A Selective Review of Negative Control Methods in Epidemiology

Purpose of Review Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework. Recent Finding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current epidemiology reports Jg. 7; H. 4; S. 190 - 202
Hauptverfasser: Shi, Xu, Miao, Wang, Tchetgen, Eric Tchetgen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2020
Springer Nature B.V
Schlagworte:
ISSN:2196-2995, 2196-2995
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose of Review Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework. Recent Findings We review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject-matter knowledge to perform negative control analyses. We also review existing statistical methodologies for the detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double-negative control design. Summary There is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.
AbstractList Purpose of ReviewNegative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework.Recent FindingsWe review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject-matter knowledge to perform negative control analyses. We also review existing statistical methodologies for the detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double-negative control design.SummaryThere is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.
Purpose of Review Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework. Recent Findings We review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject-matter knowledge to perform negative control analyses. We also review existing statistical methodologies for the detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double-negative control design. Summary There is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.
Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework.PURPOSE OF REVIEWNegative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework.We review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject-matter knowledge to perform negative control analyses. We also review existing statistical methodologies for the detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double-negative control design.RECENT FINDINGSWe review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject-matter knowledge to perform negative control analyses. We also review existing statistical methodologies for the detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double-negative control design.There is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.SUMMARYThere is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.
Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience and provides guidance on principled design and causal analysis based on a formal negative control framework. We review and summarize causal and statistical assumptions, practical strategies, and validation criteria that can be combined with subject-matter knowledge to perform negative control analyses. We also review existing statistical methodologies for the detection, reduction, and correction of confounding bias, and briefly discuss recent advances towards nonparametric identification of causal effects in a double-negative control design. There is great potential for valid and accurate causal inference leveraging contemporary healthcare data in which negative controls are routinely available. Design and analysis of observational data leveraging negative controls is an area of growing interest in health and social sciences. Despite these developments, further effort is needed to disseminate these novel methods to ensure they are adopted by practicing epidemiologists.
Author Shi, Xu
Tchetgen, Eric Tchetgen
Miao, Wang
AuthorAffiliation 2 Department of Probability and Statistics, Peking University, Beijing, China
3 Statistics Department, The Wharton School, University of Pennsylvania, Philadelphia, USA
1 Department of Biostatistics, University of Michigan, Ann Arbor, USA
AuthorAffiliation_xml – name: 1 Department of Biostatistics, University of Michigan, Ann Arbor, USA
– name: 3 Statistics Department, The Wharton School, University of Pennsylvania, Philadelphia, USA
– name: 2 Department of Probability and Statistics, Peking University, Beijing, China
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0001-8566-9552
  surname: Shi
  fullname: Shi, Xu
  email: shixu@umich.edu
  organization: Department of Biostatistics, University of Michigan
– sequence: 2
  givenname: Wang
  surname: Miao
  fullname: Miao, Wang
  organization: Department of Probability and Statistics, Peking University
– sequence: 3
  givenname: Eric Tchetgen
  surname: Tchetgen
  fullname: Tchetgen, Eric Tchetgen
  organization: Statistics Department, The Wharton School, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33996381$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS0EolD6AyxQJDZsAuPYiZ0NEqp4SQUkHmvLcSatURqXOC3i7zG0lMeClUf2ueM7c3fJZuMaJGSfwjEFECeeAxc0hgRigISzmG-QnYTmWZzkebr5o-6RgffPAEApBwrpNukxlucZk3SHnJ5FD1ij6ewCo3tcWHyNXBXd4lh_Xg1d07Wujm6wm7jSR7aJzme2xKl1tRu_7ZGtStceB6uzT54uzh-HV_Ho7vJ6eDaKTbDZxTKXyDBnrKgqyTkzpsgo0uCuQCg0rQpTFUJkWSk102lZCERpJGVUVBnXwPrkdNl3Ni-mWBoMrnStZq2d6vZNOW3V75fGTtTYLZSkVKZh1j45WjVo3cscfaem1husa92gm3uVpInkLBWCBfTwD_rs5m0TxgsUz0BIYGmgDn46Wlv5Wm0AkiVgWud9i9UaoaA-IlTLCFWIUH1GqHgQyT8iY7uQxEcK2tb_S9lS6sM_zRjbb9v_qN4B4JOvOQ
CitedBy_id crossref_primary_10_1093_aje_kwae439
crossref_primary_10_1002_sim_10175
crossref_primary_10_1016_j_jacasi_2025_03_008
crossref_primary_10_1017_cts_2023_635
crossref_primary_10_1681_ASN_0000000000000336
crossref_primary_10_1038_s41591_022_01840_0
crossref_primary_10_1093_aje_kwae036
crossref_primary_10_1214_23_STS882
crossref_primary_10_1016_j_amjmed_2024_10_007
crossref_primary_10_1093_eurheartj_ehad273
crossref_primary_10_1111_biom_13483
crossref_primary_10_1097_ALN_0000000000005075
crossref_primary_10_1093_humrep_deae053
crossref_primary_10_1186_s12874_022_01687_6
crossref_primary_10_1080_01621459_2023_2220935
crossref_primary_10_1017_S2045796024000623
crossref_primary_10_1093_ofid_ofad304
crossref_primary_10_1002_oby_70046
crossref_primary_10_2147_CLEP_S468572
crossref_primary_10_1111_head_14442
crossref_primary_10_1093_aje_kwad077
crossref_primary_10_1002_pds_70011
crossref_primary_10_1186_s12966_023_01545_8
crossref_primary_10_1038_s41467_023_43929_1
crossref_primary_10_1093_aje_kwad201
crossref_primary_10_1093_jrsssb_qkad020
crossref_primary_10_1080_01621459_2023_2240053
crossref_primary_10_1001_jamapediatrics_2024_3184
crossref_primary_10_1038_s43586_023_00249_4
crossref_primary_10_1093_infdis_jiae510
crossref_primary_10_1093_aje_kwae370
crossref_primary_10_1001_jamadermatol_2025_1949
crossref_primary_10_1007_s43441_024_00627_4
crossref_primary_10_1681_ASN_0000000000000152
crossref_primary_10_1002_pds_70192
crossref_primary_10_1038_s41372_024_01968_6
crossref_primary_10_1038_s41467_021_26513_3
crossref_primary_10_3390_nu13082558
crossref_primary_10_1097_EDE_0000000000001724
crossref_primary_10_3389_fpubh_2023_1192055
crossref_primary_10_1016_j_jclinepi_2023_111228
crossref_primary_10_1016_j_envres_2021_112161
crossref_primary_10_1186_s12882_023_03149_7
crossref_primary_10_1007_s10654_022_00857_6
crossref_primary_10_1111_apt_16565
crossref_primary_10_1016_j_jamda_2025_105490
crossref_primary_10_1016_j_spl_2023_109836
crossref_primary_10_1002_pds_5810
crossref_primary_10_1016_j_vaccine_2022_12_036
crossref_primary_10_1097_EDE_0000000000001699
crossref_primary_10_1016_j_vaccine_2024_126492
crossref_primary_10_1093_rheumatology_keac599
crossref_primary_10_1177_09622802231181230
crossref_primary_10_1126_science_abm3087
crossref_primary_10_1111_biom_13558
crossref_primary_10_1002_jbmr_4817
crossref_primary_10_1002_pds_5293
crossref_primary_10_1186_s12887_025_05973_2
crossref_primary_10_1097_EDE_0000000000001730
crossref_primary_10_1002_sim_70276
crossref_primary_10_1080_01621459_2023_2191817
crossref_primary_10_1186_s40621_025_00577_x
crossref_primary_10_1016_S2213_8587_22_00044_4
crossref_primary_10_1186_s12889_025_21766_9
crossref_primary_10_3389_fgene_2021_729326
crossref_primary_10_1007_s12561_023_09363_z
crossref_primary_10_1016_j_jaci_2025_03_005
crossref_primary_10_1016_j_jss_2025_03_043
crossref_primary_10_1093_aje_kwab253
crossref_primary_10_1038_s41586_021_03553_9
crossref_primary_10_1093_ije_dyad138
crossref_primary_10_1038_s41467_023_37653_z
crossref_primary_10_1038_s41591_022_02051_3
crossref_primary_10_1093_aje_kwaf176
crossref_primary_10_1080_00031305_2025_2554756
crossref_primary_10_1186_s12933_025_02887_2
crossref_primary_10_3390_ph15111409
crossref_primary_10_1093_biomet_asad015
crossref_primary_10_1155_2022_2347414
crossref_primary_10_1093_jrsssb_qkae037
crossref_primary_10_1016_S2213_2600_23_00414_9
crossref_primary_10_1093_biomet_asae008
crossref_primary_10_1016_j_socscimed_2024_116939
crossref_primary_10_1093_cid_ciad322
crossref_primary_10_1097_EDE_0000000000001759
crossref_primary_10_1136_bmjmed_2025_001336
crossref_primary_10_1016_j_eclinm_2025_103449
crossref_primary_10_1093_ije_dyaf042
crossref_primary_10_1002_pds_5623
crossref_primary_10_1038_s41467_025_56287_x
crossref_primary_10_1016_j_neunet_2025_107600
crossref_primary_10_1093_biomtc_ujae027
crossref_primary_10_2105_AJPH_2021_306559
crossref_primary_10_1097_EDE_0000000000001528
crossref_primary_10_1017_cts_2023_688
crossref_primary_10_1007_s00198_024_07381_1
crossref_primary_10_1097_EDE_0000000000001484
crossref_primary_10_1093_jrsssa_qnaf131
crossref_primary_10_1097_EDE_0000000000001884
crossref_primary_10_1007_s00384_024_04735_3
Cites_doi 10.2307/2531497
10.1002/pds.1908
10.1093/ije/dys025
10.1111/biom.13483
10.2139/ssrn.3410888
10.1214/16-AOS1511
10.1093/aje/kwaa172
10.1093/ije/dyaa029
10.1002/sim.6977
10.1111/rssb.12361
10.1371/journal.pmed.0020124
10.1111/1468-0262.00459
10.1093/aje/kwt303
10.2307/1912775
10.1214/ss/1177012031
10.1093/aje/kwx013
10.1542/peds.91.5.893
10.1007/978-1-4419-1213-8
10.1038/s41598-018-20404-2
10.1037/h0037350
10.1146/annurev-statistics-022513-115645
10.1177/1403494817702324
10.1136/bmj.2.5001.1071
10.1097/01.ede.0000222409.00878.37
10.1097/EDE.0b013e3181fdcabe
10.1098/rsta.2017.0356
10.1097/EDE.0b013e318245912c
10.1111/rssb.12262
10.1097/00001648-199901000-00006
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020. corrected publication, 2021
Springer Nature Switzerland AG 2020. corrected publication, 2021.
Copyright_xml – notice: Springer Nature Switzerland AG 2020. corrected publication, 2021
– notice: Springer Nature Switzerland AG 2020. corrected publication, 2021.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s40471-020-00243-4
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 2196-2995
EndPage 202
ExternalDocumentID PMC8118596
33996381
10_1007_s40471_020_00243_4
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM139926
– fundername: NCI NIH HHS
  grantid: R01 CA222147
– fundername: NIA NIH HHS
  grantid: R01 AG065276
– fundername: NIAID NIH HHS
  grantid: R01 AI127271
GroupedDBID -EM
0R~
203
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AVXWI
AXYYD
BGNMA
BSONS
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GQ7
HQYDN
HRMNR
HVGLF
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9J
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W23
W48
ZMTXR
ZOVNA
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c404t-898e3e933bff8443ccb61e1299be0ba1fbcfb7766d8a3a5db7ee8c81317f64a03
IEDL.DBID RSV
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581752500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-2995
IngestDate Thu Aug 21 13:18:49 EDT 2025
Fri Jul 11 07:35:13 EDT 2025
Tue Oct 07 06:39:58 EDT 2025
Mon Jul 21 06:00:29 EDT 2025
Sat Nov 29 05:52:44 EST 2025
Tue Nov 18 22:37:34 EST 2025
Fri Feb 21 02:47:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bias correction
Bias reduction
Bias detection
Unmeasured confounding
Negative control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-898e3e933bff8443ccb61e1299be0ba1fbcfb7766d8a3a5db7ee8c81317f64a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8566-9552
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8118596
PMID 33996381
PQID 2546078035
PQPubID 2043926
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8118596
proquest_miscellaneous_2528435773
proquest_journals_2546078035
pubmed_primary_33996381
crossref_primary_10_1007_s40471_020_00243_4
crossref_citationtrail_10_1007_s40471_020_00243_4
springer_journals_10_1007_s40471_020_00243_4
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Heidelberg
PublicationTitle Current epidemiology reports
PublicationTitleAbbrev Curr Epidemiol Rep
PublicationTitleAlternate Curr Epidemiol Rep
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Doll R, Hill BA. Lung cancer and other causes of death in relation to smoking. In: Br Med J. 1956;2(5001):1071–81.
Cai Z and Kuroki M. “On identifying total effects in the presence of latent variables and selection bias”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. 2008, pp. 62–69.
SmithGDAssessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings?In: Basic Clin Pharmacol Toxicol200810222452561:CAS:528:DC%2BD1cXhvF2gtrs%3D
BrionM-JALearySDSmithGDNessARSimilar associations of parental prenatal smoking suggest child blood pressure is not influenced by intrauterine effectsIn: Hypertension2007496142214281:CAS:528:DC%2BD2sXltl2hsrs%3D
Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. In: Journal of Educational Psychology. 1974;66.5:688.
BijlsmaMJVansteelandtSJanssenFHakEThe effect of adherence to statin therapy on cardiovascular mortality: quantification of unmeasured bias using falsification end-pointsIn: BMC Public Health201616.1303
Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to agricultural experiments. Essay on principles. Section 9. In: Stat Sci. 1990:465–72.
JacobLGagnon-BartschJASpeedTPCorrecting gene expression data when neither the unwanted variation nor the factor of interest are observedIn: Biostatistics20161711628
Egami N. “Identification of Causal Diffusion Effects Under Structural Stationarity”. In: arXiv preprint arXiv:1810.07858 (2018).
de LunaXFowlerPJohanssonPProxy variables and nonparametric identification of causal effectsIn: Econ Lett2017150152154
Flanders WD, Strickland MJ, Klein M. A new method for partial correction of residual confounding in time-series and other observational studies. In: Am J Epidemiol. 2017;185.10:941–9 This paper develops a regression-based method taking future air pollution as a negative control exposure to reduce residual confounding bias in a time-series study on air pollution effects.
SelbyJVFriedmanGDQuesenberryCPJrWeissNSA case–control study of screening sigmoidoscopy and mortality from colorectal cancerIn: N Engl J Med1992326106536571:STN:280:DyaK387ktVClsg%3D%3D
Cuyler HammondEHornDThe relationship between human smoking habits and death rates: a follow-up study of 187,766 menIn: J Am Med Assoc19541551513161328
Rosenbaum PR. The role of known effects in observational studies. In: Biometrics. 1989;45(2):557–69.
ZauberAGThe impact of screening on colorectal cancer mortality and incidence: has it really made a difference?In: Digest Dis Sci2015603681691
Hansen LP. Large sample properties of generalized method of moments estimators. In: Econometrica. 1982:1029–54.
SoferTRichardsonDBColicinoESchwartzJTchetgen TchetgenEJOn negative outcome control of unobserved confounding as a generalization of difference-in-differencesIn: Stat Sci2016313348361
Smith GD. Negative control exposures in epidemiologic studies. Comments on “Negative controls: a tool for detecting confounding and bias in observational studies”. In: Epidemiology. 2012;23(2):350–1.
Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Robust empirical calibration of p-values using observational data. In: Statistics in Medicine. 2016;35.22:3883.
MarkovitzAAHollingsworthJMAyanianJZNortonECYanPLRyanAMPerformance in the Medicare shared savings program after accounting for nonrandom exit: an instrumental variable analysisIn: Ann Int Med201917112736
MiaoWGengZTchetgen TchetgenEJIdentifying causal effects with proxy variables of an unmeasured confounderIn: Biometrika2018105.4987993This paper establishes sufficient conditions for nonparametric identification of the average treatment effect using double negative control.
Lousdal ML, Lash TL, Flanders WD, Brookhart MA, Kristiansen IS, Kalager M, et al. Negative controls to detect uncontrolled confounding in observational studies of mammographic screening comparing participants and non-participants. In: Int J Epidemiol. 2020; This paper uses both negative control exposure and negative control outcome to detect residual confounding in an observational study of mammographic screening comparing participants and non-participants.
Brew BK, Gong T, Williams DM, Larsson H, Almqvist C. Using fathers as a negative control exposure to test the developmental origins of health and disease hypothesis: a case study on maternal distress and offspring asthma using Swedish register data. In: Scand J Public Health. 2017;45.17(suppl):36–40.
WangMTchetgen TchetgenEJInvited commentary: bias attenuation and identification of causal effects with multiple negative controlsIn: Am J Epidemiol201718510950953
Miao W, Shi X, and Tchetgen Tchetgen EJ. “A Confounding Bridge Approach for Double Negative Control Inference on Causal Effects”. In: (2020). In progress, a prior version can be found at https://arxiv.org/abs/1808.04945. This paper introduces the confounding bridge function that links primary and negative control outcome distributions for identification of the average treatment effect leveraging a negative control exposure.
Cornfield J, William H, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung cancer: recent evidence and a discussion of some questions. In: J Natl Cancer Inst. 1959;22(1):173–203.
RobinsJMCorrecting for non-compliance in randomized trials using structural nested mean modelsIn: Commun Stat-Theory and methods199423823792412
Flanders WD, Klein M, Darrow LA, Strickland MJ, Sarnat SE, Sarnat JA, et al. A method for detection of residual confounding in time-series and other observational studies. In: Epidemiology. 2011;22.1:59.
RichardsonDBKeilATchetgen TchetgenEJCooperGSNegative control outcomes and the analysis of standardized mortality ratiosIn: Epidemiology2015265727732
Glynn A, Ichino N. “Generalized nonlinear difference-in-difference-in-differences”. In: V-Dem Working Paper 90 (2019). Available at https:// papers. ssrn.com/sol3/papers.cfm?abstract_id=3410888.
YerushalmyJThe relationship of parents’ cigarette smoking to outcome of pregnancy– implications as to the problem of inferring causation from observed associationsIn: Am J Epidemiol19719364434561:STN:280:DyaE3M3mt12nsg%3D%3D
Ioannidis JPA. “Why most published research findings are false”. In: PLOS Medicine 2.8 (2005), pp. 696–701.
PrasadVJenaABPrespecified falsification end points: can they validate true observational associations?In: J Am Med Assoc201330932412421:CAS:528:DC%2BC3sXht1Kisb8%3D
Munaf̀oMRTillingKTaylorAEEvansDMSmithGDCollider scope: when selection bias can substantially influence observed associationsIn: Int J Epidemiol2018471226235
ShiXMiaoWTchetgen TchetgenEJMultiply robust causal inference with double negative control adjustment for categorical unmeasured confoundingIn: J Royal Stat Soc: Series B (Statistical Methodology)202082.252154010.1111/rssb.12361This paper provides a general semiparametric framework for obtaining inferences about the average treatment effect under categorical unmeasured confounding and negative controls.
MealliFPaciniBUsing secondary outcomes to sharpen inference in randomized experiments with noncomplianceIn: J Am Stat Assoc2013108503112011311:CAS:528:DC%2BC2cXot1Sju74%3D
KurokiMPearlJMeasurement bias and effect restoration in causal inferenceIn: Biometrika20141012423437
TrichopoulosDZavitsanosXKatsouyanniKTzonouADalla-VorgiaPPsychological stress and fatal heart attack: the Athens (1981) earthquake natural experimentIn: Lancet19833218322441444
Hernán MA and Robins JM. “Instruments for causal inference: an epidemiologist’s dream?” In: Epidemiology (2006), pp. 360–372.
Lin C-K, Lin R-T, Chen P-C, Wang P, De Marcellis-Warin N, Zigler C, et al. A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. In: Sci Rep. 2018;8(1):1–9.
HernánMARobinsJMUsing big data to emulate a target trial when a randomized trial is not availableIn: Am J Epidemiol20161838758764
RosenbaumPRDetecting bias with confidence in observational studiesIn: Biometrika1992792367374
JacksonLAJacksonMLNelsonJCNeuzilKMWeissNSEvidence of bias in estimates of influenza vaccine effectiveness in seniorsIn: Int J Epidemiol2006352337344
RichardsonDBLaurierDSchubauer-BeriganMKTchetgen TchetgenEJColeSRAssessment and indirect adjustment for confounding by smoking in cohort studies using relative hazards modelsIn: Am J Epidemiol20141809933940
AngristJDImbensGWRubinDBIdentification of causal effects using instrumental variablesIn: J Am Stat Assoc199691434444455
Mitchell EA, Ford RPK, Stewart AW, Taylor BJ, Becroft DMO, Thompson JMD, et al. Smoking and the sudden infant death syndrome. In: Pediatrics. 1993;91(5):893–6.
ArnoldBErcumenANegative control outcomes: a tool to detect bias in randomized trialsIn: J Am Med Assoc20163162425972598
DollRBradford HillAThe mortality of doctors in relation to their smoking habitsIn: Br Med J195414877145114551:STN:280:DyaG2c%2FotVGitQ%3D%3D
DusetzinaSBBrookhartMAMaciejewskiMLControl outcomes and exposures for improving internal validity of nonrandomized studiesIn: Health Serv Res201550514321451
Gagnon-BartschJASpeedTPUsing control genes to correct for unwanted variation in microarray dataIn: Biostatistics2012133539552
Newey WK, Powell JL. Instrumental variable estimation of nonparametric models. In: Econometrica. 2003;71(5):1565–78.
Alan Brookhart M, Rassen JA, Schneeweiss S. Instrumental variable methods in comparative safety and effectiveness research. In: Pharmacoepidemiology and Drug Safety. 2010;19(6):537–54.
Tchetgen Tchetgen EJ, Sofer T, and Richardson D. “Negative outcome control for unobserved confounding under a Cox proportional hazards model”. In: (2015). Available at https://biostats.bepress.com/harvardbiostat/paper192/.
Liu L, Tchetgen Tchetgen EJ. “Regression-based negative control of homophily in dyadic peer effect analysis”. In: arXiv preprint arXiv:2002.06521 (2020).
WeissNSCan the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis?In: Epidemiology200
243_CR58
243_CR15
243_CR59
243_CR16
243_CR18
J Yerushalmy (243_CR42) 1971; 93
L Wang (243_CR22) 2018; 80.3
GD Smith (243_CR46) 2008; 102
DB Richardson (243_CR64) 2014; 180
BF Arnold (243_CR4) 2016; 27.5
X de Luna (243_CR34) 2017; 150
W Miao (243_CR36) 2018; 105.4
MJ Schuemie (243_CR38) 2014; 33
JA Gagnon-Bartsch (243_CR68) 2012; 13
M Kuroki (243_CR35) 2014; 101
E Cuyler Hammond (243_CR56) 1954; 155
MA Hernán (243_CR2) 2016; 183
T Lumley (243_CR51) 2000; 11
243_CR61
MJ Schuemie (243_CR40) 2018; 115
243_CR20
243_CR65
243_CR66
243_CR67
243_CR47
D Trichopoulos (243_CR60) 1983; 321
F Mealli (243_CR30) 2013; 108
JV Selby (243_CR52) 1992; 326
243_CR9
243_CR8
243_CR6
243_CR50
243_CR1
243_CR10
243_CR54
243_CR11
V Prasad (243_CR23) 2013; 309
AA Markovitz (243_CR24) 2019; 171
243_CR55
243_CR12
L Jacob (243_CR69) 2016; 17
T Sofer (243_CR13) 2016; 31
243_CR37
M Lipsitch (243_CR3) 2010; 21.3
243_CR39
B Arnold (243_CR5) 2016; 316
AE Taylor (243_CR48) 2014; 139
MJ Schuemie (243_CR41) 2018; 376.2128
SB Dusetzina (243_CR27) 2015; 50
NS Weiss (243_CR7) 2002; 13
243_CR43
X Shi (243_CR17) 2020; 82.2
243_CR44
DB Richardson (243_CR63) 2015; 26
R Doll (243_CR57) 1954; 1
243_CR26
243_CR28
AG Zauber (243_CR53) 2015; 60
MG Weisskopf (243_CR62) 2016; 27
JD Angrist (243_CR19) 1996; 91
LA Jackson (243_CR14) 2006; 35
JM Robins (243_CR21) 1994; 23
PR Rosenbaum (243_CR31) 1992; 79
243_CR70
MJ Bijlsma (243_CR25) 2016; 16.1
243_CR71
243_CR72
MR Munaf̀o (243_CR29) 2018; 47
M-JA Brion (243_CR45) 2007; 49
M Wang (243_CR49) 2017; 185
243_CR32
243_CR33
References_xml – reference: Liu L, Tchetgen Tchetgen EJ. “Regression-based negative control of homophily in dyadic peer effect analysis”. In: arXiv preprint arXiv:2002.06521 (2020).
– reference: Egami N. “Identification of Causal Diffusion Effects Under Structural Stationarity”. In: arXiv preprint arXiv:1810.07858 (2018).
– reference: DollRBradford HillAThe mortality of doctors in relation to their smoking habitsIn: Br Med J195414877145114551:STN:280:DyaG2c%2FotVGitQ%3D%3D
– reference: Howe LD, Matijasevich A, Tilling K, Brion M-J, Leary SD, Smith GD, Lawlor DA. Maternal smoking during pregnancy and off- spring trajectories of height and adiposity: comparing maternal and paternal associations. In: Int J Epidemiol. 2012;41(3):722–32.
– reference: Alan Brookhart M, Rassen JA, Schneeweiss S. Instrumental variable methods in comparative safety and effectiveness research. In: Pharmacoepidemiology and Drug Safety. 2010;19(6):537–54.
– reference: HernánMARobinsJMUsing big data to emulate a target trial when a randomized trial is not availableIn: Am J Epidemiol20161838758764
– reference: JacobLGagnon-BartschJASpeedTPCorrecting gene expression data when neither the unwanted variation nor the factor of interest are observedIn: Biostatistics20161711628
– reference: • Madigan D, Stang PE, Berlin JA, Schuemie M, Overhage JM, Suchard MA, et al. A systematic statistical approach to evaluating evidence from observational studies. In: Annu Rev Stat Appl. 2014;1:11–39 This paper provides a systematic review of challenges in observational studies and describes a data-driven approach to calculating calibratedpvalues leveraging negative controls.
– reference: • Lousdal ML, Lash TL, Flanders WD, Brookhart MA, Kristiansen IS, Kalager M, et al. Negative controls to detect uncontrolled confounding in observational studies of mammographic screening comparing participants and non-participants. In: Int J Epidemiol. 2020; This paper uses both negative control exposure and negative control outcome to detect residual confounding in an observational study of mammographic screening comparing participants and non-participants.
– reference: MealliFPaciniBUsing secondary outcomes to sharpen inference in randomized experiments with noncomplianceIn: J Am Stat Assoc2013108503112011311:CAS:528:DC%2BC2cXot1Sju74%3D
– reference: Cuyler HammondEHornDThe relationship between human smoking habits and death rates: a follow-up study of 187,766 menIn: J Am Med Assoc19541551513161328
– reference: Hernán MA and Robins JM. “Instruments for causal inference: an epidemiologist’s dream?” In: Epidemiology (2006), pp. 360–372.
– reference: • Wang J, Zhao Q, Hastie T, Owen AB. Confounder adjustment in multiple hypothesis testing. In: Ann Stat. 2017;45.5:1863–94 This paper unifies unmeasured confounding adjustment methods in multiple hypothesis testing and provides theoretical guarantees for these methods.
– reference: Tchetgen Tchetgen EJ. The control outcome calibration approach for causal inference with unobserved confounding. In: Am J Epidemiol. 2014;179(5):633–40.
– reference: Lin C-K, Lin R-T, Chen P-C, Wang P, De Marcellis-Warin N, Zigler C, et al. A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. In: Sci Rep. 2018;8(1):1–9.
– reference: ArnoldBFErcumenABenjamin-ChungJColfordJMJrBrief report: negative controls to detect selection bias and measurement bias in epidemiologic studiesIn: Epidemiology201627.5637
– reference: WeissNSCan the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis?In: Epidemiology200213168
– reference: Mitchell EA, Ford RPK, Stewart AW, Taylor BJ, Becroft DMO, Thompson JMD, et al. Smoking and the sudden infant death syndrome. In: Pediatrics. 1993;91(5):893–6.
– reference: de LunaXFowlerPJohanssonPProxy variables and nonparametric identification of causal effectsIn: Econ Lett2017150152154
– reference: • Miao W, Shi X, and Tchetgen Tchetgen EJ. “A Confounding Bridge Approach for Double Negative Control Inference on Causal Effects”. In: (2020). In progress, a prior version can be found at https://arxiv.org/abs/1808.04945. This paper introduces the confounding bridge function that links primary and negative control outcome distributions for identification of the average treatment effect leveraging a negative control exposure.
– reference: Doll R, Hill BA. Lung cancer and other causes of death in relation to smoking. In: Br Med J. 1956;2(5001):1071–81.
– reference: Tchetgen Tchetgen EJ, Sofer T, and Richardson D. “Negative outcome control for unobserved confounding under a Cox proportional hazards model”. In: (2015). Available at https://biostats.bepress.com/harvardbiostat/paper192/.
– reference: Cai Z and Kuroki M. “On identifying total effects in the presence of latent variables and selection bias”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. 2008, pp. 62–69.
– reference: MarkovitzAAHollingsworthJMAyanianJZNortonECYanPLRyanAMPerformance in the Medicare shared savings program after accounting for nonrandom exit: an instrumental variable analysisIn: Ann Int Med201917112736
– reference: KurokiMPearlJMeasurement bias and effect restoration in causal inferenceIn: Biometrika20141012423437
– reference: Smith GD. Negative control exposures in epidemiologic studies. Comments on “Negative controls: a tool for detecting confounding and bias in observational studies”. In: Epidemiology. 2012;23(2):350–1.
– reference: Glynn A, Ichino N. “Generalized nonlinear difference-in-difference-in-differences”. In: V-Dem Working Paper 90 (2019). Available at https:// papers. ssrn.com/sol3/papers.cfm?abstract_id=3410888.
– reference: JacksonLAJacksonMLNelsonJCNeuzilKMWeissNSEvidence of bias in estimates of influenza vaccine effectiveness in seniorsIn: Int J Epidemiol2006352337344
– reference: ShiXMiaoWTchetgen TchetgenEJMultiply robust causal inference with double negative control adjustment for categorical unmeasured confoundingIn: J Royal Stat Soc: Series B (Statistical Methodology)202082.252154010.1111/rssb.12361This paper provides a general semiparametric framework for obtaining inferences about the average treatment effect under categorical unmeasured confounding and negative controls.
– reference: WangMTchetgen TchetgenEJInvited commentary: bias attenuation and identification of causal effects with multiple negative controlsIn: Am J Epidemiol201718510950953
– reference: Sheppard L, Levy D, Norris G, Larson TV, Koenig JQ. Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987–1994. In: Epidemiology. 1999:23–30.
– reference: Hansen LP. Large sample properties of generalized method of moments estimators. In: Econometrica. 1982:1029–54.
– reference: ArnoldBErcumenANegative control outcomes: a tool to detect bias in randomized trialsIn: J Am Med Assoc20163162425972598
– reference: YerushalmyJThe relationship of parents’ cigarette smoking to outcome of pregnancy– implications as to the problem of inferring causation from observed associationsIn: Am J Epidemiol19719364434561:STN:280:DyaE3M3mt12nsg%3D%3D
– reference: Rosenbaum PR. The role of known effects in observational studies. In: Biometrics. 1989;45(2):557–69.
– reference: BrionM-JALearySDSmithGDNessARSimilar associations of parental prenatal smoking suggest child blood pressure is not influenced by intrauterine effectsIn: Hypertension2007496142214281:CAS:528:DC%2BD2sXltl2hsrs%3D
– reference: Newey WK, Powell JL. Instrumental variable estimation of nonparametric models. In: Econometrica. 2003;71(5):1565–78.
– reference: BijlsmaMJVansteelandtSJanssenFHakEThe effect of adherence to statin therapy on cardiovascular mortality: quantification of unmeasured bias using falsification end-pointsIn: BMC Public Health201616.1303
– reference: Ioannidis JPA. “Why most published research findings are false”. In: PLOS Medicine 2.8 (2005), pp. 696–701.
– reference: RosenbaumPRDetecting bias with confidence in observational studiesIn: Biometrika1992792367374
– reference: Gagnon-BartschJASpeedTPUsing control genes to correct for unwanted variation in microarray dataIn: Biostatistics2012133539552
– reference: PrasadVJenaABPrespecified falsification end points: can they validate true observational associations?In: J Am Med Assoc201330932412421:CAS:528:DC%2BC3sXht1Kisb8%3D
– reference: Flanders WD, Klein M, Darrow LA, Strickland MJ, Sarnat SE, Sarnat JA, et al. A method for detection of residual confounding in time-series and other observational studies. In: Epidemiology. 2011;22.1:59.
– reference: SoferTRichardsonDBColicinoESchwartzJTchetgen TchetgenEJOn negative outcome control of unobserved confounding as a generalization of difference-in-differencesIn: Stat Sci2016313348361
– reference: Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. In: Journal of Educational Psychology. 1974;66.5:688.
– reference: SmithGDAssessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings?In: Basic Clin Pharmacol Toxicol200810222452561:CAS:528:DC%2BD1cXhvF2gtrs%3D
– reference: RichardsonDBLaurierDSchubauer-BeriganMKTchetgen TchetgenEJColeSRAssessment and indirect adjustment for confounding by smoking in cohort studies using relative hazards modelsIn: Am J Epidemiol20141809933940
– reference: Glass DJ. Experimental Design for Biologists. Cold Spring Harbor Laboratory Press, 2014.
– reference: Yu Y, Li H, Sun X, Liu X, Yang F, Hou L, et al. Identification and estimation of causal effects using a negative control exposure in time-series studies with applications to environmental epidemiology. Am J Epidemiol. kwaa172. https://doi.org/10.1093/aje/kwaa172.
– reference: MiaoWGengZTchetgen TchetgenEJIdentifying causal effects with proxy variables of an unmeasured confounderIn: Biometrika2018105.4987993This paper establishes sufficient conditions for nonparametric identification of the average treatment effect using double negative control.
– reference: Schuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Robust empirical calibration of p-values using observational data. In: Statistics in Medicine. 2016;35.22:3883.
– reference: Brew BK, Gong T, Williams DM, Larsson H, Almqvist C. Using fathers as a negative control exposure to test the developmental origins of health and disease hypothesis: a case study on maternal distress and offspring asthma using Swedish register data. In: Scand J Public Health. 2017;45.17(suppl):36–40.
– reference: LipsitchMTchetgen TchetgenEJCohenTNegative controls: a tool for detecting confounding and bias in observational studiesIn: Epidemiology201021.3383388This paper is the first to formally define negative control exposure and outcome with conditions for bias detection as well as examples in epidemiology.
– reference: RichardsonDBKeilATchetgen TchetgenEJCooperGSNegative control outcomes and the analysis of standardized mortality ratiosIn: Epidemiology2015265727732
– reference: Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to agricultural experiments. Essay on principles. Section 9. In: Stat Sci. 1990:465–72.
– reference: WangLTchetgen TchetgenEJBounded, efficient and multiply robust estimation of average treatment effects using instrumental variablesIn: J Royal Stat Soc: Series B (Statistical Methodology)201880.353155010.1111/rssb.12262
– reference: RobinsJMCorrecting for non-compliance in randomized trials using structural nested mean modelsIn: Commun Stat-Theory and methods199423823792412
– reference: • Flanders WD, Strickland MJ, Klein M. A new method for partial correction of residual confounding in time-series and other observational studies. In: Am J Epidemiol. 2017;185.10:941–9 This paper develops a regression-based method taking future air pollution as a negative control exposure to reduce residual confounding bias in a time-series study on air pollution effects.
– reference: Cornfield J, William H, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung cancer: recent evidence and a discussion of some questions. In: J Natl Cancer Inst. 1959;22(1):173–203.
– reference: TrichopoulosDZavitsanosXKatsouyanniKTzonouADalla-VorgiaPPsychological stress and fatal heart attack: the Athens (1981) earthquake natural experimentIn: Lancet19833218322441444
– reference: DusetzinaSBBrookhartMAMaciejewskiMLControl outcomes and exposures for improving internal validity of nonrandomized studiesIn: Health Serv Res201550514321451
– reference: SchuemieMJRyanPBDuMouchelWSuchardMAMadiganDInterpreting observational studies: why empirical calibration is needed to correct p-valuesIn: Stat Med2014332209218
– reference: SchuemieMJHripcsakGRyanPBMadiganDSuchardMAEmpirical confidence interval calibration for population-level effect estimation studies in observational healthcare dataIn: Proc Natl Acad Sci201811511257125771:CAS:528:DC%2BC1cXht1Chtr%2FK
– reference: AngristJDImbensGWRubinDBIdentification of causal effects using instrumental variablesIn: J Am Stat Assoc199691434444455
– reference: Munaf̀oMRTillingKTaylorAEEvansDMSmithGDCollider scope: when selection bias can substantially influence observed associationsIn: Int J Epidemiol2018471226235
– reference: WeisskopfMGTchetgen TchetgenEJRazRCommentary: on the use of imperfect negative control exposures in epidemiologic studiesIn: Epidemiology2016273365367
– reference: TaylorAESmithGDBaresCBEdwardsACMunaf̀oMRPartner smoking and maternal cotinine during pregnancy: implications for negative control methodsIn: Drug Alcohol Depend20141391591631:CAS:528:DC%2BC2cXmtVCntbs%3D
– reference: ZauberAGThe impact of screening on colorectal cancer mortality and incidence: has it really made a difference?In: Digest Dis Sci2015603681691
– reference: Rosenbaum PR. Design of observational studies. New York, NY: Springer-Verlag, 2010.
– reference: SelbyJVFriedmanGDQuesenberryCPJrWeissNSA case–control study of screening sigmoidoscopy and mortality from colorectal cancerIn: N Engl J Med1992326106536571:STN:280:DyaK387ktVClsg%3D%3D
– reference: LumleyTSheppardLAssessing seasonal confounding and model selection bias in air pollution epidemiology using positive and negative control analysesIn: Environmetrics20001167057171:CAS:528:DC%2BD3MXitFSmsg%3D%3D
– reference: SchuemieMJRyanPBHripcsakGMadiganDSuchardMAImproving reproducibility by using high-throughput observational studies with empirical calibrationIn: Philos Trans Royal Soc A: Math Phys Eng Sci2018376.21282017035610.1098/rsta.2017.0356
– ident: 243_CR6
  doi: 10.2307/2531497
– ident: 243_CR18
  doi: 10.1002/pds.1908
– volume: 91
  start-page: 444
  issue: 434
  year: 1996
  ident: 243_CR19
  publication-title: In: J Am Stat Assoc
– ident: 243_CR44
  doi: 10.1093/ije/dys025
– volume: 180
  start-page: 933
  issue: 9
  year: 2014
  ident: 243_CR64
  publication-title: In: Am J Epidemiol
– volume: 101
  start-page: 423
  issue: 2
  year: 2014
  ident: 243_CR35
  publication-title: In: Biometrika
– ident: 243_CR10
  doi: 10.1111/biom.13483
– ident: 243_CR66
  doi: 10.2139/ssrn.3410888
– volume: 79
  start-page: 367
  issue: 2
  year: 1992
  ident: 243_CR31
  publication-title: In: Biometrika
– volume: 171
  start-page: 27
  issue: 1
  year: 2019
  ident: 243_CR24
  publication-title: In: Ann Int Med
– volume: 115
  start-page: 2571
  issue: 11
  year: 2018
  ident: 243_CR40
  publication-title: In: Proc Natl Acad Sci
– ident: 243_CR70
  doi: 10.1214/16-AOS1511
– ident: 243_CR8
– ident: 243_CR50
  doi: 10.1093/aje/kwaa172
– ident: 243_CR54
  doi: 10.1093/ije/dyaa029
– volume: 155
  start-page: 1316
  issue: 15
  year: 1954
  ident: 243_CR56
  publication-title: In: J Am Med Assoc
– volume: 321
  start-page: 441
  issue: 8322
  year: 1983
  ident: 243_CR60
  publication-title: In: Lancet
– volume: 13
  start-page: 539
  issue: 3
  year: 2012
  ident: 243_CR68
  publication-title: In: Biostatistics
– volume: 11
  start-page: 705
  issue: 6
  year: 2000
  ident: 243_CR51
  publication-title: In: Environmetrics
– volume: 35
  start-page: 337
  issue: 2
  year: 2006
  ident: 243_CR14
  publication-title: In: Int J Epidemiol
– volume: 27.5
  start-page: 637
  year: 2016
  ident: 243_CR4
  publication-title: In: Epidemiology
– ident: 243_CR65
– volume: 1
  start-page: 1451
  issue: 4877
  year: 1954
  ident: 243_CR57
  publication-title: In: Br Med J
– ident: 243_CR59
– volume: 16.1
  start-page: 303
  year: 2016
  ident: 243_CR25
  publication-title: In: BMC Public Health
– volume: 183
  start-page: 758
  issue: 8
  year: 2016
  ident: 243_CR2
  publication-title: In: Am J Epidemiol
– ident: 243_CR39
  doi: 10.1002/sim.6977
– volume: 82.2
  start-page: 521
  year: 2020
  ident: 243_CR17
  publication-title: In: J Royal Stat Soc: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12361
– ident: 243_CR1
  doi: 10.1371/journal.pmed.0020124
– ident: 243_CR9
– volume: 13
  start-page: 6
  issue: 1
  year: 2002
  ident: 243_CR7
  publication-title: In: Epidemiology
– ident: 243_CR12
– volume: 49
  start-page: 1422
  issue: 6
  year: 2007
  ident: 243_CR45
  publication-title: In: Hypertension
– volume: 309
  start-page: 241
  issue: 3
  year: 2013
  ident: 243_CR23
  publication-title: In: J Am Med Assoc
– volume: 50
  start-page: 1432
  issue: 5
  year: 2015
  ident: 243_CR27
  publication-title: In: Health Serv Res
– volume: 185
  start-page: 950
  issue: 10
  year: 2017
  ident: 243_CR49
  publication-title: In: Am J Epidemiol
– volume: 17
  start-page: 16
  issue: 1
  year: 2016
  ident: 243_CR69
  publication-title: In: Biostatistics
– ident: 243_CR71
  doi: 10.1111/1468-0262.00459
– ident: 243_CR67
  doi: 10.1093/aje/kwt303
– ident: 243_CR72
  doi: 10.2307/1912775
– volume: 108
  start-page: 1120
  issue: 503
  year: 2013
  ident: 243_CR30
  publication-title: In: J Am Stat Assoc
– ident: 243_CR15
  doi: 10.1214/ss/1177012031
– volume: 93
  start-page: 443
  issue: 6
  year: 1971
  ident: 243_CR42
  publication-title: In: Am J Epidemiol
– ident: 243_CR33
  doi: 10.1093/aje/kwx013
– ident: 243_CR43
  doi: 10.1542/peds.91.5.893
– volume: 23
  start-page: 2379
  issue: 8
  year: 1994
  ident: 243_CR21
  publication-title: In: Commun Stat-Theory and methods
– volume: 31
  start-page: 348
  issue: 3
  year: 2016
  ident: 243_CR13
  publication-title: In: Stat Sci
– ident: 243_CR28
  doi: 10.1007/978-1-4419-1213-8
– ident: 243_CR26
  doi: 10.1038/s41598-018-20404-2
– ident: 243_CR16
  doi: 10.1037/h0037350
– volume: 47
  start-page: 226
  issue: 1
  year: 2018
  ident: 243_CR29
  publication-title: In: Int J Epidemiol
– ident: 243_CR37
  doi: 10.1146/annurev-statistics-022513-115645
– volume: 326
  start-page: 653
  issue: 10
  year: 1992
  ident: 243_CR52
  publication-title: In: N Engl J Med
– volume: 27
  start-page: 365
  issue: 3
  year: 2016
  ident: 243_CR62
  publication-title: In: Epidemiology
– ident: 243_CR47
  doi: 10.1177/1403494817702324
– ident: 243_CR58
  doi: 10.1136/bmj.2.5001.1071
– volume: 105.4
  start-page: 987
  year: 2018
  ident: 243_CR36
  publication-title: In: Biometrika
– volume: 33
  start-page: 209
  issue: 2
  year: 2014
  ident: 243_CR38
  publication-title: In: Stat Med
– ident: 243_CR20
  doi: 10.1097/01.ede.0000222409.00878.37
– ident: 243_CR32
  doi: 10.1097/EDE.0b013e3181fdcabe
– volume: 26
  start-page: 727
  issue: 5
  year: 2015
  ident: 243_CR63
  publication-title: In: Epidemiology
– volume: 376.2128
  start-page: 20170356
  year: 2018
  ident: 243_CR41
  publication-title: In: Philos Trans Royal Soc A: Math Phys Eng Sci
  doi: 10.1098/rsta.2017.0356
– volume: 316
  start-page: 2597
  issue: 24
  year: 2016
  ident: 243_CR5
  publication-title: In: J Am Med Assoc
– volume: 21.3
  start-page: 383
  year: 2010
  ident: 243_CR3
  publication-title: In: Epidemiology
– ident: 243_CR61
  doi: 10.1097/EDE.0b013e318245912c
– volume: 80.3
  start-page: 531
  year: 2018
  ident: 243_CR22
  publication-title: In: J Royal Stat Soc: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12262
– volume: 102
  start-page: 245
  issue: 2
  year: 2008
  ident: 243_CR46
  publication-title: In: Basic Clin Pharmacol Toxicol
– ident: 243_CR55
  doi: 10.1097/00001648-199901000-00006
– volume: 150
  start-page: 152
  year: 2017
  ident: 243_CR34
  publication-title: In: Econ Lett
– volume: 139
  start-page: 159
  year: 2014
  ident: 243_CR48
  publication-title: In: Drug Alcohol Depend
– ident: 243_CR11
– volume: 60
  start-page: 681
  issue: 3
  year: 2015
  ident: 243_CR53
  publication-title: In: Digest Dis Sci
SSID ssj0001140105
Score 2.5004106
SecondaryResourceType review_article
Snippet Purpose of Review Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a...
Negative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a broader audience...
Purpose of ReviewNegative controls are a powerful tool to detect and adjust for bias in epidemiological research. This paper introduces negative controls to a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 190
SubjectTerms Bias
Control methods
Design
Design analysis
Epidemiologic Methods (P Howards
Epidemiology
Medicine
Medicine & Public Health
Section Editor
Social sciences
Statistical methods
Statistics
Topical Collection on Epidemiologic Methods
Title A Selective Review of Negative Control Methods in Epidemiology
URI https://link.springer.com/article/10.1007/s40471-020-00243-4
https://www.ncbi.nlm.nih.gov/pubmed/33996381
https://www.proquest.com/docview/2546078035
https://www.proquest.com/docview/2528435773
https://pubmed.ncbi.nlm.nih.gov/PMC8118596
Volume 7
WOSCitedRecordID wos000581752500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2196-2995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001140105
  issn: 2196-2995
  databaseCode: RSV
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC58sXhR96G2qxJhb26ge_Lo5CKIKB50EF1lbk2SSe8OSI84o-C_t5J-DLO6C7vnVNPVldQjXVVfAXzT3KcMbQDtad6jAZ-dopezVKohl9nQaBmrLe4u8n5fDQb6qmkKm7TV7m1KMlrqrtmNp2hIabjuRBg9yhdhGd2dCup4fXM3-7MS7gypaDpk3n903gu9CS3fVkj-liaN3uds_f_43oC1Jtokx_Xx-AgLvvoEHy6bfPpnODomN3EQDto8UqcJyLgkff8z4oGTk7qQnVzGOdMTMqrI6Wyk7MsXuD07_XFyTpuJCtQhF1OqtPLMa8ZsWSrOmXNWZh5dvrY-tSYrrSttnks5VIYZEaCXvXIqwyCjlNykbBOWqnHlt4GIHi8N571UYAiTeqss04o77fTQGCFEAlkr4cI1cONh6sV90QElR8EUKJgiCqbgCRx2zzzUYBt_pd5tN65oFG9SBHh_jHpShgwcdMuoMiEPYio_fgo06JOZyHOWwFa9z93rGAZsaJKyBPK5E9ARBDju-ZVq9CvCciu8qwktE_jenoMZW3_-ip1_I_8KqxiyybobcheWpo9Pfg9W3PN0NHnch8V8oPajOrwCpt0COg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB-qFtsXbdXardam4JsGdjfJbvJSEFEs3h2iVnxbkly2PSh7xTuF_vedZD-O8wvscyZkdjKZmexMfgOwq7iLGdoAmiqeUo_PTtHLGZrJIc-SoVZZqLa46uWDgby-VmfNo7BJW-3epiSDpe4eu_EYDSn1150Ao0f5Aixx9Fi-kO_84mr2Z8XfGWLRvJB5fOq8F3oQWj6skLyXJg3e53j1__h-BytNtEkOavV4D69ctQbL_Safvg7fDshFaISDNo_UaQIyLsnA_Qx44OSwLmQn_dBnekJGFTmatZT9uwE_jo8uD09o01GBWuRiSqWSjjnFmClLyTmz1mSJQ5evjIuNTkpjS5PnWTaUmmnhoZedtDLBIKPMuI7ZB1isxpX7CESkvNScp7HAECZ2RhqmJLfKqqHWQogIklbChW3gxn3Xi99FB5QcBFOgYIogmIJHsNfN-VODbTxLvd1uXNEcvEnh4f0x6okZMvC1G8Yj4_MgunLjW0-DPpmJPGcRbNb73C3HMGBDk5REkM9pQEfg4bjnR6rRrwDLLfGuJlQWwX6rBzO2nv6KTy8j_wJvTi77vaL3fXC6BW9Tr1ahuGYbFqc3t-4zvLZ309HkZiccin-y7QQy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8NhhAvY3wujDEj8QZWk9hO7JdJqKMaWqmQ-BBvke04UAmlVVsm7b_HdtKUAkOaePZZ8cf5PnJ3vwM4ENSExMoAHAsaY4fPjq2WUzjhOU2iXIrEZ1tcd9Nej9_ciPMnVfw-230akqxqGhxKUzlpDfOi1RS-0dAKVexcHw-ph-kCfKSuaZDz1y-uZ39ZnP8Qsrpa5vWp8xrphZn5MlvyWcjUa6LO6vv38Bk-1VYoOq7YZg0-mHIdls_qOPsG_DhGF75BjpWFqAofoEGBeubW44SjdpXgjs58_-kx6pfoZNZq9u8mXHVOLtu_cN1pAWu7ignmghtiBCGqKDilRGuVRMaaAkKZUMmoULpQaZokOZdEMgfJbLjmkTU-ioTKkGzBYjkozRdALKaFpDQOmTVtQqO4IoJTLbTIpWSMBRBNTzvTNQy564ZxnzUAyv5gMnswmT-YjAZw2MwZViAcb1LvTi8xqx_kOHOw_9YaColdwH4zbJ-Si4_I0gweHI3V1YSlKQlgu7rz5nPEGnJWVEUBpHPc0BA4mO75kbJ_5-G6ufXhmEgCOJryxGxZ_97Fzv-Rf4fl85-drHva-_0VVmLHVT7nZhcWJ6MH8w2W9J9Jfzza8-_jEePBDRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Selective+Review+of+Negative+Control+Methods+in+Epidemiology&rft.jtitle=Current+epidemiology+reports&rft.au=Shi%2C+Xu&rft.au=Miao%2C+Wang&rft.au=Tchetgen%2C+Eric+Tchetgen&rft.date=2020-12-01&rft.pub=Springer+International+Publishing&rft.eissn=2196-2995&rft.volume=7&rft.issue=4&rft.spage=190&rft.epage=202&rft_id=info:doi/10.1007%2Fs40471-020-00243-4&rft.externalDocID=10_1007_s40471_020_00243_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-2995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-2995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-2995&client=summon