Fetal brain tissue annotation and segmentation challenge results
•Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual annotations.•U-Net is the dominant method for automatic fetal brain segmentation.•Results using the U-Net have reached a plateau.•Challenge results an...
Uloženo v:
| Vydáno v: | Medical image analysis Ročník 88; s. 102833 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.08.2023
|
| Témata: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual annotations.•U-Net is the dominant method for automatic fetal brain segmentation.•Results using the U-Net have reached a plateau.•Challenge results analyzed from both technical and clinical perspectives.
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.
[Display omitted] |
|---|---|
| AbstractList | In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero. •Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual annotations.•U-Net is the dominant method for automatic fetal brain segmentation.•Results using the U-Net have reached a plateau.•Challenge results analyzed from both technical and clinical perspectives. In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero. [Display omitted] In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero. |
| ArticleNumber | 102833 |
| Author | Joskowicz, Leo Vercauteren, Tom Langs, Georg de Dumast, Priscille Cuadra, Meritxell Bach Ben-Zvi, Ori Fidon, Lucas Mazher, Moona Pei, Yuchen Alenyà, Mireia Xuesong, Li Wang, Guotai Qayyum, Abdul Xu, Daguang Karimi, Davood Wu, Yixuan Vasung, Lana Lin, Yang Bashat, Dafna Ben Xu, Yunzhi Liao, Kuanlun Li, Hongwei Bran Licandro, Roxane Oliveira, Bruno Kebiri, Hamza Zhang, Zelin Payette, Kelly Menze, Bjoern Wang, Lisheng Chen, Jintai Gholipour, Ali Camara, Oscar Peng, Ying Puig, Domenec Villanueva, Maria Inmaculada Xu, Xinyi Vilaça, João L. Myronenko, Andriy Siddiquee, Md Mahfuzur Rahman Zhang, Huiquan Torres, Helena R. Avisdris, Netanell Dong, Guiming Sobotka, Daniel Fadida, Bella Specktor Weibin, Liao Ji, Hui Wu, Dan Liu, Hao Xie, Juanying Fu, Hao Zhao, Li Kim, Donghyeon Jakab, Andras Rieu, ZunHyan Kim, Hyun Gi Aertsen, Michael Yi, Lv |
| Author_xml | – sequence: 1 givenname: Kelly orcidid: 0000-0001-7041-0150 surname: Payette fullname: Payette, Kelly email: kelly.payette@kispi.uzh.ch organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland – sequence: 2 givenname: Hongwei Bran surname: Li fullname: Li, Hongwei Bran organization: Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland – sequence: 3 givenname: Priscille surname: de Dumast fullname: de Dumast, Priscille organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland – sequence: 4 givenname: Roxane surname: Licandro fullname: Licandro, Roxane organization: Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States – sequence: 5 givenname: Hui surname: Ji fullname: Ji, Hui organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland – sequence: 6 givenname: Md Mahfuzur Rahman surname: Siddiquee fullname: Siddiquee, Md Mahfuzur Rahman organization: Arizona State University, United States – sequence: 7 givenname: Daguang surname: Xu fullname: Xu, Daguang organization: NVIDIA, United States – sequence: 8 givenname: Andriy surname: Myronenko fullname: Myronenko, Andriy organization: NVIDIA, United States – sequence: 9 givenname: Hao surname: Liu fullname: Liu, Hao organization: Shanghai Jiaotong University, China – sequence: 10 givenname: Yuchen surname: Pei fullname: Pei, Yuchen organization: Shanghai Jiaotong University, China – sequence: 11 givenname: Lisheng surname: Wang fullname: Wang, Lisheng organization: Shanghai Jiaotong University, China – sequence: 12 givenname: Ying surname: Peng fullname: Peng, Ying organization: School of Computer Science, Shaanxi Normal University, Xi'an 710119, China – sequence: 13 givenname: Juanying surname: Xie fullname: Xie, Juanying organization: School of Computer Science, Shaanxi Normal University, Xi'an 710119, China – sequence: 14 givenname: Huiquan surname: Zhang fullname: Zhang, Huiquan organization: School of Computer Science, Shaanxi Normal University, Xi'an 710119, China – sequence: 15 givenname: Guiming surname: Dong fullname: Dong, Guiming organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 16 givenname: Hao surname: Fu fullname: Fu, Hao organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 17 givenname: Guotai surname: Wang fullname: Wang, Guotai organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 18 givenname: ZunHyan surname: Rieu fullname: Rieu, ZunHyan organization: Research Institute, NEUROPHET Inc., Seoul 06247, South Korea – sequence: 19 givenname: Donghyeon surname: Kim fullname: Kim, Donghyeon organization: Research Institute, NEUROPHET Inc., Seoul 06247, South Korea – sequence: 20 givenname: Hyun Gi surname: Kim fullname: Kim, Hyun Gi organization: Department of Radiology, The Catholic University of Korea, Eunpyeong St. Mary's Hospital, Seoul 06247, South Korea – sequence: 21 givenname: Davood surname: Karimi fullname: Karimi, Davood organization: Boston Children's Hospital and Harvard Medical School, Boston, MA, United States – sequence: 22 givenname: Ali surname: Gholipour fullname: Gholipour, Ali organization: Boston Children's Hospital and Harvard Medical School, Boston, MA, United States – sequence: 23 givenname: Helena R. surname: Torres fullname: Torres, Helena R. organization: Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal – sequence: 24 givenname: Bruno surname: Oliveira fullname: Oliveira, Bruno organization: Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal – sequence: 25 givenname: João L. surname: Vilaça fullname: Vilaça, João L. organization: 2Ai – School of Technology, IPCA, Barcelos, Portugal – sequence: 26 givenname: Yang surname: Lin fullname: Lin, Yang organization: Department of Computer Science, Hong Kong University of Science and Technology, China – sequence: 27 givenname: Netanell surname: Avisdris fullname: Avisdris, Netanell organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel – sequence: 28 givenname: Ori surname: Ben-Zvi fullname: Ben-Zvi, Ori organization: Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel – sequence: 29 givenname: Dafna Ben surname: Bashat fullname: Bashat, Dafna Ben organization: Sagol School of Neuroscience, Tel Aviv University, Israel – sequence: 30 givenname: Lucas surname: Fidon fullname: Fidon, Lucas organization: School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom – sequence: 31 givenname: Michael surname: Aertsen fullname: Aertsen, Michael organization: Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium – sequence: 32 givenname: Tom surname: Vercauteren fullname: Vercauteren, Tom organization: School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom – sequence: 33 givenname: Daniel surname: Sobotka fullname: Sobotka, Daniel organization: Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria – sequence: 34 givenname: Georg surname: Langs fullname: Langs, Georg organization: Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria – sequence: 35 givenname: Mireia surname: Alenyà fullname: Alenyà, Mireia organization: BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 36 givenname: Maria Inmaculada surname: Villanueva fullname: Villanueva, Maria Inmaculada organization: Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 37 givenname: Oscar surname: Camara fullname: Camara, Oscar organization: BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 38 givenname: Bella Specktor surname: Fadida fullname: Fadida, Bella Specktor organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel – sequence: 39 givenname: Leo surname: Joskowicz fullname: Joskowicz, Leo organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel – sequence: 40 givenname: Liao surname: Weibin fullname: Weibin, Liao organization: School of Computer Science, Beijing Institute of Technology, China – sequence: 41 givenname: Lv surname: Yi fullname: Yi, Lv organization: School of Computer Science, Beijing Institute of Technology, China – sequence: 42 givenname: Li surname: Xuesong fullname: Xuesong, Li organization: School of Computer Science, Beijing Institute of Technology, China – sequence: 43 givenname: Moona surname: Mazher fullname: Mazher, Moona organization: Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain – sequence: 44 givenname: Abdul surname: Qayyum fullname: Qayyum, Abdul organization: Université de Bourgogne, France – sequence: 45 givenname: Domenec surname: Puig fullname: Puig, Domenec organization: Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain – sequence: 46 givenname: Hamza surname: Kebiri fullname: Kebiri, Hamza organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland – sequence: 47 givenname: Zelin surname: Zhang fullname: Zhang, Zelin organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China – sequence: 48 givenname: Xinyi surname: Xu fullname: Xu, Xinyi organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China – sequence: 49 givenname: Dan surname: Wu fullname: Wu, Dan organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China – sequence: 50 givenname: Kuanlun surname: Liao fullname: Liao, Kuanlun organization: Zhejiang University, Hangzhou, China – sequence: 51 givenname: Yixuan surname: Wu fullname: Wu, Yixuan organization: Zhejiang University, Hangzhou, China – sequence: 52 givenname: Jintai surname: Chen fullname: Chen, Jintai organization: Zhejiang University, Hangzhou, China – sequence: 53 givenname: Yunzhi surname: Xu fullname: Xu, Yunzhi organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China – sequence: 54 givenname: Li surname: Zhao fullname: Zhao, Li organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China – sequence: 55 givenname: Lana surname: Vasung fullname: Vasung, Lana organization: Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, United States – sequence: 56 givenname: Bjoern surname: Menze fullname: Menze, Bjoern organization: Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland – sequence: 57 givenname: Meritxell Bach surname: Cuadra fullname: Cuadra, Meritxell Bach organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland – sequence: 58 givenname: Andras surname: Jakab fullname: Jakab, Andras organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37267773$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LxDAQhoOsuB_6CwTp0UvXfLRNexCUxVVhwYueQ5JO1yzddE1SwX9v1u568OBpXob3GZhnika2s4DQJcFzgklxs5lvoTZyTjFlcUNLxk7QhLCCpGVG2eg3k3yMpt5vMMY8y_AZGjNOC845m6C7JQTZJspJY5NgvO8hkdZ2QQbT2RjrxMN6C_aw0O-ybcGuIXHg-zb4c3TayNbDxWHO0Nvy4XXxlK5eHp8X96tUZzgLaVnljDeU61xL4KxpNNRNhYFkNWUVzhXFEEPJC8VYBVyVmrKaSkxUpSRRbIauh7s713304IPYGq-hbaWFrveClpQyXpEyi9WrQ7VXUZHYObOV7kscv46Faiho13nvoBHaDP-F6KEVBIu9YbERP4bF3rAYDEeW_WGP5_-nbgcKoqJPA054bcBGCcaBDqLuzL_8N1A3lQU |
| CitedBy_id | crossref_primary_10_1093_cercor_bhae024 crossref_primary_10_1016_j_compbiomed_2025_110312 crossref_primary_10_1109_TMI_2023_3318364 crossref_primary_10_1007_s13755_023_00220_3 crossref_primary_10_1016_j_mric_2024_03_004 crossref_primary_10_1038_s41597_025_04926_9 crossref_primary_10_1109_TBME_2023_3337338 crossref_primary_10_1016_j_cmpb_2024_108451 crossref_primary_10_1016_j_artmed_2023_102608 crossref_primary_10_1007_s40747_024_01639_1 crossref_primary_10_1109_JBHI_2024_3399762 crossref_primary_10_1109_TMI_2024_3485554 crossref_primary_10_1186_s12880_025_01709_x crossref_primary_10_3389_fped_2024_1471080 crossref_primary_10_1016_j_media_2024_103282 crossref_primary_10_1007_s42979_025_04101_2 crossref_primary_10_1016_j_dcn_2025_101539 crossref_primary_10_3389_fnins_2023_1252850 crossref_primary_10_1002_hbm_70332 crossref_primary_10_1148_ryai_240677 crossref_primary_10_1016_j_neuroimage_2024_120723 crossref_primary_10_1016_j_neuroimage_2024_120603 |
| Cites_doi | 10.1007/s00247-021-05137-1 10.1016/S2352-4642(19)30349-9 10.1002/cmr.a.21321 10.3389/fnins.2020.591683 10.1055/s-0033-1343082 10.1093/cercor/bhz200 10.1523/JNEUROSCI.1285-22.2022 10.1016/j.neuroimage.2018.01.054 10.1038/s41598-021-83690-3 10.1186/s12880-015-0068-x 10.1016/j.neuroimage.2018.07.041 10.1109/TMI.2014.2377694 10.1016/j.media.2022.102731 10.1161/CIRCULATIONAHA.121.056305 10.1093/cercor/bhq179 10.2307/1932409 10.3389/fnins.2012.00171 10.1097/RMR.0b013e318267fe94 10.1016/j.mri.2019.05.020 10.1007/s00330-016-4502-4 10.1007/s00247-009-1459-3 10.1002/ana.25940 10.3310/hta23490 10.12688/openreseurope.13914.1 10.1056/NEJM198206033062202 10.1038/s41592-020-01008-z 10.1016/j.compmedimag.2018.08.007 10.1038/s41597-021-00946-3 10.1001/jamanetworkopen.2019.19940 10.1038/s41598-017-00525-w 10.1126/science.abb4588 10.1016/j.nicl.2018.01.006 10.1016/j.media.2020.101796 10.1186/1471-2431-14-15 10.1093/cercor/bhs281 10.1016/j.ajog.2013.04.008 10.3174/ajnr.A7419 10.1038/s41586-022-04554-y 10.1186/s41747-021-00219-z 10.1016/j.media.2012.07.004 10.1016/j.neuroimage.2006.01.021 10.1007/978-3-030-87735-4_19 10.1016/j.neuroimage.2015.06.018 10.3174/ajnr.A6771 10.1016/j.mri.2010.06.024 10.1038/s41598-021-81681-y 10.1053/j.sult.2015.06.003 10.1038/s41598-021-82017-6 10.1016/j.neuroimage.2021.118412 10.1007/s00330-018-5938-5 10.1016/j.neuroimage.2011.09.062 10.1007/s00429-016-1342-6 |
| ContentType | Journal Article |
| Copyright | 2023 Copyright © 2023. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.media.2023.102833 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 37267773 10_1016_j_media_2023_102833 S1361841523000932 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 35189 – fundername: Wellcome Trust grantid: 203145Z/16/Z – fundername: Austrian Science Fund FWF grantid: I 3925 – fundername: Wellcome Trust grantid: WT101957 – fundername: Wellcome Trust grantid: 203148/Z/16/Z |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c404t-89537f27c5cae73ffcedf90e14d23905b20e239876b339e7b8c23d2a01b9ba1b3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013162700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Sun Sep 28 12:33:07 EDT 2025 Mon Jul 21 06:07:05 EDT 2025 Tue Nov 18 22:34:41 EST 2025 Sat Nov 29 07:03:47 EST 2025 Fri Feb 23 02:35:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-class image segmentation Fetal brain MRI Super-resolution reconstructions Congenital disorders |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c404t-89537f27c5cae73ffcedf90e14d23905b20e239876b339e7b8c23d2a01b9ba1b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7041-0150 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.media.2023.102833 |
| PMID | 37267773 |
| PQID | 2822379184 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2822379184 pubmed_primary_37267773 crossref_citationtrail_10_1016_j_media_2023_102833 crossref_primary_10_1016_j_media_2023_102833 elsevier_sciencedirect_doi_10_1016_j_media_2023_102833 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wu, Yu, Wang, Yang, Zhang (bib0071) 2021; 2021 Jakab, Payette, Mazzone, Schauer, Muller, Kottke, Ochsenbein-Kölble, Tuura, Moehrlen, Meuli (bib0030) 2021; 5 Payette, K., Jakab, A., 2021. Fetal tissue annotation challenge - FeTA MICCAI 2021 [WWW Document]. URL de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B., 2020. Segmentation of the cortical plate in fetal brain MRI with a topological loss. Hosny, Elghawabi (bib0028) 2010; 28 Gowland (bib0022) 2011 Kasprian, Langs, Brugger, Bittner, Weber, Arantes, Prayer (bib0034) 2011; 21 Serag, Aljabar, Ball, Counsell, Boardman, Rutherford, Edwards, Hajnal, Rueckert (bib0061) 2012; 59 Sanroma, Benkarim, Piella, Lekadir, Hahner, Eixarch, González Ballester (bib0060) 2018; 69 Wu, Sun, Yu, Li, Wu, Wang, Qian, Zhang, Jiang, Wei (bib0070) 2021; 241 Zvi, Shemer, Toussia-Cohen, Zvi, Bashan, Hirschfeld-Dicker, Oselka, Amitai, Ezra, Bar-Yosef, Katorza (bib0075) 2020; 41 Bethlehem, R.a.I., Seidlitz, J., White, S.R., Vogel, J.W., Anderson, K.M., Adamson, C., Adler, S., Alexopoulos, G.S., Anagnostou, E., Areces-Gonzalez, A., Astle, D.E., Auyeung, B., Ayub, M., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S.A., Benegal, V., Beyer, F., Bae, J.B., Blangero, J., Cábez, M.B., Boardman, J.P., Borzage, M., Bosch-Bayard, J.F., Bourke, N., Calhoun, V.D., Chakravarty, M.M., Chen, C., Chertavian, C., Chetelat, G., Chong, Y.S., Cole, J.H., Corvin, A., Courchesne, E., Crivello, F., Cropley, V.L., Crosbie, J., Crossley, N., Delarue, M., Desrivieres, S., Devenyi, G., Biase, M.A.D., Dolan, R., Donald, K.A., Donohoe, G., Dunlop, K., Edwards, A.D., Elison, J.T., Ellis, C.T., Elman, J.A., Eyler, L., Fair, D.A., Fletcher, P.C., Fonagy, P., Franz, C.E., Galan-Garcia, L., Gholipour, A., Giedd, J., Gilmore, J.H., Glahn, D.C., Goodyer, I., Grant, P.E., Groenewold, N.A., Gunning, F.M., Gur, R.E., Gur, R.C., Hammill, C.F., Hansson, O., Hedden, T., Heinz, A., Henson, R., Heuer, K., Hoare, J., Holla, B., Holmes, A.J., Holt, R., Huang, H., Im, K., Ipser, J., Jack, C.R., Jackowski, A.P., Jia, T., Johnson, K.A., Jones, P.B., Jones, D.T., Kahn, R., Karlsson, H., Karlsson, L., Kawashima, R., Kelley, E.A., Kern, S., Kim, K., Kitzbichler, M.G., Kremen, W.S., Lalonde, F., Landeau, B., Lee, S., Lerch, J., Lewis, J.D., Li, J., Liao, W., Linares, D.P., Liston, C., Lombardo, M.V., Lv, J., Lynch, C., Mallard, T.T., Marcelis, M., Markello, R.D., Mazoyer, B., McGuire, P., Meaney, M.J., Mechelli, A., Medic, N., Misic, B., Morgan, S.E., Mothersill, D., Nigg, J., Ong, M.Q.W., Ortinau, C., Ossenkoppele, R., Ouyang, M., Palaniyappan, L., Paly, L., Pan, P.M., Pantelis, C., Park, M.M., Paus, T., Pausova, Z., Binette, A.P., Pierce, K., Qian, X., Qiu, J., Qiu, A., Raznahan, A., Rittman, T., Rollins, C.K., Romero-Garcia, R., Ronan, L., Rosenberg, M.D., Rowitch, D.H., Salum, G.A., Satterthwaite, T.D., Schaare, H.L., Schachar, R.J., Schultz, A.P., Schumann, G., Schöll, M., Sharp, D., Shinohara, R.T., Skoog, I., Smyser, C.D., Sperling, R.A., Stein, D.J., Stolicyn, A., Suckling, J., Sullivan, G., Taki, Y., Thyreau, B., Toro, R., Tsvetanov, K.A., Turk-Browne, N.B., Tuulari, J.J., Tzourio, C., Vachon-Presseau, É., Valdes-Sosa, M.J., Valdes-Sosa, P.A., Valk, S.L., Amelsvoort, T. van, Vandekar, S.N., Vasung, L., Victoria, L.W., Villeneuve, S., Villringer, A., Vértes, P.E., Wagstyl, K., Wang, Y.S., Warfield, S.K., Warrier, V., Westman, E., Westwater, M.L., Whalley, H.C., Witte, A.V., Yang, N., Yeo, B.T.T., Yun, H.J., Zalesky, A., Zar, H.J., Zettergren, A., Zhou, J.H., Ziauddeen, H., Zugman, A., Zuo, X.N., Aibl, Initiative, A.D.N., Investigators, A.D.R.W.B., Asrb, Team, C., Cam-CAN, Ccnp, 3r-Brain, Cobre, Group, E.D.B.A. working, FinnBrain, Study, H.A.B., Imagen, K., Nspn, Oasis-3, Project, O., Pond, The PREVENT-AD Research Group, V., Alexander-Bloch, A.F., 2021. Brain charts for the human lifespan. Hausdorff (bib0026) 1991 Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., Wiestler, B., Colen, R., Kotrotsou, A., Lamontagne, P., Marcus, D., Milchenko, M., Nazeri, A., Weber, M.-.A., Mahajan, A., Baid, U., Gerstner, E., Kwon, D., Acharya, G., Agarwal, M., Alam, M., Albiol, Alberto, Albiol, Antonio, Albiol, F.J., Alex, V., Allinson, N., Amorim, P.H.A., Amrutkar, A., Anand, G., Andermatt, S., Arbel, T., Arbelaez, P., Avery, A., Azmat, M., B., P., Bai, W., Banerjee, S., Barth, B., Batchelder, T., Batmanghelich, K., Battistella, E., Beers, A., Belyaev, M., Bendszus, M., Benson, E., Bernal, J., Bharath, H.N., Biros, G., Bisdas, S., Brown, J., Cabezas, M., Cao, S., Cardoso, J.M., Carver, E.N., Casamitjana, A., Castillo, L.S., Catà, M., Cattin, P., Cerigues, A., Chagas, V.S., Chandra, S., Chang, Y.-.J., Chang, S., Chang, K., Chazalon, J., Chen, S., Chen, W., Chen, J.W., Chen, Z., Cheng, K., Choudhury, A.R., Chylla, R., Clérigues, A., Colleman, S., Colmeiro, R.G.R., Combalia, M., Costa, A., Cui, X., Dai, Z., Dai, L., Daza, L.A., Deutsch, E., Ding, C., Dong, C., Dong, S., Dudzik, W., Eaton-Rosen, Z., Egan, G., Escudero, G., Estienne, T., Everson, R., Fabrizio, J., Fan, Y., Fang, L., Feng, X., Ferrante, E., Fidon, L., Fischer, M., French, A.P., Fridman, N., Fu, H., Fuentes, D., Gao, Y., Gates, E., Gering, D., Gholami, A., Gierke, W., Glocker, B., Gong, M., González-Villá, S., Grosges, T., Guan, Y., Guo, S., Gupta, S., Han, W.-.S., Han, I.S., Harmuth, K., He, H., Hernández-Sabaté, A., Herrmann, E., Himthani, N., Hsu, W., Hsu, C., Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, R., Huang, T.-.Y., Huang, W., Van Huffel, S., Huo, Q., HV, V., Iftekharuddin, K.M., Isensee, F., Islam, M., Jackson, A.S., Jambawalikar, S.R., Jesson, A., Jian, W., Jin, P., Jose, V.J.M., Jungo, A., Kainz, B., Kamnitsas, K., Kao, P.-.Y., Karnawat, A., Kellermeier, T., Kermi, A., Keutzer, K., Khadir, M.T., Khened, M., Kickingereder, P., Kim, G., King, N., Knapp, H., Knecht, U., Kohli, L., Kong, D., Kong, X., Koppers, S., Kori, A., Krishnamurthi, G., Krivov, E., Kumar, P., Kushibar, K., Lachinov, D., Lambrou, T., Lee, J., Lee, C., Lee, Y., Lee, M., Lefkovits, S., Lefkovits, L., Levitt, J., Li, T., Li, Hongwei, Li, W., Li, Hongyang, Li, Xiaochuan, Li, Y., Li, Heng, Li, Zhenye, Li, Xiaoyu, Li, Zeju, Li, XiaoGang, Li, W., Lin, Z.-.S., Lin, F., Lio, P., Liu, C., Liu, B., Liu, X., Liu, M., Liu, J., Liu, L., Llado, X., Lopez, M.M., Lorenzo, P.R., Lu, Z., Luo, L., Luo, Z., Ma, J., Ma, K., Mackie, T., Madabushi, A., Mahmoudi, I., Maier-Hein, K.H., Maji, P., Mammen, C.P., Mang, A., Manjunath, B.S., Marcinkiewicz, M., McDonagh, S., McKenna, S., McKinley, R., Mehl, M., Mehta, S., Mehta, R., Meier, R., Meinel, C., Merhof, D., Meyer, C., Miller, R., Mitra, S., Moiyadi, A., Molina-Garcia, D., Monteiro, M.A.B., Mrukwa, G., Myronenko, A., Nalepa, J., Ngo, T., Nie, D., Ning, H., Niu, C., Nuechterlein, N.K., Oermann, E., Oliveira, A., Oliveira, D.D.C., Oliver, A., Osman, A.F.I., Ou, Y.-.N., Ourselin, S., Paragios, N., Park, M.S., Paschke, B., Pauloski, J.G., Pawar, K., Pawlowski, N., Pei, L., Peng, S., Pereira, S.M., Perez-Beteta, J., Perez-Garcia, V.M., Pezold, S., Pham, B., Phophalia, A., Piella, G., Pillai, G.N., Piraud, M., Pisov, M., Popli, A., Pound, M.P., Pourreza, R., Prasanna, P., Prkovska, V., Pridmore, T.P., Puch, S., Puybareau, É., Qian, B., Qiao, X., Rajchl, M., Rane, S., Rebsamen, M., Ren, H., Ren, X., Revanuru, K., Rezaei, M., Rippel, O., Rivera, L.C., Robert, C., Rosen, B., Rueckert, D., Safwan, M., Salem, M., Salvi, J., Sanchez, I., Sánchez, I., Santos, H.M., Sartor, E., Schellingerhout, D., Scheufele, K., Scott, M.R., Scussel, A.A., Sedlar, S., Serrano-Rubio, J.P., Shah, N.J., Shah, N., Shaikh, M., Shankar, B.U., Shboul, Z., Shen, Haipeng, Shen, D., Shen, L., Shen, Haocheng, Shenoy, V., Shi, F., Shin, H.E., Shu, H., Sima, D., Sinclair, M., Smedby, O., Snyder, J.M., Soltaninejad, M., Song, G., Soni, M., Stawiaski, J., Subramanian, S., Sun, L., Sun, R., Sun, J., Sun, K., Sun, Y., Sun, G., Sun, S., Suter, Y.R., Szilagyi, L., Talbar, S., Tao, D., Tao, D., Teng, Z., Thakur, S., Thakur, M.H., Tharakan, S., Tiwari, P., Tochon, G., Tran, T., Tsai, Y.M., Tseng, K.-.L., Tuan, T.A., Turlapov, V., Tustison, N., Vakalopoulou, M., Valverde, S., Vanguri, R., Vasiliev, E., Ventura, J., Vera, L., Vercauteren, T., Verrastro, C.A., Vidyaratne, L., Vilaplana, V., Vivekanandan, A., Wang, G., Wang, Q., Wang, C.J., Wang, W., Wang, D., Wang, R., Wang, Y., Wang, C., Wang, G., Wen, N., Wen, X., Weninger, L., Wick, W., Wu, S., Wu, Q., Wu, Y., Xia, Y., Xu, Y., Xu, X., Xu, P., Yang, T.-.L., Yang, X., Yang, H.-.Y., Yang, J., Yang, H., Yang, G., Yao, H., Ye, X., Yin, C., Young-Moxon, B., Yu, J., Yue, X., Zhang, S., Zhang, A., Zhang, K., Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhang, Y., Zhang, Lei, Zhang, J., Zhang, Xiang, Zhang, T., Zhao, S., Zhao, Y., Zhao, X., Zhao, L., Zheng, Y., Zhong, L., Zhou, C., Zhou, X., Zhou, F., Zhu, H., Zhu, J., Zhuge, Y., Zong, W., Kalpathy-Cramer, J., Farahani, K., Davatzikos, C., van Leemput, K., Menze, B., 2019. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. Amunts, Mohlberg, Bludau, Zilles (bib0001) 2020; 369 (accessed 2.23.22). Prayer, Kasprian, Krampl, Ulm, Witzani, Prayer, Brugger (bib0054) 2006; 57 Griffiths, Bradburn, Campbell, Cooper, Embleton, Graham, Hart, Jarvis, Kilby, Lie, Mason, Mandefield, Mooney, Pennington, Robson, Wailoo (bib0023) 2019; 23 van den Heuvel, Hect, Smarr, Qawasmeh, Kriegsfeld, Barcelona, Hijazi, Thomason (bib0066) 2021; 11 Glenn (bib0021) 2010; 40 Polat, Barlow, Ber, Achiron, Katorza (bib0053) 2017; 27 Fidon, L., Aertsen, M., Kofler, F., Bink, A., David, A.L., Deprest, T., Emam, D., Guffens, F., Jakab, A., Kasprian, G., Kienast, P., Melbourne, A., Menze, B., Mufti, N., Pogledic, I., Prayer, D., Stuempflen, M., Van Elslander, E., Ourselin, S., Klein (10.1016/j.media.2023.102833_bib0037) 2012; 6 Kyriakopoulou (10.1016/j.media.2023.102833_bib0039) 2017; 222 Nagaraj (10.1016/j.media.2023.102833_bib0047) 2022; 52 Payette (10.1016/j.media.2023.102833_bib0048) 2021; 8 Griffiths (10.1016/j.media.2023.102833_bib0023) 2019; 23 Hosny (10.1016/j.media.2023.102833_bib0028) 2010; 28 Tourbier (10.1016/j.media.2023.102833_bib0065) 2015; 118 Benkarim (10.1016/j.media.2023.102833_bib0004) 2018; 18 Desikan (10.1016/j.media.2023.102833_bib0011) 2006; 31 Isensee (10.1016/j.media.2023.102833_bib0029) 2021; 18 Wu (10.1016/j.media.2023.102833_bib0071) 2021; 2021 Hausdorff (10.1016/j.media.2023.102833_bib0026) 1991 Polat (10.1016/j.media.2023.102833_bib0053) 2017; 27 Core Team (10.1016/j.media.2023.102833_bib0055) 2020 Meuli (10.1016/j.media.2023.102833_bib0044) 1997; 32 Gowland (10.1016/j.media.2023.102833_bib0022) 2011 Kikinis (10.1016/j.media.2023.102833_bib0036) 2014 Skotting (10.1016/j.media.2023.102833_bib0062) 2021; 11 Licandro (10.1016/j.media.2023.102833_bib0040) 2016 Menze (10.1016/j.media.2023.102833_bib0043) 2015; 34 Taha (10.1016/j.media.2023.102833_bib0063) 2015; 15 Hong (10.1016/j.media.2023.102833_bib0027) 2020; 14 Fidon (10.1016/j.media.2023.102833_bib0016) 2021 Çiçek (10.1016/j.media.2023.102833_bib0006) 2016 Sanroma (10.1016/j.media.2023.102833_bib0060) 2018; 69 Kasprian (10.1016/j.media.2023.102833_bib0034) 2011; 21 Wiesenfarth (10.1016/j.media.2023.102833_bib0069) 2021; 11 10.1016/j.media.2023.102833_bib0003 De Asis-Cruz (10.1016/j.media.2023.102833_bib0009) 2021 Jakab (10.1016/j.media.2023.102833_bib0031) 2015; 36 10.1016/j.media.2023.102833_bib0046 10.1016/j.media.2023.102833_bib0005 10.1016/j.media.2023.102833_bib0049 Wu (10.1016/j.media.2023.102833_bib0070) 2021; 241 Khalili (10.1016/j.media.2023.102833_bib0035) 2019 Gholipour (10.1016/j.media.2023.102833_bib0020) 2017; 7 Glenn (10.1016/j.media.2023.102833_bib0021) 2010; 40 Rollins (10.1016/j.media.2023.102833_bib0056) 2021; 89 Zhao (10.1016/j.media.2023.102833_bib0074) 2022 Fidon (10.1016/j.media.2023.102833_bib0018) 2021; 1 Gholipour (10.1016/j.media.2023.102833_bib0019) 2014; 43 Jarvis (10.1016/j.media.2023.102833_bib0032) 2019; 29 van den Heuvel (10.1016/j.media.2023.102833_bib0066) 2021; 11 Dice (10.1016/j.media.2023.102833_bib0012) 1945; 26 Vasung (10.1016/j.media.2023.102833_bib0068) 2020; 30 Clouchoux (10.1016/j.media.2023.102833_bib0008) 2013; 23 10.1016/j.media.2023.102833_bib0010 Egaña-Ugrinovic (10.1016/j.media.2023.102833_bib0014) 2013; 209 Maier-Hein (10.1016/j.media.2023.102833_bib0041) 2020; 66 Makropoulos (10.1016/j.media.2023.102833_bib0042) 2018; 173 10.1016/j.media.2023.102833_bib0050 10.1016/j.media.2023.102833_bib0052 Dittrich (10.1016/j.media.2023.102833_bib0013) 2011; 22 10.1016/j.media.2023.102833_bib0051 10.1016/j.media.2023.102833_bib0017 Vasung (10.1016/j.media.2023.102833_bib0067) 2019; 187 Rüegger (10.1016/j.media.2023.102833_bib0058) 2014; 14 Jakab (10.1016/j.media.2023.102833_bib0030) 2021; 5 Prayer (10.1016/j.media.2023.102833_bib0054) 2006; 57 Hart (10.1016/j.media.2023.102833_bib0025) 2020; 4 Ronneberger (10.1016/j.media.2023.102833_bib0057) 2015 Fetit (10.1016/j.media.2023.102833_bib0015) 2020 Clewell (10.1016/j.media.2023.102833_bib0007) 1982; 306 Meuli (10.1016/j.media.2023.102833_bib0045) 2013; 23 Karimi (10.1016/j.media.2023.102833_bib0033) 2023; 85 Amunts (10.1016/j.media.2023.102833_bib0001) 2020; 369 Serag (10.1016/j.media.2023.102833_bib0061) 2012; 59 10.1016/j.media.2023.102833_bib0064 Wu (10.1016/j.media.2023.102833_bib0072) 2020; 3 Xu (10.1016/j.media.2023.102833_bib0073) 2022; 42 Kuklisova-Murgasova (10.1016/j.media.2023.102833_bib0038) 2012; 16 Sadhwani (10.1016/j.media.2023.102833_bib0059) 2022 Bach Cuadra (10.1016/j.media.2023.102833_bib0002) 2009 10.1016/j.media.2023.102833_bib0024 Zvi (10.1016/j.media.2023.102833_bib0075) 2020; 41 |
| References_xml | – reference: Pierre Deman, Sebastien Tourbier, Reto Meuli, Meritxell Bach Cuadra, 2020. Meribach/mevislabFetalMRI: MEVISLAB MIAL super-resolution reconstruction of fetal brain MRI v1.0. – volume: 3 year: 2020 ident: bib0072 article-title: Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation publication-title: JAMA Netw. Open – volume: 41 start-page: 1989 year: 2020 end-page: 1992 ident: bib0075 article-title: Fetal exposure to MR imaging: long-term neurodevelopmental outcome publication-title: AJNR Am. J. Neuroradiol. – year: 2009 ident: bib0002 article-title: Brain tissue segmentation of fetal MR images publication-title: Workshop on Image Analysis for Developing Brain, in 12th International Conference on Medical Image Computing and Computer Assisted Intervention. Presented at the Workshop on Image Analysis for Developing Brain, in 12th International Conference on Medical Image Computing and Computer Assisted Intervention – volume: 27 start-page: 2110 year: 2017 end-page: 2118 ident: bib0053 article-title: Volumetric MRI study of the intrauterine growth restriction fetal brain publication-title: Eur. Radiol. – volume: 222 start-page: 2295 year: 2017 end-page: 2307 ident: bib0039 article-title: Normative biometry of the fetal brain using magnetic resonance imaging publication-title: Brain Struct. Funct. – reference: [cs, eess]. – volume: 11 start-page: 2369 year: 2021 ident: bib0069 article-title: Methods and open-source toolkit for analyzing and visualizing challenge results publication-title: Sci. Rep. – volume: 69 start-page: 52 year: 2018 end-page: 59 ident: bib0060 article-title: Learning to combine complementary segmentation methods for fetal and 6-month infant brain MRI segmentation publication-title: Comput. Med. Imaging Graph. – volume: 187 start-page: 226 year: 2019 end-page: 254 ident: bib0067 article-title: Exploring early human brain development with structural and physiological neuroimaging publication-title: Neuroimage – reference: Gwet, K.L., 2019. irrCAC: computing chance-corrected agreement coefficients (CAC), R Package version 1.0. – reference: Tourbier, S., Bresson, X., Hagmann, P., Meuli, R., Bach Cuadra, M., 2019. sebastientourbier/mialsuperresolutiontoolkit: MIAL Super-Resolution Toolkit v1.0. – volume: 306 start-page: 1320 year: 1982 end-page: 1325 ident: bib0007 article-title: A Surgical Approach to the Treatment of Fetal Hydrocephalus publication-title: N. Engl. J. Med. – volume: 15 year: 2015 ident: bib0063 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imaging – volume: 241 year: 2021 ident: bib0070 article-title: Age-specific structural fetal brain atlases construction and cortical development quantification for chinese population publication-title: Neuroimage – volume: 2021 start-page: 2745 year: 2021 end-page: 2749 ident: bib0071 article-title: Longitudinal Chinese population structural fetal brain atlases construction: toward precise fetal brain segmentation publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 16 start-page: 1550 year: 2012 end-page: 1564 ident: bib0038 article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal publication-title: Med. Image Anal. – volume: 173 start-page: 88 year: 2018 end-page: 112 ident: bib0042 article-title: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction publication-title: Neuroimage – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: bib0029 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods – reference: Bethlehem, R.a.I., Seidlitz, J., White, S.R., Vogel, J.W., Anderson, K.M., Adamson, C., Adler, S., Alexopoulos, G.S., Anagnostou, E., Areces-Gonzalez, A., Astle, D.E., Auyeung, B., Ayub, M., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S.A., Benegal, V., Beyer, F., Bae, J.B., Blangero, J., Cábez, M.B., Boardman, J.P., Borzage, M., Bosch-Bayard, J.F., Bourke, N., Calhoun, V.D., Chakravarty, M.M., Chen, C., Chertavian, C., Chetelat, G., Chong, Y.S., Cole, J.H., Corvin, A., Courchesne, E., Crivello, F., Cropley, V.L., Crosbie, J., Crossley, N., Delarue, M., Desrivieres, S., Devenyi, G., Biase, M.A.D., Dolan, R., Donald, K.A., Donohoe, G., Dunlop, K., Edwards, A.D., Elison, J.T., Ellis, C.T., Elman, J.A., Eyler, L., Fair, D.A., Fletcher, P.C., Fonagy, P., Franz, C.E., Galan-Garcia, L., Gholipour, A., Giedd, J., Gilmore, J.H., Glahn, D.C., Goodyer, I., Grant, P.E., Groenewold, N.A., Gunning, F.M., Gur, R.E., Gur, R.C., Hammill, C.F., Hansson, O., Hedden, T., Heinz, A., Henson, R., Heuer, K., Hoare, J., Holla, B., Holmes, A.J., Holt, R., Huang, H., Im, K., Ipser, J., Jack, C.R., Jackowski, A.P., Jia, T., Johnson, K.A., Jones, P.B., Jones, D.T., Kahn, R., Karlsson, H., Karlsson, L., Kawashima, R., Kelley, E.A., Kern, S., Kim, K., Kitzbichler, M.G., Kremen, W.S., Lalonde, F., Landeau, B., Lee, S., Lerch, J., Lewis, J.D., Li, J., Liao, W., Linares, D.P., Liston, C., Lombardo, M.V., Lv, J., Lynch, C., Mallard, T.T., Marcelis, M., Markello, R.D., Mazoyer, B., McGuire, P., Meaney, M.J., Mechelli, A., Medic, N., Misic, B., Morgan, S.E., Mothersill, D., Nigg, J., Ong, M.Q.W., Ortinau, C., Ossenkoppele, R., Ouyang, M., Palaniyappan, L., Paly, L., Pan, P.M., Pantelis, C., Park, M.M., Paus, T., Pausova, Z., Binette, A.P., Pierce, K., Qian, X., Qiu, J., Qiu, A., Raznahan, A., Rittman, T., Rollins, C.K., Romero-Garcia, R., Ronan, L., Rosenberg, M.D., Rowitch, D.H., Salum, G.A., Satterthwaite, T.D., Schaare, H.L., Schachar, R.J., Schultz, A.P., Schumann, G., Schöll, M., Sharp, D., Shinohara, R.T., Skoog, I., Smyser, C.D., Sperling, R.A., Stein, D.J., Stolicyn, A., Suckling, J., Sullivan, G., Taki, Y., Thyreau, B., Toro, R., Tsvetanov, K.A., Turk-Browne, N.B., Tuulari, J.J., Tzourio, C., Vachon-Presseau, É., Valdes-Sosa, M.J., Valdes-Sosa, P.A., Valk, S.L., Amelsvoort, T. van, Vandekar, S.N., Vasung, L., Victoria, L.W., Villeneuve, S., Villringer, A., Vértes, P.E., Wagstyl, K., Wang, Y.S., Warfield, S.K., Warrier, V., Westman, E., Westwater, M.L., Whalley, H.C., Witte, A.V., Yang, N., Yeo, B.T.T., Yun, H.J., Zalesky, A., Zar, H.J., Zettergren, A., Zhou, J.H., Ziauddeen, H., Zugman, A., Zuo, X.N., Aibl, Initiative, A.D.N., Investigators, A.D.R.W.B., Asrb, Team, C., Cam-CAN, Ccnp, 3r-Brain, Cobre, Group, E.D.B.A. working, FinnBrain, Study, H.A.B., Imagen, K., Nspn, Oasis-3, Project, O., Pond, The PREVENT-AD Research Group, V., Alexander-Bloch, A.F., 2021. Brain charts for the human lifespan. – volume: 52 start-page: 802 year: 2022 end-page: 816 ident: bib0047 article-title: Value of pre- and postnatal magnetic resonance imaging in the evaluation of congenital central nervous system anomalies publication-title: Pediatr. Radiol. – start-page: 424 year: 2016 end-page: 432 ident: bib0006 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 49 year: 2011 end-page: 54 ident: bib0022 article-title: Safety of fetal MRI scanning publication-title: Fetal MRI – volume: 14 start-page: 15 year: 2014 ident: bib0058 article-title: Minimally invasive, imaging guided virtual autopsy compared to conventional autopsy in foetal, newborn and infant cases: study protocol for the paediatric virtual autopsy trial publication-title: BMC Pediatr. – volume: 8 start-page: 167 year: 2021 ident: bib0048 article-title: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset publication-title: Sci. Data – volume: 209 year: 2013 ident: bib0014 article-title: Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction publication-title: Am. J. Obstet. Gynecol. – reference: [cs, stat]. – start-page: 647 year: 2021 end-page: 657 ident: bib0016 article-title: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 – volume: 22 start-page: 107 year: 2011 end-page: 111 ident: bib0013 article-title: Atlas learning in fetal brain development publication-title: Top. Magn. Reson. Imaging. – volume: 23 start-page: 103 year: 2013 end-page: 109 ident: bib0045 article-title: Fetal surgery for myelomeningocele: a critical appraisal publication-title: Eur. J. Pediatr. Surg. – volume: 118 start-page: 584 year: 2015 end-page: 597 ident: bib0065 article-title: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization publication-title: Neuroimage – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: bib0011 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage – volume: 23 start-page: 1 year: 2019 end-page: 144 ident: bib0023 article-title: MRI in the diagnosis of fetal developmental brain abnormalities: the MERIDIAN diagnostic accuracy study publication-title: Health Technol. Assess. – volume: 5 start-page: 23 year: 2021 ident: bib0030 article-title: Emerging magnetic resonance imaging techniques in open spina bifida in utero publication-title: Eur. Radiol. Exp. – volume: 18 start-page: 103 year: 2018 end-page: 114 ident: bib0004 article-title: Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly publication-title: Neuroimage Clin. – reference: Payette, K., Steger, C., Dumast, P.de, Jakab, A., Cuadra, M.B., Vasung, L., Licandro, R., Barkovich, M., Li, H., 2022. Fetal tissue annotation challenge. – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bib0012 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 57 start-page: 199 year: 2006 end-page: 216 ident: bib0054 article-title: MRI of normal fetal brain development publication-title: Eur. J. Radiol., Fetal Imaging – volume: 1 year: 2021 ident: bib0018 article-title: A spatio-temporal atlas of the developing fetal brain with spina bifida aperta publication-title: Open Res. Europe – volume: 6 start-page: 171 year: 2012 ident: bib0037 article-title: 101 labeled brain images and a consistent human cortical labeling protocol publication-title: Front. Neurosci. – volume: 66 year: 2020 ident: bib0041 article-title: BIAS: transparent reporting of biomedical image analysis challenges publication-title: Med. Image Anal. – volume: 23 start-page: 2932 year: 2013 end-page: 2943 ident: bib0008 article-title: Delayed cortical development in fetuses with complex congenital heart disease publication-title: Cereb. Cortex – volume: 11 start-page: 4191 year: 2021 ident: bib0062 article-title: Infants with congenital heart defects have reduced brain volumes publication-title: Sci. Rep. – volume: 28 start-page: 1431 year: 2010 end-page: 1439 ident: bib0028 article-title: Ultrafast MRI of the fetus: an increasingly important tool in prenatal diagnosis of congenital anomalies publication-title: Magn. Reson. Imaging – year: 2022 ident: bib0059 article-title: Fetal brain volume predicts neurodevelopment in congenital heart disease publication-title: Circulation – start-page: 234 year: 2015 end-page: 241 ident: bib0057 article-title: U-Net: convolutional Networks for Biomedical Image Segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science – volume: 11 start-page: 2228 year: 2021 ident: bib0066 article-title: Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth publication-title: Sci. Rep. – volume: 89 start-page: 143 year: 2021 end-page: 157 ident: bib0056 article-title: Regional brain growth trajectories in fetuses with congenital heart disease publication-title: Ann. Neurol. – reference: Fidon, L., Aertsen, M., Kofler, F., Bink, A., David, A.L., Deprest, T., Emam, D., Guffens, F., Jakab, A., Kasprian, G., Kienast, P., Melbourne, A., Menze, B., Mufti, N., Pogledic, I., Prayer, D., Stuempflen, M., Van Elslander, E., Ourselin, S., Deprest, J., Vercauteren, T., 2022. A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation. – volume: 369 start-page: 988 year: 2020 end-page: 992 ident: bib0001 article-title: Julich-Brain: a 3D probabilistic atlas of the human brain's cytoarchitecture publication-title: Science – volume: 32 start-page: 448 year: 1997 end-page: 452 ident: bib0044 article-title: The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery publication-title: J. Pediatr. Surg., Pap. Presented 43rd Annu. Int. Congress – volume: 85 year: 2023 ident: bib0033 article-title: Learning to segment fetal brain tissue from noisy annotations publication-title: Med Image Anal. – volume: 4 start-page: 131 year: 2020 end-page: 140 ident: bib0025 article-title: Accuracy of in-utero MRI to detect fetal brain abnormalities and prognosticate developmental outcome: postnatal follow-up of the MERIDIAN cohort publication-title: Lancet Child Adolesc. Health – volume: 30 start-page: 1752 year: 2020 end-page: 1767 ident: bib0068 article-title: Quantitative in vivo MRI assessment of structural asymmetries and sexual dimorphism of transient fetal compartments in the human brain publication-title: Cereb. Cortex – reference: de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B., 2020. Segmentation of the cortical plate in fetal brain MRI with a topological loss. – year: 2022 ident: bib0074 article-title: Automated 3D fetal brain segmentation using an optimized deep learning approach publication-title: Am. J. Neuroradiol. – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: bib0043 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging – reference: MONAI Consortium, 2020. MONAI: medical Open Network for AI. – year: 1991 ident: bib0026 article-title: Set Theory – volume: 42 start-page: 9435 year: 2022 end-page: 9449 ident: bib0073 article-title: Spatiotemporal atlas of the fetal brain depicts cortical developmental gradient publication-title: J. Neurosci. – volume: 7 year: 2017 ident: bib0020 article-title: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth publication-title: Sci. Rep. – start-page: 277 year: 2014 end-page: 289 ident: bib0036 article-title: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support publication-title: Intraoperative Imaging and Image-Guided Therapy – reference: Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., Wiestler, B., Colen, R., Kotrotsou, A., Lamontagne, P., Marcus, D., Milchenko, M., Nazeri, A., Weber, M.-.A., Mahajan, A., Baid, U., Gerstner, E., Kwon, D., Acharya, G., Agarwal, M., Alam, M., Albiol, Alberto, Albiol, Antonio, Albiol, F.J., Alex, V., Allinson, N., Amorim, P.H.A., Amrutkar, A., Anand, G., Andermatt, S., Arbel, T., Arbelaez, P., Avery, A., Azmat, M., B., P., Bai, W., Banerjee, S., Barth, B., Batchelder, T., Batmanghelich, K., Battistella, E., Beers, A., Belyaev, M., Bendszus, M., Benson, E., Bernal, J., Bharath, H.N., Biros, G., Bisdas, S., Brown, J., Cabezas, M., Cao, S., Cardoso, J.M., Carver, E.N., Casamitjana, A., Castillo, L.S., Catà, M., Cattin, P., Cerigues, A., Chagas, V.S., Chandra, S., Chang, Y.-.J., Chang, S., Chang, K., Chazalon, J., Chen, S., Chen, W., Chen, J.W., Chen, Z., Cheng, K., Choudhury, A.R., Chylla, R., Clérigues, A., Colleman, S., Colmeiro, R.G.R., Combalia, M., Costa, A., Cui, X., Dai, Z., Dai, L., Daza, L.A., Deutsch, E., Ding, C., Dong, C., Dong, S., Dudzik, W., Eaton-Rosen, Z., Egan, G., Escudero, G., Estienne, T., Everson, R., Fabrizio, J., Fan, Y., Fang, L., Feng, X., Ferrante, E., Fidon, L., Fischer, M., French, A.P., Fridman, N., Fu, H., Fuentes, D., Gao, Y., Gates, E., Gering, D., Gholami, A., Gierke, W., Glocker, B., Gong, M., González-Villá, S., Grosges, T., Guan, Y., Guo, S., Gupta, S., Han, W.-.S., Han, I.S., Harmuth, K., He, H., Hernández-Sabaté, A., Herrmann, E., Himthani, N., Hsu, W., Hsu, C., Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, R., Huang, T.-.Y., Huang, W., Van Huffel, S., Huo, Q., HV, V., Iftekharuddin, K.M., Isensee, F., Islam, M., Jackson, A.S., Jambawalikar, S.R., Jesson, A., Jian, W., Jin, P., Jose, V.J.M., Jungo, A., Kainz, B., Kamnitsas, K., Kao, P.-.Y., Karnawat, A., Kellermeier, T., Kermi, A., Keutzer, K., Khadir, M.T., Khened, M., Kickingereder, P., Kim, G., King, N., Knapp, H., Knecht, U., Kohli, L., Kong, D., Kong, X., Koppers, S., Kori, A., Krishnamurthi, G., Krivov, E., Kumar, P., Kushibar, K., Lachinov, D., Lambrou, T., Lee, J., Lee, C., Lee, Y., Lee, M., Lefkovits, S., Lefkovits, L., Levitt, J., Li, T., Li, Hongwei, Li, W., Li, Hongyang, Li, Xiaochuan, Li, Y., Li, Heng, Li, Zhenye, Li, Xiaoyu, Li, Zeju, Li, XiaoGang, Li, W., Lin, Z.-.S., Lin, F., Lio, P., Liu, C., Liu, B., Liu, X., Liu, M., Liu, J., Liu, L., Llado, X., Lopez, M.M., Lorenzo, P.R., Lu, Z., Luo, L., Luo, Z., Ma, J., Ma, K., Mackie, T., Madabushi, A., Mahmoudi, I., Maier-Hein, K.H., Maji, P., Mammen, C.P., Mang, A., Manjunath, B.S., Marcinkiewicz, M., McDonagh, S., McKenna, S., McKinley, R., Mehl, M., Mehta, S., Mehta, R., Meier, R., Meinel, C., Merhof, D., Meyer, C., Miller, R., Mitra, S., Moiyadi, A., Molina-Garcia, D., Monteiro, M.A.B., Mrukwa, G., Myronenko, A., Nalepa, J., Ngo, T., Nie, D., Ning, H., Niu, C., Nuechterlein, N.K., Oermann, E., Oliveira, A., Oliveira, D.D.C., Oliver, A., Osman, A.F.I., Ou, Y.-.N., Ourselin, S., Paragios, N., Park, M.S., Paschke, B., Pauloski, J.G., Pawar, K., Pawlowski, N., Pei, L., Peng, S., Pereira, S.M., Perez-Beteta, J., Perez-Garcia, V.M., Pezold, S., Pham, B., Phophalia, A., Piella, G., Pillai, G.N., Piraud, M., Pisov, M., Popli, A., Pound, M.P., Pourreza, R., Prasanna, P., Prkovska, V., Pridmore, T.P., Puch, S., Puybareau, É., Qian, B., Qiao, X., Rajchl, M., Rane, S., Rebsamen, M., Ren, H., Ren, X., Revanuru, K., Rezaei, M., Rippel, O., Rivera, L.C., Robert, C., Rosen, B., Rueckert, D., Safwan, M., Salem, M., Salvi, J., Sanchez, I., Sánchez, I., Santos, H.M., Sartor, E., Schellingerhout, D., Scheufele, K., Scott, M.R., Scussel, A.A., Sedlar, S., Serrano-Rubio, J.P., Shah, N.J., Shah, N., Shaikh, M., Shankar, B.U., Shboul, Z., Shen, Haipeng, Shen, D., Shen, L., Shen, Haocheng, Shenoy, V., Shi, F., Shin, H.E., Shu, H., Sima, D., Sinclair, M., Smedby, O., Snyder, J.M., Soltaninejad, M., Song, G., Soni, M., Stawiaski, J., Subramanian, S., Sun, L., Sun, R., Sun, J., Sun, K., Sun, Y., Sun, G., Sun, S., Suter, Y.R., Szilagyi, L., Talbar, S., Tao, D., Tao, D., Teng, Z., Thakur, S., Thakur, M.H., Tharakan, S., Tiwari, P., Tochon, G., Tran, T., Tsai, Y.M., Tseng, K.-.L., Tuan, T.A., Turlapov, V., Tustison, N., Vakalopoulou, M., Valverde, S., Vanguri, R., Vasiliev, E., Ventura, J., Vera, L., Vercauteren, T., Verrastro, C.A., Vidyaratne, L., Vilaplana, V., Vivekanandan, A., Wang, G., Wang, Q., Wang, C.J., Wang, W., Wang, D., Wang, R., Wang, Y., Wang, C., Wang, G., Wen, N., Wen, X., Weninger, L., Wick, W., Wu, S., Wu, Q., Wu, Y., Xia, Y., Xu, Y., Xu, X., Xu, P., Yang, T.-.L., Yang, X., Yang, H.-.Y., Yang, J., Yang, H., Yang, G., Yao, H., Ye, X., Yin, C., Young-Moxon, B., Yu, J., Yue, X., Zhang, S., Zhang, A., Zhang, K., Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhang, Y., Zhang, Lei, Zhang, J., Zhang, Xiang, Zhang, T., Zhao, S., Zhao, Y., Zhao, X., Zhao, L., Zheng, Y., Zhong, L., Zhou, C., Zhou, X., Zhou, F., Zhu, H., Zhu, J., Zhuge, Y., Zong, W., Kalpathy-Cramer, J., Farahani, K., Davatzikos, C., van Leemput, K., Menze, B., 2019. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. – year: 2016 ident: bib0040 article-title: A Longitudinal Diffeomorphic Atlas-Based Tissue Labeling Framework for Fetal Brains Using Geodesic Regression. Presented at the 21st Computer Vision Winter Workshop – year: 2020 ident: bib0055 article-title: R: A Language and Environment for Statistical Computing – volume: 40 start-page: 68 year: 2010 end-page: 81 ident: bib0021 article-title: MR imaging of the fetal brain publication-title: Pediatr. Radiol. – volume: 21 start-page: 1076 year: 2011 end-page: 1083 ident: bib0034 article-title: The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study publication-title: Cereb. Cortex – reference: Payette, K., Jakab, A., 2021. Fetal tissue annotation challenge - FeTA MICCAI 2021 [WWW Document]. URL – start-page: 241 year: 2020 end-page: 261 ident: bib0015 article-title: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling publication-title: Proceedings of the Third Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research. PMLR – reference: Payette, K., Dumast, P.de, Jakab, A., Cuadra, M.B., Vasung, L., Licandro, R., Menze, B., Zurich, H.L., 2021b. Fetal brain tissue annotation and segmentation challenge. – reference: (accessed 2.23.22). – year: 2019 ident: bib0035 article-title: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks publication-title: Magn. Reson. Imaging – volume: 59 start-page: 2255 year: 2012 end-page: 2265 ident: bib0061 article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression publication-title: Neuroimage – reference: . – year: 2021 ident: bib0009 article-title: Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging publication-title: Biol. Psychiatry: Cognit. Neurosci. Neuroimaging – volume: 14 start-page: 1226 year: 2020 ident: bib0027 article-title: Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation publication-title: Front. Neurosci. – volume: 43 start-page: 237 year: 2014 end-page: 266 ident: bib0019 article-title: Fetal MRI: a technical update with educational aspirations publication-title: Concepts Magn. Reson. Part A Bridg. Educ. Res. – volume: 36 start-page: 465 year: 2015 end-page: 475 ident: bib0031 article-title: Fetal cerebral magnetic resonance imaging beyond morphology publication-title: Semin. Ultrasound CT MR – volume: 29 start-page: 3488 year: 2019 end-page: 3495 ident: bib0032 article-title: Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging publication-title: Eur. Radiol. – ident: 10.1016/j.media.2023.102833_bib0017 – volume: 52 start-page: 802 year: 2022 ident: 10.1016/j.media.2023.102833_bib0047 article-title: Value of pre- and postnatal magnetic resonance imaging in the evaluation of congenital central nervous system anomalies publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05137-1 – start-page: 49 year: 2011 ident: 10.1016/j.media.2023.102833_bib0022 article-title: Safety of fetal MRI scanning – volume: 4 start-page: 131 year: 2020 ident: 10.1016/j.media.2023.102833_bib0025 article-title: Accuracy of in-utero MRI to detect fetal brain abnormalities and prognosticate developmental outcome: postnatal follow-up of the MERIDIAN cohort publication-title: Lancet Child Adolesc. Health doi: 10.1016/S2352-4642(19)30349-9 – volume: 43 start-page: 237 year: 2014 ident: 10.1016/j.media.2023.102833_bib0019 article-title: Fetal MRI: a technical update with educational aspirations publication-title: Concepts Magn. Reson. Part A Bridg. Educ. Res. doi: 10.1002/cmr.a.21321 – volume: 14 start-page: 1226 year: 2020 ident: 10.1016/j.media.2023.102833_bib0027 article-title: Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.591683 – volume: 23 start-page: 103 year: 2013 ident: 10.1016/j.media.2023.102833_bib0045 article-title: Fetal surgery for myelomeningocele: a critical appraisal publication-title: Eur. J. Pediatr. Surg. doi: 10.1055/s-0033-1343082 – volume: 30 start-page: 1752 year: 2020 ident: 10.1016/j.media.2023.102833_bib0068 article-title: Quantitative in vivo MRI assessment of structural asymmetries and sexual dimorphism of transient fetal compartments in the human brain publication-title: Cereb. Cortex doi: 10.1093/cercor/bhz200 – volume: 42 start-page: 9435 year: 2022 ident: 10.1016/j.media.2023.102833_bib0073 article-title: Spatiotemporal atlas of the fetal brain depicts cortical developmental gradient publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1285-22.2022 – ident: 10.1016/j.media.2023.102833_bib0052 – start-page: 277 year: 2014 ident: 10.1016/j.media.2023.102833_bib0036 article-title: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support – volume: 173 start-page: 88 year: 2018 ident: 10.1016/j.media.2023.102833_bib0042 article-title: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.054 – volume: 11 start-page: 4191 year: 2021 ident: 10.1016/j.media.2023.102833_bib0062 article-title: Infants with congenital heart defects have reduced brain volumes publication-title: Sci. Rep. doi: 10.1038/s41598-021-83690-3 – volume: 15 year: 2015 ident: 10.1016/j.media.2023.102833_bib0063 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imaging doi: 10.1186/s12880-015-0068-x – volume: 187 start-page: 226 year: 2019 ident: 10.1016/j.media.2023.102833_bib0067 article-title: Exploring early human brain development with structural and physiological neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.041 – volume: 34 start-page: 1993 year: 2015 ident: 10.1016/j.media.2023.102833_bib0043 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 85 year: 2023 ident: 10.1016/j.media.2023.102833_bib0033 article-title: Learning to segment fetal brain tissue from noisy annotations publication-title: Med Image Anal. doi: 10.1016/j.media.2022.102731 – year: 2022 ident: 10.1016/j.media.2023.102833_bib0059 article-title: Fetal brain volume predicts neurodevelopment in congenital heart disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.056305 – volume: 21 start-page: 1076 year: 2011 ident: 10.1016/j.media.2023.102833_bib0034 article-title: The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq179 – ident: 10.1016/j.media.2023.102833_bib0046 – volume: 26 start-page: 297 year: 1945 ident: 10.1016/j.media.2023.102833_bib0012 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 6 start-page: 171 year: 2012 ident: 10.1016/j.media.2023.102833_bib0037 article-title: 101 labeled brain images and a consistent human cortical labeling protocol publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00171 – volume: 22 start-page: 107 year: 2011 ident: 10.1016/j.media.2023.102833_bib0013 article-title: Atlas learning in fetal brain development publication-title: Top. Magn. Reson. Imaging. doi: 10.1097/RMR.0b013e318267fe94 – year: 2019 ident: 10.1016/j.media.2023.102833_bib0035 article-title: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.05.020 – year: 2016 ident: 10.1016/j.media.2023.102833_bib0040 – volume: 27 start-page: 2110 year: 2017 ident: 10.1016/j.media.2023.102833_bib0053 article-title: Volumetric MRI study of the intrauterine growth restriction fetal brain publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4502-4 – volume: 40 start-page: 68 year: 2010 ident: 10.1016/j.media.2023.102833_bib0021 article-title: MR imaging of the fetal brain publication-title: Pediatr. Radiol. doi: 10.1007/s00247-009-1459-3 – year: 2020 ident: 10.1016/j.media.2023.102833_bib0055 – volume: 89 start-page: 143 year: 2021 ident: 10.1016/j.media.2023.102833_bib0056 article-title: Regional brain growth trajectories in fetuses with congenital heart disease publication-title: Ann. Neurol. doi: 10.1002/ana.25940 – volume: 23 start-page: 1 year: 2019 ident: 10.1016/j.media.2023.102833_bib0023 article-title: MRI in the diagnosis of fetal developmental brain abnormalities: the MERIDIAN diagnostic accuracy study publication-title: Health Technol. Assess. doi: 10.3310/hta23490 – ident: 10.1016/j.media.2023.102833_bib0051 – volume: 1 year: 2021 ident: 10.1016/j.media.2023.102833_bib0018 article-title: A spatio-temporal atlas of the developing fetal brain with spina bifida aperta publication-title: Open Res. Europe doi: 10.12688/openreseurope.13914.1 – volume: 306 start-page: 1320 year: 1982 ident: 10.1016/j.media.2023.102833_bib0007 article-title: A Surgical Approach to the Treatment of Fetal Hydrocephalus publication-title: N. Engl. J. Med. doi: 10.1056/NEJM198206033062202 – volume: 18 start-page: 203 year: 2021 ident: 10.1016/j.media.2023.102833_bib0029 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 69 start-page: 52 year: 2018 ident: 10.1016/j.media.2023.102833_bib0060 article-title: Learning to combine complementary segmentation methods for fetal and 6-month infant brain MRI segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.08.007 – start-page: 241 year: 2020 ident: 10.1016/j.media.2023.102833_bib0015 article-title: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling – volume: 2021 start-page: 2745 year: 2021 ident: 10.1016/j.media.2023.102833_bib0071 article-title: Longitudinal Chinese population structural fetal brain atlases construction: toward precise fetal brain segmentation publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – ident: 10.1016/j.media.2023.102833_bib0003 – volume: 8 start-page: 167 year: 2021 ident: 10.1016/j.media.2023.102833_bib0048 article-title: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset publication-title: Sci. Data doi: 10.1038/s41597-021-00946-3 – year: 2009 ident: 10.1016/j.media.2023.102833_bib0002 article-title: Brain tissue segmentation of fetal MR images – ident: 10.1016/j.media.2023.102833_bib0024 – ident: 10.1016/j.media.2023.102833_bib0049 – start-page: 234 year: 2015 ident: 10.1016/j.media.2023.102833_bib0057 article-title: U-Net: convolutional Networks for Biomedical Image Segmentation – start-page: 424 year: 2016 ident: 10.1016/j.media.2023.102833_bib0006 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – volume: 3 year: 2020 ident: 10.1016/j.media.2023.102833_bib0072 article-title: Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.19940 – start-page: 647 year: 2021 ident: 10.1016/j.media.2023.102833_bib0016 article-title: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation – volume: 7 year: 2017 ident: 10.1016/j.media.2023.102833_bib0020 article-title: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth publication-title: Sci. Rep. doi: 10.1038/s41598-017-00525-w – volume: 369 start-page: 988 year: 2020 ident: 10.1016/j.media.2023.102833_bib0001 article-title: Julich-Brain: a 3D probabilistic atlas of the human brain's cytoarchitecture publication-title: Science doi: 10.1126/science.abb4588 – volume: 18 start-page: 103 year: 2018 ident: 10.1016/j.media.2023.102833_bib0004 article-title: Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.01.006 – ident: 10.1016/j.media.2023.102833_bib0050 – volume: 66 year: 2020 ident: 10.1016/j.media.2023.102833_bib0041 article-title: BIAS: transparent reporting of biomedical image analysis challenges publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101796 – volume: 14 start-page: 15 year: 2014 ident: 10.1016/j.media.2023.102833_bib0058 article-title: Minimally invasive, imaging guided virtual autopsy compared to conventional autopsy in foetal, newborn and infant cases: study protocol for the paediatric virtual autopsy trial publication-title: BMC Pediatr. doi: 10.1186/1471-2431-14-15 – volume: 23 start-page: 2932 year: 2013 ident: 10.1016/j.media.2023.102833_bib0008 article-title: Delayed cortical development in fetuses with complex congenital heart disease publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs281 – volume: 209 year: 2013 ident: 10.1016/j.media.2023.102833_bib0014 article-title: Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction publication-title: Am. J. Obstet. Gynecol. doi: 10.1016/j.ajog.2013.04.008 – year: 2022 ident: 10.1016/j.media.2023.102833_bib0074 article-title: Automated 3D fetal brain segmentation using an optimized deep learning approach publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A7419 – ident: 10.1016/j.media.2023.102833_bib0005 doi: 10.1038/s41586-022-04554-y – volume: 5 start-page: 23 year: 2021 ident: 10.1016/j.media.2023.102833_bib0030 article-title: Emerging magnetic resonance imaging techniques in open spina bifida in utero publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-021-00219-z – volume: 16 start-page: 1550 year: 2012 ident: 10.1016/j.media.2023.102833_bib0038 article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.07.004 – volume: 31 start-page: 968 year: 2006 ident: 10.1016/j.media.2023.102833_bib0011 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – ident: 10.1016/j.media.2023.102833_bib0010 doi: 10.1007/978-3-030-87735-4_19 – volume: 118 start-page: 584 year: 2015 ident: 10.1016/j.media.2023.102833_bib0065 article-title: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.06.018 – volume: 41 start-page: 1989 year: 2020 ident: 10.1016/j.media.2023.102833_bib0075 article-title: Fetal exposure to MR imaging: long-term neurodevelopmental outcome publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6771 – volume: 28 start-page: 1431 year: 2010 ident: 10.1016/j.media.2023.102833_bib0028 article-title: Ultrafast MRI of the fetus: an increasingly important tool in prenatal diagnosis of congenital anomalies publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.06.024 – volume: 11 start-page: 2228 year: 2021 ident: 10.1016/j.media.2023.102833_bib0066 article-title: Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth publication-title: Sci. Rep. doi: 10.1038/s41598-021-81681-y – volume: 36 start-page: 465 year: 2015 ident: 10.1016/j.media.2023.102833_bib0031 article-title: Fetal cerebral magnetic resonance imaging beyond morphology publication-title: Semin. Ultrasound CT MR doi: 10.1053/j.sult.2015.06.003 – year: 1991 ident: 10.1016/j.media.2023.102833_bib0026 – volume: 11 start-page: 2369 year: 2021 ident: 10.1016/j.media.2023.102833_bib0069 article-title: Methods and open-source toolkit for analyzing and visualizing challenge results publication-title: Sci. Rep. doi: 10.1038/s41598-021-82017-6 – volume: 32 start-page: 448 year: 1997 ident: 10.1016/j.media.2023.102833_bib0044 article-title: The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery publication-title: J. Pediatr. Surg., Pap. Presented 43rd Annu. Int. Congress – volume: 241 year: 2021 ident: 10.1016/j.media.2023.102833_bib0070 article-title: Age-specific structural fetal brain atlases construction and cortical development quantification for chinese population publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118412 – volume: 29 start-page: 3488 year: 2019 ident: 10.1016/j.media.2023.102833_bib0032 article-title: Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5938-5 – volume: 57 start-page: 199 year: 2006 ident: 10.1016/j.media.2023.102833_bib0054 article-title: MRI of normal fetal brain development publication-title: Eur. J. Radiol., Fetal Imaging – ident: 10.1016/j.media.2023.102833_bib0064 – volume: 59 start-page: 2255 year: 2012 ident: 10.1016/j.media.2023.102833_bib0061 article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.062 – volume: 222 start-page: 2295 year: 2017 ident: 10.1016/j.media.2023.102833_bib0039 article-title: Normative biometry of the fetal brain using magnetic resonance imaging publication-title: Brain Struct. Funct. doi: 10.1007/s00429-016-1342-6 – year: 2021 ident: 10.1016/j.media.2023.102833_bib0009 article-title: Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging publication-title: Biol. Psychiatry: Cognit. Neurosci. Neuroimaging |
| SSID | ssj0007440 |
| Score | 2.5689175 |
| Snippet | •Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual... In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102833 |
| SubjectTerms | Algorithms Brain - diagnostic imaging Congenital disorders Female Fetal brain MRI Fetus - diagnostic imaging Head Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Multi-class image segmentation Pregnancy Super-resolution reconstructions White Matter |
| Title | Fetal brain tissue annotation and segmentation challenge results |
| URI | https://dx.doi.org/10.1016/j.media.2023.102833 https://www.ncbi.nlm.nih.gov/pubmed/37267773 https://www.proquest.com/docview/2822379184 |
| Volume | 88 |
| WOSCitedRecordID | wos001013162700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhB7QDBu5TIFibeSKrGT2n5jgk2AxoRgSH0z8SXTpjSZunaUf8_xJUmlahMg8RJFVhxH_r7YPvb5zkHodQocKW0OQKw4jTOlZMxNomNONU4M03miHNJH9PiYTaf8y2Dwo9XCXFW0rtlqxS_-K9RQBmBb6exfwN29FArgHkCHK8AO1z8C_tBYfaO0qR9GC9eto6Kum-BV6PbJzeksSI5qq_z12VRGYHgvKx_YqV2utsc4ZzPr2lOEACb9sdMv6yjk5T1V7xd65DNhN_XpT3MG7OkJqM3o_XJWBJ3J3CqCq8r09QBn7YU3X5tVEU78w54EJp1HXNgo2xDLuLGVTNKYZV69OTbrZV5y3A7IPs_fxtjutxnOx05SM7bNjt3qiPRTWedg-M2-2LYFFpbdtIFJehvTnMPQvb3_8WD6qZutbYBEr83zH9dGpnI-gBtNXbd6uc46cauUk_voXjAvon1PiwdoYOpdtLMWdHIX3fkc3CkeoreOK5HjSuS5EvVcgVsdrXMl6rgSBa48Qt8PD07efYhDSo1YZUm2iBnPCS0xVbkqDCVlqYwueWLSTGPCk1zCD2ojQtKJJIQbKpnCROMiSSWXRSrJY7RVN7V5iqKEMJWCcVDyXGeGas4KlpZEGgxTJlixQ4TbrhIqxJu3aU8q0ToWngvXv8L2r_D9O0RvukoXPtzKzY9PWgxEWDH6laAA0txc8VWLmIDx1B6SAamb5aWwbtWEciDPED3xUHZfQiieUErJs39t9jm62_8uL9DWYr40L9FtdQUQz_fQLTple4GgvwFHSKUI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fetal+brain+tissue+annotation+and+segmentation+challenge+results&rft.jtitle=Medical+image+analysis&rft.au=Payette%2C+Kelly&rft.au=Li%2C+Hongwei+Bran&rft.au=de+Dumast%2C+Priscille&rft.au=Licandro%2C+Roxane&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=88&rft_id=info:doi/10.1016%2Fj.media.2023.102833&rft.externalDocID=S1361841523000932 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |