: 387
  issue: 3
  year: 2012
  ident: 10.1016/j.combustflame.2018.09.008_bib0032
  article-title: Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions
  publication-title: Combust. Theor. Model.
  doi: 10.1080/13647830.2011.631032
– ident: 10.1016/j.combustflame.2018.09.008_bib0072
– year: 1996
  ident: 10.1016/j.combustflame.2018.09.008_bib0044
– start-page: 75
  year: 2004
  ident: 10.1016/j.combustflame.2018.09.008_sbref0056
  article-title: LLVM: A compilation framework for lifelong program analysis & transformation
– ident: 10.1016/j.combustflame.2018.09.008_bib0066
– volume: 157
  start-page: 1111
  issue: 6
  year: 2010
  ident: 10.1016/j.combustflame.2018.09.008_bib0015
  article-title: A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2010.02.020
– volume: 184
  start-page: 596
  issue: 3
  year: 2013
  ident: 10.1016/j.combustflame.2018.09.008_bib0040
  article-title: GPU-based flow simulation with detailed chemical kinetics
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2012.10.013
– ident: 10.1016/j.combustflame.2018.09.008_bib0062
– volume: 14
  start-page: 619
  issue: 5
  year: 2010
  ident: 10.1016/j.combustflame.2018.09.008_bib0006
  article-title: A greedy algorithm for species selection in dimension reduction of combustion chemistry
  publication-title: Combust. Theor. Model.
  doi: 10.1080/13647830.2010.499964
– volume: 47
  start-page: 786
  issue: 1
  year: 2009
  ident: 10.1016/j.combustflame.2018.09.008_bib0046
  article-title: Exponential Rosenbrock-type methods
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080717717
– volume: 12
  start-page: 1089
  issue: 6
  year: 2008
  ident: 10.1016/j.combustflame.2018.09.008_bib0011
  article-title: An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms
  publication-title: Combust. Theor. Model.
  doi: 10.1080/13647830802245177
– volume: 5
  start-page: 46
  issue: 1
  year: 1998
  ident: 10.1016/j.combustflame.2018.09.008_bib0060
  article-title: OpenMP: an industry standard API for shared-memory programming
  publication-title: Comput. Sci. Eng. IEEE
  doi: 10.1109/99.660313
– volume: 193
  start-page: 257
  year: 2018
  ident: 10.1016/j.combustflame.2018.09.008_sbref0033
  article-title: On the consistency of state vectors and Jacobian matrices
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.03.017
– volume: 157
  start-page: 1760
  issue: 9
  year: 2010
  ident: 10.1016/j.combustflame.2018.09.008_bib0007
  article-title: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.12.022
– volume: 71
  start-page: 521
  year: 2014
  ident: 10.1016/j.combustflame.2018.09.008_bib0035
  article-title: GPU based simulation of reactive mixtures with detailed chemistry in combination with tabulation and an analytical Jacobian
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.09.016
– start-page: 1
  year: 2012
  ident: 10.1016/j.combustflame.2018.09.008_bib0078
  article-title: ispc: a SPMD compiler for high-performance CPU programming
– volume: 20
  start-page: 720
  issue: 3
  year: 1999
  ident: 10.1016/j.combustflame.2018.09.008_bib0020
  article-title: A supernodal approach to sparse partial pivoting
  publication-title: SIAM J. Matrix Analys. Appl.
  doi: 10.1137/S0895479895291765
– ident: 10.1016/j.combustflame.2018.09.008_bib0076
– year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_bib0039
  article-title: Turbulence-chemistry closure method using graphics processing units: a preliminary test
– year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_sbref0030
– ident: 10.1016/j.combustflame.2018.09.008_bib0030
– year: 2016
  ident: 10.1016/j.combustflame.2018.09.008_bib0016
– volume: 26
  start-page: 461
  issue: 4
  year: 1994
  ident: 10.1016/j.combustflame.2018.09.008_bib0013
  article-title: The CSP method for simplying kinetics
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550260408
– volume: 162
  start-page: 287
  issue: 2
  year: 2015
  ident: 10.1016/j.combustflame.2018.09.008_bib0019
  article-title: A dynamic adaptive method for hybrid integration of stiff chemistry
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.07.023
– volume: 38
  start-page: 157
  issue: 3
  year: 2012
  ident: 10.1016/j.combustflame.2018.09.008_bib0055
  article-title: PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2011.09.001
– year: 1999
  ident: 10.1016/j.combustflame.2018.09.008_bib0069
– volume: 35
  start-page: 581
  issue: 1
  year: 2015
  ident: 10.1016/j.combustflame.2018.09.008_bib0070
  article-title: Faster solvers for large kinetic mechanisms using adaptive preconditioners
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.05.113
– ident: 10.1016/j.combustflame.2018.09.008_bib0073
– ident: 10.1016/j.combustflame.2018.09.008_bib0067
– volume: 159
  start-page: 2388
  issue: 7
  year: 2012
  ident: 10.1016/j.combustflame.2018.09.008_bib0021
  article-title: Accelerating multi-dimensional combustion simulations using GPU and hybrid explicit/implicit ODE integration
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.02.016
– volume: 40
  start-page: 26
  issue: 4
  year: 2014
  ident: 10.1016/j.combustflame.2018.09.008_bib0057
  article-title: Fast reverse-mode automatic differentiation using expression templates in C++
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/2560359
– ident: 10.1016/j.combustflame.2018.09.008_bib0082
  doi: 10.1016/j.combustflame.2018.09.008
– volume: 49
  start-page: 119
  issue: 8
  year: 2014
  ident: 10.1016/j.combustflame.2018.09.008_bib0036
  article-title: Singe: Leveraging warp specialization for high performance on GPUs
  publication-title: SIGPLAN Not.
  doi: 10.1145/2692916.2555258
– volume: 128
  start-page: 270
  issue: 3
  year: 2002
  ident: 10.1016/j.combustflame.2018.09.008_bib0017
  article-title: On upgrading the numerics in combustion chemistry codes
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(01)00352-2
– volume: 43
  start-page: 752
  issue: 5
  year: 2015
  ident: 10.1016/j.combustflame.2018.09.008_bib0059
  article-title: pocl: A performance-portable OpenCL implementation
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-014-0320-y
– ident: 10.1016/j.combustflame.2018.09.008_bib0056
– volume: 88
  start-page: 239
  issue: 3–4
  year: 1992
  ident: 10.1016/j.combustflame.2018.09.008_bib0012
  article-title: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(92)90034-M
– ident: 10.1016/j.combustflame.2018.09.008_bib0077
– volume: 158
  start-page: 742
  issue: 4
  year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_sbref0002
  article-title: Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2010.10.020
– volume: 148
  start-page: 117
  issue: 3
  year: 2007
  ident: 10.1016/j.combustflame.2018.09.008_bib0009
  article-title: Diffusion coefficient reduction through species bundling
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2006.10.004
– volume: 28
  start-page: 39
  issue: 2
  year: 2008
  ident: 10.1016/j.combustflame.2018.09.008_bib0028
  article-title: NVIDIA Tesla: A unified graphics and computing architecture
  publication-title: IEEE Micro
  doi: 10.1109/MM.2008.31
– volume: 158
  start-page: 836
  issue: 5
  year: 2011
  ident: 10.1016/j.combustflame.2018.09.008_bib0038
  article-title: Redesigning combustion modeling algorithms for the graphics processing unit (GPU): chemical kinetic rate evaluation and ordinary differential equation integration
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.01.024
SSID ssj0007433
Score 2.3256357
Snippet Accurately predicting key combustion phenomena in reactive-flow simulations, e.g., lean blow-out, extinction/ignition limits and pollutant formation,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 186
SubjectTerms Central processing units
Chemical kinetics
Computer simulation
CPUs
Finite difference method
Ignition limits
Jacobi matrix method
Jacobian
Jacobians
Kinetics
Mathematical analysis
Matrix
Matrix methods
Organic chemistry
Performance evaluation
Pressure effects
Reaction kinetics
SIMD
SIMD (computers)
SIMT
Simulation
Sparse
Sparsity
Stiffness
Title Using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms
URI https://dx.doi.org/10.1016/j.combustflame.2018.09.008
https://www.proquest.com/docview/2155086977
Volume 198
WOSCitedRecordID wos000452581400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1556-2921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007433
  issn: 0010-2180
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqDgk4IBggBgP5wC0Kyq8mzmGHqRTRik1Iy6E3y04cja1Np7Yr2z-zv5X3_CNthyYKEpcoSmor7vv8_Gx__h4hH1UvrssYd_0zIf1EQpcSosr8tEplWoowqqXOWvItOz1l43H-vdO5c2dhVpOsadjNTX71X00Nz8DYeHT2L8zdVgoP4B6MDlcwO1x3MrwhAZwNTz4bWubwpPBWem3eHrnEcNOKfCsPHMocGetON-ASok7UcB2Bp0Q5cm-qNfzVwlEt59NZ-2Oz8u-hd19sRrngZCRmCbNM5xpQ1-Knf435ny0IcWK98Eaf1rsjaqpuLc_jdqK8QfvqzHql_vmPc39kD7DZ5YqQbVA_rAsGYEBcEWy5YJOJ2jrR0IljG5dq0hP_5urNqsMFWgqbpJuCVD2mdWsDth7g3Kb-vXGvZSM6otsF36yLY108yLk-S74XwcQq6JK94-FgPGrHeoi_DIfBNsrJ2moG4UNf9lAIdC8Y0BFO8Zw8s1MTemwg9YJ0VLNPHvddRsB98nRDvPIl-amBRhFoFKyMNwXdAhpdzqgDGjVAow471AKNOqBRBzRd2TbQqAEa1UB7RYovg6L_1bdpPPwyCZKlz2QtKpnnIg6CUkB4KpQS4PxlLpMsSuqyZjWLRBrWSVWlvSyuUJYxK_Mkkr1Qxq9Jt5k16g2hWRUwpWDCndYZjD2oZQiDZBkkVY6yl9EByd0fy0srcY-ZVib8zyY-IHFb9soIvexU6sjZj9uQ1YSiHGC6U_lDZ3RufciCR7hswFKYmb39p496R56se94h6S7n1-o9eVSuoHvPP1gI_wKiyc5u
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+SIMD+and+SIMT+vectorization+to+evaluate+sparse+chemical+kinetic+Jacobian+matrices+and+thermochemical+source+terms&rft.jtitle=Combustion+and+flame&rft.au=Curtis%2C+Nicholas+J.&rft.au=Niemeyer%2C+Kyle+E.&rft.au=Sung%2C+Chih-Jen&rft.date=2018-12-01&rft.issn=0010-2180&rft.volume=198&rft.spage=186&rft.epage=204&rft_id=info:doi/10.1016%2Fj.combustflame.2018.09.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2018_09_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon