Fetal brain tissue annotation and segmentation challenge results

•Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual annotations.•U-Net is the dominant method for automatic fetal brain segmentation.•Results using the U-Net have reached a plateau.•Challenge results an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical image analysis Ročník 88; s. 102833
Hlavní autoři: Payette, Kelly, Li, Hongwei Bran, de Dumast, Priscille, Licandro, Roxane, Ji, Hui, Siddiquee, Md Mahfuzur Rahman, Xu, Daguang, Myronenko, Andriy, Liu, Hao, Pei, Yuchen, Wang, Lisheng, Peng, Ying, Xie, Juanying, Zhang, Huiquan, Dong, Guiming, Fu, Hao, Wang, Guotai, Rieu, ZunHyan, Kim, Donghyeon, Kim, Hyun Gi, Karimi, Davood, Gholipour, Ali, Torres, Helena R., Oliveira, Bruno, Vilaça, João L., Lin, Yang, Avisdris, Netanell, Ben-Zvi, Ori, Bashat, Dafna Ben, Fidon, Lucas, Aertsen, Michael, Vercauteren, Tom, Sobotka, Daniel, Langs, Georg, Alenyà, Mireia, Villanueva, Maria Inmaculada, Camara, Oscar, Fadida, Bella Specktor, Joskowicz, Leo, Weibin, Liao, Yi, Lv, Xuesong, Li, Mazher, Moona, Qayyum, Abdul, Puig, Domenec, Kebiri, Hamza, Zhang, Zelin, Xu, Xinyi, Wu, Dan, Liao, Kuanlun, Wu, Yixuan, Chen, Jintai, Xu, Yunzhi, Zhao, Li, Vasung, Lana, Menze, Bjoern, Cuadra, Meritxell Bach, Jakab, Andras
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.08.2023
Témata:
ISSN:1361-8415, 1361-8423, 1361-8423
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual annotations.•U-Net is the dominant method for automatic fetal brain segmentation.•Results using the U-Net have reached a plateau.•Challenge results analyzed from both technical and clinical perspectives. In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero. [Display omitted]
AbstractList In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.
•Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual annotations.•U-Net is the dominant method for automatic fetal brain segmentation.•Results using the U-Net have reached a plateau.•Challenge results analyzed from both technical and clinical perspectives. In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero. [Display omitted]
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.
ArticleNumber 102833
Author Joskowicz, Leo
Vercauteren, Tom
Langs, Georg
de Dumast, Priscille
Cuadra, Meritxell Bach
Ben-Zvi, Ori
Fidon, Lucas
Mazher, Moona
Pei, Yuchen
Alenyà, Mireia
Xuesong, Li
Wang, Guotai
Qayyum, Abdul
Xu, Daguang
Karimi, Davood
Wu, Yixuan
Vasung, Lana
Lin, Yang
Bashat, Dafna Ben
Xu, Yunzhi
Liao, Kuanlun
Li, Hongwei Bran
Licandro, Roxane
Oliveira, Bruno
Kebiri, Hamza
Zhang, Zelin
Payette, Kelly
Menze, Bjoern
Wang, Lisheng
Chen, Jintai
Gholipour, Ali
Camara, Oscar
Peng, Ying
Puig, Domenec
Villanueva, Maria Inmaculada
Xu, Xinyi
Vilaça, João L.
Myronenko, Andriy
Siddiquee, Md Mahfuzur Rahman
Zhang, Huiquan
Torres, Helena R.
Avisdris, Netanell
Dong, Guiming
Sobotka, Daniel
Fadida, Bella Specktor
Weibin, Liao
Ji, Hui
Wu, Dan
Liu, Hao
Xie, Juanying
Fu, Hao
Zhao, Li
Kim, Donghyeon
Jakab, Andras
Rieu, ZunHyan
Kim, Hyun Gi
Aertsen, Michael
Yi, Lv
Author_xml – sequence: 1
  givenname: Kelly
  orcidid: 0000-0001-7041-0150
  surname: Payette
  fullname: Payette, Kelly
  email: kelly.payette@kispi.uzh.ch
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Hongwei Bran
  surname: Li
  fullname: Li, Hongwei Bran
  organization: Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Priscille
  surname: de Dumast
  fullname: de Dumast, Priscille
  organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– sequence: 4
  givenname: Roxane
  surname: Licandro
  fullname: Licandro, Roxane
  organization: Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States
– sequence: 5
  givenname: Hui
  surname: Ji
  fullname: Ji, Hui
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
– sequence: 6
  givenname: Md Mahfuzur Rahman
  surname: Siddiquee
  fullname: Siddiquee, Md Mahfuzur Rahman
  organization: Arizona State University, United States
– sequence: 7
  givenname: Daguang
  surname: Xu
  fullname: Xu, Daguang
  organization: NVIDIA, United States
– sequence: 8
  givenname: Andriy
  surname: Myronenko
  fullname: Myronenko, Andriy
  organization: NVIDIA, United States
– sequence: 9
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Shanghai Jiaotong University, China
– sequence: 10
  givenname: Yuchen
  surname: Pei
  fullname: Pei, Yuchen
  organization: Shanghai Jiaotong University, China
– sequence: 11
  givenname: Lisheng
  surname: Wang
  fullname: Wang, Lisheng
  organization: Shanghai Jiaotong University, China
– sequence: 12
  givenname: Ying
  surname: Peng
  fullname: Peng, Ying
  organization: School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
– sequence: 13
  givenname: Juanying
  surname: Xie
  fullname: Xie, Juanying
  organization: School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
– sequence: 14
  givenname: Huiquan
  surname: Zhang
  fullname: Zhang, Huiquan
  organization: School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
– sequence: 15
  givenname: Guiming
  surname: Dong
  fullname: Dong, Guiming
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 16
  givenname: Hao
  surname: Fu
  fullname: Fu, Hao
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 17
  givenname: Guotai
  surname: Wang
  fullname: Wang, Guotai
  organization: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 18
  givenname: ZunHyan
  surname: Rieu
  fullname: Rieu, ZunHyan
  organization: Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
– sequence: 19
  givenname: Donghyeon
  surname: Kim
  fullname: Kim, Donghyeon
  organization: Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
– sequence: 20
  givenname: Hyun Gi
  surname: Kim
  fullname: Kim, Hyun Gi
  organization: Department of Radiology, The Catholic University of Korea, Eunpyeong St. Mary's Hospital, Seoul 06247, South Korea
– sequence: 21
  givenname: Davood
  surname: Karimi
  fullname: Karimi, Davood
  organization: Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
– sequence: 22
  givenname: Ali
  surname: Gholipour
  fullname: Gholipour, Ali
  organization: Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
– sequence: 23
  givenname: Helena R.
  surname: Torres
  fullname: Torres, Helena R.
  organization: Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
– sequence: 24
  givenname: Bruno
  surname: Oliveira
  fullname: Oliveira, Bruno
  organization: Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
– sequence: 25
  givenname: João L.
  surname: Vilaça
  fullname: Vilaça, João L.
  organization: 2Ai – School of Technology, IPCA, Barcelos, Portugal
– sequence: 26
  givenname: Yang
  surname: Lin
  fullname: Lin, Yang
  organization: Department of Computer Science, Hong Kong University of Science and Technology, China
– sequence: 27
  givenname: Netanell
  surname: Avisdris
  fullname: Avisdris, Netanell
  organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
– sequence: 28
  givenname: Ori
  surname: Ben-Zvi
  fullname: Ben-Zvi, Ori
  organization: Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel
– sequence: 29
  givenname: Dafna Ben
  surname: Bashat
  fullname: Bashat, Dafna Ben
  organization: Sagol School of Neuroscience, Tel Aviv University, Israel
– sequence: 30
  givenname: Lucas
  surname: Fidon
  fullname: Fidon, Lucas
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
– sequence: 31
  givenname: Michael
  surname: Aertsen
  fullname: Aertsen, Michael
  organization: Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium
– sequence: 32
  givenname: Tom
  surname: Vercauteren
  fullname: Vercauteren, Tom
  organization: School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
– sequence: 33
  givenname: Daniel
  surname: Sobotka
  fullname: Sobotka, Daniel
  organization: Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
– sequence: 34
  givenname: Georg
  surname: Langs
  fullname: Langs, Georg
  organization: Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
– sequence: 35
  givenname: Mireia
  surname: Alenyà
  fullname: Alenyà, Mireia
  organization: BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 36
  givenname: Maria Inmaculada
  surname: Villanueva
  fullname: Villanueva, Maria Inmaculada
  organization: Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 37
  givenname: Oscar
  surname: Camara
  fullname: Camara, Oscar
  organization: BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 38
  givenname: Bella Specktor
  surname: Fadida
  fullname: Fadida, Bella Specktor
  organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
– sequence: 39
  givenname: Leo
  surname: Joskowicz
  fullname: Joskowicz, Leo
  organization: School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
– sequence: 40
  givenname: Liao
  surname: Weibin
  fullname: Weibin, Liao
  organization: School of Computer Science, Beijing Institute of Technology, China
– sequence: 41
  givenname: Lv
  surname: Yi
  fullname: Yi, Lv
  organization: School of Computer Science, Beijing Institute of Technology, China
– sequence: 42
  givenname: Li
  surname: Xuesong
  fullname: Xuesong, Li
  organization: School of Computer Science, Beijing Institute of Technology, China
– sequence: 43
  givenname: Moona
  surname: Mazher
  fullname: Mazher, Moona
  organization: Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
– sequence: 44
  givenname: Abdul
  surname: Qayyum
  fullname: Qayyum, Abdul
  organization: Université de Bourgogne, France
– sequence: 45
  givenname: Domenec
  surname: Puig
  fullname: Puig, Domenec
  organization: Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
– sequence: 46
  givenname: Hamza
  surname: Kebiri
  fullname: Kebiri, Hamza
  organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– sequence: 47
  givenname: Zelin
  surname: Zhang
  fullname: Zhang, Zelin
  organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
– sequence: 48
  givenname: Xinyi
  surname: Xu
  fullname: Xu, Xinyi
  organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
– sequence: 49
  givenname: Dan
  surname: Wu
  fullname: Wu, Dan
  organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
– sequence: 50
  givenname: Kuanlun
  surname: Liao
  fullname: Liao, Kuanlun
  organization: Zhejiang University, Hangzhou, China
– sequence: 51
  givenname: Yixuan
  surname: Wu
  fullname: Wu, Yixuan
  organization: Zhejiang University, Hangzhou, China
– sequence: 52
  givenname: Jintai
  surname: Chen
  fullname: Chen, Jintai
  organization: Zhejiang University, Hangzhou, China
– sequence: 53
  givenname: Yunzhi
  surname: Xu
  fullname: Xu, Yunzhi
  organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
– sequence: 54
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
  organization: Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
– sequence: 55
  givenname: Lana
  surname: Vasung
  fullname: Vasung, Lana
  organization: Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, United States
– sequence: 56
  givenname: Bjoern
  surname: Menze
  fullname: Menze, Bjoern
  organization: Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
– sequence: 57
  givenname: Meritxell Bach
  surname: Cuadra
  fullname: Cuadra, Meritxell Bach
  organization: Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– sequence: 58
  givenname: Andras
  surname: Jakab
  fullname: Jakab, Andras
  organization: Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37267773$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQhoOsuB_6CwTp0UvXfLRNexCUxVVhwYueQ5JO1yzddE1SwX9v1u568OBpXob3GZhnika2s4DQJcFzgklxs5lvoTZyTjFlcUNLxk7QhLCCpGVG2eg3k3yMpt5vMMY8y_AZGjNOC845m6C7JQTZJspJY5NgvO8hkdZ2QQbT2RjrxMN6C_aw0O-ybcGuIXHg-zb4c3TayNbDxWHO0Nvy4XXxlK5eHp8X96tUZzgLaVnljDeU61xL4KxpNNRNhYFkNWUVzhXFEEPJC8VYBVyVmrKaSkxUpSRRbIauh7s713304IPYGq-hbaWFrveClpQyXpEyi9WrQ7VXUZHYObOV7kscv46Faiho13nvoBHaDP-F6KEVBIu9YbERP4bF3rAYDEeW_WGP5_-nbgcKoqJPA054bcBGCcaBDqLuzL_8N1A3lQU
CitedBy_id crossref_primary_10_1093_cercor_bhae024
crossref_primary_10_1016_j_compbiomed_2025_110312
crossref_primary_10_1109_TMI_2023_3318364
crossref_primary_10_1007_s13755_023_00220_3
crossref_primary_10_1016_j_mric_2024_03_004
crossref_primary_10_1038_s41597_025_04926_9
crossref_primary_10_1109_TBME_2023_3337338
crossref_primary_10_1016_j_cmpb_2024_108451
crossref_primary_10_1016_j_artmed_2023_102608
crossref_primary_10_1007_s40747_024_01639_1
crossref_primary_10_1109_JBHI_2024_3399762
crossref_primary_10_1109_TMI_2024_3485554
crossref_primary_10_1186_s12880_025_01709_x
crossref_primary_10_3389_fped_2024_1471080
crossref_primary_10_1016_j_media_2024_103282
crossref_primary_10_1007_s42979_025_04101_2
crossref_primary_10_1016_j_dcn_2025_101539
crossref_primary_10_3389_fnins_2023_1252850
crossref_primary_10_1002_hbm_70332
crossref_primary_10_1148_ryai_240677
crossref_primary_10_1016_j_neuroimage_2024_120723
crossref_primary_10_1016_j_neuroimage_2024_120603
Cites_doi 10.1007/s00247-021-05137-1
10.1016/S2352-4642(19)30349-9
10.1002/cmr.a.21321
10.3389/fnins.2020.591683
10.1055/s-0033-1343082
10.1093/cercor/bhz200
10.1523/JNEUROSCI.1285-22.2022
10.1016/j.neuroimage.2018.01.054
10.1038/s41598-021-83690-3
10.1186/s12880-015-0068-x
10.1016/j.neuroimage.2018.07.041
10.1109/TMI.2014.2377694
10.1016/j.media.2022.102731
10.1161/CIRCULATIONAHA.121.056305
10.1093/cercor/bhq179
10.2307/1932409
10.3389/fnins.2012.00171
10.1097/RMR.0b013e318267fe94
10.1016/j.mri.2019.05.020
10.1007/s00330-016-4502-4
10.1007/s00247-009-1459-3
10.1002/ana.25940
10.3310/hta23490
10.12688/openreseurope.13914.1
10.1056/NEJM198206033062202
10.1038/s41592-020-01008-z
10.1016/j.compmedimag.2018.08.007
10.1038/s41597-021-00946-3
10.1001/jamanetworkopen.2019.19940
10.1038/s41598-017-00525-w
10.1126/science.abb4588
10.1016/j.nicl.2018.01.006
10.1016/j.media.2020.101796
10.1186/1471-2431-14-15
10.1093/cercor/bhs281
10.1016/j.ajog.2013.04.008
10.3174/ajnr.A7419
10.1038/s41586-022-04554-y
10.1186/s41747-021-00219-z
10.1016/j.media.2012.07.004
10.1016/j.neuroimage.2006.01.021
10.1007/978-3-030-87735-4_19
10.1016/j.neuroimage.2015.06.018
10.3174/ajnr.A6771
10.1016/j.mri.2010.06.024
10.1038/s41598-021-81681-y
10.1053/j.sult.2015.06.003
10.1038/s41598-021-82017-6
10.1016/j.neuroimage.2021.118412
10.1007/s00330-018-5938-5
10.1016/j.neuroimage.2011.09.062
10.1007/s00429-016-1342-6
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier B.V.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2023.102833
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 37267773
10_1016_j_media_2023_102833
S1361841523000932
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 35189
– fundername: Wellcome Trust
  grantid: 203145Z/16/Z
– fundername: Austrian Science Fund FWF
  grantid: I 3925
– fundername: Wellcome Trust
  grantid: WT101957
– fundername: Wellcome Trust
  grantid: 203148/Z/16/Z
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c404t-89537f27c5cae73ffcedf90e14d23905b20e239876b339e7b8c23d2a01b9ba1b3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013162700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Sun Sep 28 12:33:07 EDT 2025
Mon Jul 21 06:07:05 EDT 2025
Tue Nov 18 22:34:41 EST 2025
Sat Nov 29 07:03:47 EST 2025
Fri Feb 23 02:35:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-class image segmentation
Fetal brain MRI
Super-resolution reconstructions
Congenital disorders
Language English
License This is an open access article under the CC BY license.
Copyright © 2023. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-89537f27c5cae73ffcedf90e14d23905b20e239876b339e7b8c23d2a01b9ba1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7041-0150
OpenAccessLink https://dx.doi.org/10.1016/j.media.2023.102833
PMID 37267773
PQID 2822379184
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2822379184
pubmed_primary_37267773
crossref_citationtrail_10_1016_j_media_2023_102833
crossref_primary_10_1016_j_media_2023_102833
elsevier_sciencedirect_doi_10_1016_j_media_2023_102833
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Yu, Wang, Yang, Zhang (bib0071) 2021; 2021
Jakab, Payette, Mazzone, Schauer, Muller, Kottke, Ochsenbein-Kölble, Tuura, Moehrlen, Meuli (bib0030) 2021; 5
Payette, K., Jakab, A., 2021. Fetal tissue annotation challenge - FeTA MICCAI 2021 [WWW Document]. URL
de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B., 2020. Segmentation of the cortical plate in fetal brain MRI with a topological loss.
Hosny, Elghawabi (bib0028) 2010; 28
Gowland (bib0022) 2011
Kasprian, Langs, Brugger, Bittner, Weber, Arantes, Prayer (bib0034) 2011; 21
Serag, Aljabar, Ball, Counsell, Boardman, Rutherford, Edwards, Hajnal, Rueckert (bib0061) 2012; 59
Sanroma, Benkarim, Piella, Lekadir, Hahner, Eixarch, González Ballester (bib0060) 2018; 69
Wu, Sun, Yu, Li, Wu, Wang, Qian, Zhang, Jiang, Wei (bib0070) 2021; 241
Zvi, Shemer, Toussia-Cohen, Zvi, Bashan, Hirschfeld-Dicker, Oselka, Amitai, Ezra, Bar-Yosef, Katorza (bib0075) 2020; 41
Bethlehem, R.a.I., Seidlitz, J., White, S.R., Vogel, J.W., Anderson, K.M., Adamson, C., Adler, S., Alexopoulos, G.S., Anagnostou, E., Areces-Gonzalez, A., Astle, D.E., Auyeung, B., Ayub, M., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S.A., Benegal, V., Beyer, F., Bae, J.B., Blangero, J., Cábez, M.B., Boardman, J.P., Borzage, M., Bosch-Bayard, J.F., Bourke, N., Calhoun, V.D., Chakravarty, M.M., Chen, C., Chertavian, C., Chetelat, G., Chong, Y.S., Cole, J.H., Corvin, A., Courchesne, E., Crivello, F., Cropley, V.L., Crosbie, J., Crossley, N., Delarue, M., Desrivieres, S., Devenyi, G., Biase, M.A.D., Dolan, R., Donald, K.A., Donohoe, G., Dunlop, K., Edwards, A.D., Elison, J.T., Ellis, C.T., Elman, J.A., Eyler, L., Fair, D.A., Fletcher, P.C., Fonagy, P., Franz, C.E., Galan-Garcia, L., Gholipour, A., Giedd, J., Gilmore, J.H., Glahn, D.C., Goodyer, I., Grant, P.E., Groenewold, N.A., Gunning, F.M., Gur, R.E., Gur, R.C., Hammill, C.F., Hansson, O., Hedden, T., Heinz, A., Henson, R., Heuer, K., Hoare, J., Holla, B., Holmes, A.J., Holt, R., Huang, H., Im, K., Ipser, J., Jack, C.R., Jackowski, A.P., Jia, T., Johnson, K.A., Jones, P.B., Jones, D.T., Kahn, R., Karlsson, H., Karlsson, L., Kawashima, R., Kelley, E.A., Kern, S., Kim, K., Kitzbichler, M.G., Kremen, W.S., Lalonde, F., Landeau, B., Lee, S., Lerch, J., Lewis, J.D., Li, J., Liao, W., Linares, D.P., Liston, C., Lombardo, M.V., Lv, J., Lynch, C., Mallard, T.T., Marcelis, M., Markello, R.D., Mazoyer, B., McGuire, P., Meaney, M.J., Mechelli, A., Medic, N., Misic, B., Morgan, S.E., Mothersill, D., Nigg, J., Ong, M.Q.W., Ortinau, C., Ossenkoppele, R., Ouyang, M., Palaniyappan, L., Paly, L., Pan, P.M., Pantelis, C., Park, M.M., Paus, T., Pausova, Z., Binette, A.P., Pierce, K., Qian, X., Qiu, J., Qiu, A., Raznahan, A., Rittman, T., Rollins, C.K., Romero-Garcia, R., Ronan, L., Rosenberg, M.D., Rowitch, D.H., Salum, G.A., Satterthwaite, T.D., Schaare, H.L., Schachar, R.J., Schultz, A.P., Schumann, G., Schöll, M., Sharp, D., Shinohara, R.T., Skoog, I., Smyser, C.D., Sperling, R.A., Stein, D.J., Stolicyn, A., Suckling, J., Sullivan, G., Taki, Y., Thyreau, B., Toro, R., Tsvetanov, K.A., Turk-Browne, N.B., Tuulari, J.J., Tzourio, C., Vachon-Presseau, É., Valdes-Sosa, M.J., Valdes-Sosa, P.A., Valk, S.L., Amelsvoort, T. van, Vandekar, S.N., Vasung, L., Victoria, L.W., Villeneuve, S., Villringer, A., Vértes, P.E., Wagstyl, K., Wang, Y.S., Warfield, S.K., Warrier, V., Westman, E., Westwater, M.L., Whalley, H.C., Witte, A.V., Yang, N., Yeo, B.T.T., Yun, H.J., Zalesky, A., Zar, H.J., Zettergren, A., Zhou, J.H., Ziauddeen, H., Zugman, A., Zuo, X.N., Aibl, Initiative, A.D.N., Investigators, A.D.R.W.B., Asrb, Team, C., Cam-CAN, Ccnp, 3r-Brain, Cobre, Group, E.D.B.A. working, FinnBrain, Study, H.A.B., Imagen, K., Nspn, Oasis-3, Project, O., Pond, The PREVENT-AD Research Group, V., Alexander-Bloch, A.F., 2021. Brain charts for the human lifespan.
Hausdorff (bib0026) 1991
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., Wiestler, B., Colen, R., Kotrotsou, A., Lamontagne, P., Marcus, D., Milchenko, M., Nazeri, A., Weber, M.-.A., Mahajan, A., Baid, U., Gerstner, E., Kwon, D., Acharya, G., Agarwal, M., Alam, M., Albiol, Alberto, Albiol, Antonio, Albiol, F.J., Alex, V., Allinson, N., Amorim, P.H.A., Amrutkar, A., Anand, G., Andermatt, S., Arbel, T., Arbelaez, P., Avery, A., Azmat, M., B., P., Bai, W., Banerjee, S., Barth, B., Batchelder, T., Batmanghelich, K., Battistella, E., Beers, A., Belyaev, M., Bendszus, M., Benson, E., Bernal, J., Bharath, H.N., Biros, G., Bisdas, S., Brown, J., Cabezas, M., Cao, S., Cardoso, J.M., Carver, E.N., Casamitjana, A., Castillo, L.S., Catà, M., Cattin, P., Cerigues, A., Chagas, V.S., Chandra, S., Chang, Y.-.J., Chang, S., Chang, K., Chazalon, J., Chen, S., Chen, W., Chen, J.W., Chen, Z., Cheng, K., Choudhury, A.R., Chylla, R., Clérigues, A., Colleman, S., Colmeiro, R.G.R., Combalia, M., Costa, A., Cui, X., Dai, Z., Dai, L., Daza, L.A., Deutsch, E., Ding, C., Dong, C., Dong, S., Dudzik, W., Eaton-Rosen, Z., Egan, G., Escudero, G., Estienne, T., Everson, R., Fabrizio, J., Fan, Y., Fang, L., Feng, X., Ferrante, E., Fidon, L., Fischer, M., French, A.P., Fridman, N., Fu, H., Fuentes, D., Gao, Y., Gates, E., Gering, D., Gholami, A., Gierke, W., Glocker, B., Gong, M., González-Villá, S., Grosges, T., Guan, Y., Guo, S., Gupta, S., Han, W.-.S., Han, I.S., Harmuth, K., He, H., Hernández-Sabaté, A., Herrmann, E., Himthani, N., Hsu, W., Hsu, C., Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, R., Huang, T.-.Y., Huang, W., Van Huffel, S., Huo, Q., HV, V., Iftekharuddin, K.M., Isensee, F., Islam, M., Jackson, A.S., Jambawalikar, S.R., Jesson, A., Jian, W., Jin, P., Jose, V.J.M., Jungo, A., Kainz, B., Kamnitsas, K., Kao, P.-.Y., Karnawat, A., Kellermeier, T., Kermi, A., Keutzer, K., Khadir, M.T., Khened, M., Kickingereder, P., Kim, G., King, N., Knapp, H., Knecht, U., Kohli, L., Kong, D., Kong, X., Koppers, S., Kori, A., Krishnamurthi, G., Krivov, E., Kumar, P., Kushibar, K., Lachinov, D., Lambrou, T., Lee, J., Lee, C., Lee, Y., Lee, M., Lefkovits, S., Lefkovits, L., Levitt, J., Li, T., Li, Hongwei, Li, W., Li, Hongyang, Li, Xiaochuan, Li, Y., Li, Heng, Li, Zhenye, Li, Xiaoyu, Li, Zeju, Li, XiaoGang, Li, W., Lin, Z.-.S., Lin, F., Lio, P., Liu, C., Liu, B., Liu, X., Liu, M., Liu, J., Liu, L., Llado, X., Lopez, M.M., Lorenzo, P.R., Lu, Z., Luo, L., Luo, Z., Ma, J., Ma, K., Mackie, T., Madabushi, A., Mahmoudi, I., Maier-Hein, K.H., Maji, P., Mammen, C.P., Mang, A., Manjunath, B.S., Marcinkiewicz, M., McDonagh, S., McKenna, S., McKinley, R., Mehl, M., Mehta, S., Mehta, R., Meier, R., Meinel, C., Merhof, D., Meyer, C., Miller, R., Mitra, S., Moiyadi, A., Molina-Garcia, D., Monteiro, M.A.B., Mrukwa, G., Myronenko, A., Nalepa, J., Ngo, T., Nie, D., Ning, H., Niu, C., Nuechterlein, N.K., Oermann, E., Oliveira, A., Oliveira, D.D.C., Oliver, A., Osman, A.F.I., Ou, Y.-.N., Ourselin, S., Paragios, N., Park, M.S., Paschke, B., Pauloski, J.G., Pawar, K., Pawlowski, N., Pei, L., Peng, S., Pereira, S.M., Perez-Beteta, J., Perez-Garcia, V.M., Pezold, S., Pham, B., Phophalia, A., Piella, G., Pillai, G.N., Piraud, M., Pisov, M., Popli, A., Pound, M.P., Pourreza, R., Prasanna, P., Prkovska, V., Pridmore, T.P., Puch, S., Puybareau, É., Qian, B., Qiao, X., Rajchl, M., Rane, S., Rebsamen, M., Ren, H., Ren, X., Revanuru, K., Rezaei, M., Rippel, O., Rivera, L.C., Robert, C., Rosen, B., Rueckert, D., Safwan, M., Salem, M., Salvi, J., Sanchez, I., Sánchez, I., Santos, H.M., Sartor, E., Schellingerhout, D., Scheufele, K., Scott, M.R., Scussel, A.A., Sedlar, S., Serrano-Rubio, J.P., Shah, N.J., Shah, N., Shaikh, M., Shankar, B.U., Shboul, Z., Shen, Haipeng, Shen, D., Shen, L., Shen, Haocheng, Shenoy, V., Shi, F., Shin, H.E., Shu, H., Sima, D., Sinclair, M., Smedby, O., Snyder, J.M., Soltaninejad, M., Song, G., Soni, M., Stawiaski, J., Subramanian, S., Sun, L., Sun, R., Sun, J., Sun, K., Sun, Y., Sun, G., Sun, S., Suter, Y.R., Szilagyi, L., Talbar, S., Tao, D., Tao, D., Teng, Z., Thakur, S., Thakur, M.H., Tharakan, S., Tiwari, P., Tochon, G., Tran, T., Tsai, Y.M., Tseng, K.-.L., Tuan, T.A., Turlapov, V., Tustison, N., Vakalopoulou, M., Valverde, S., Vanguri, R., Vasiliev, E., Ventura, J., Vera, L., Vercauteren, T., Verrastro, C.A., Vidyaratne, L., Vilaplana, V., Vivekanandan, A., Wang, G., Wang, Q., Wang, C.J., Wang, W., Wang, D., Wang, R., Wang, Y., Wang, C., Wang, G., Wen, N., Wen, X., Weninger, L., Wick, W., Wu, S., Wu, Q., Wu, Y., Xia, Y., Xu, Y., Xu, X., Xu, P., Yang, T.-.L., Yang, X., Yang, H.-.Y., Yang, J., Yang, H., Yang, G., Yao, H., Ye, X., Yin, C., Young-Moxon, B., Yu, J., Yue, X., Zhang, S., Zhang, A., Zhang, K., Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhang, Y., Zhang, Lei, Zhang, J., Zhang, Xiang, Zhang, T., Zhao, S., Zhao, Y., Zhao, X., Zhao, L., Zheng, Y., Zhong, L., Zhou, C., Zhou, X., Zhou, F., Zhu, H., Zhu, J., Zhuge, Y., Zong, W., Kalpathy-Cramer, J., Farahani, K., Davatzikos, C., van Leemput, K., Menze, B., 2019. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge.
Amunts, Mohlberg, Bludau, Zilles (bib0001) 2020; 369
(accessed 2.23.22).
Prayer, Kasprian, Krampl, Ulm, Witzani, Prayer, Brugger (bib0054) 2006; 57
Griffiths, Bradburn, Campbell, Cooper, Embleton, Graham, Hart, Jarvis, Kilby, Lie, Mason, Mandefield, Mooney, Pennington, Robson, Wailoo (bib0023) 2019; 23
van den Heuvel, Hect, Smarr, Qawasmeh, Kriegsfeld, Barcelona, Hijazi, Thomason (bib0066) 2021; 11
Glenn (bib0021) 2010; 40
Polat, Barlow, Ber, Achiron, Katorza (bib0053) 2017; 27
Fidon, L., Aertsen, M., Kofler, F., Bink, A., David, A.L., Deprest, T., Emam, D., Guffens, F., Jakab, A., Kasprian, G., Kienast, P., Melbourne, A., Menze, B., Mufti, N., Pogledic, I., Prayer, D., Stuempflen, M., Van Elslander, E., Ourselin, S.,
Klein (10.1016/j.media.2023.102833_bib0037) 2012; 6
Kyriakopoulou (10.1016/j.media.2023.102833_bib0039) 2017; 222
Nagaraj (10.1016/j.media.2023.102833_bib0047) 2022; 52
Payette (10.1016/j.media.2023.102833_bib0048) 2021; 8
Griffiths (10.1016/j.media.2023.102833_bib0023) 2019; 23
Hosny (10.1016/j.media.2023.102833_bib0028) 2010; 28
Tourbier (10.1016/j.media.2023.102833_bib0065) 2015; 118
Benkarim (10.1016/j.media.2023.102833_bib0004) 2018; 18
Desikan (10.1016/j.media.2023.102833_bib0011) 2006; 31
Isensee (10.1016/j.media.2023.102833_bib0029) 2021; 18
Wu (10.1016/j.media.2023.102833_bib0071) 2021; 2021
Hausdorff (10.1016/j.media.2023.102833_bib0026) 1991
Polat (10.1016/j.media.2023.102833_bib0053) 2017; 27
Core Team (10.1016/j.media.2023.102833_bib0055) 2020
Meuli (10.1016/j.media.2023.102833_bib0044) 1997; 32
Gowland (10.1016/j.media.2023.102833_bib0022) 2011
Kikinis (10.1016/j.media.2023.102833_bib0036) 2014
Skotting (10.1016/j.media.2023.102833_bib0062) 2021; 11
Licandro (10.1016/j.media.2023.102833_bib0040) 2016
Menze (10.1016/j.media.2023.102833_bib0043) 2015; 34
Taha (10.1016/j.media.2023.102833_bib0063) 2015; 15
Hong (10.1016/j.media.2023.102833_bib0027) 2020; 14
Fidon (10.1016/j.media.2023.102833_bib0016) 2021
Çiçek (10.1016/j.media.2023.102833_bib0006) 2016
Sanroma (10.1016/j.media.2023.102833_bib0060) 2018; 69
Kasprian (10.1016/j.media.2023.102833_bib0034) 2011; 21
Wiesenfarth (10.1016/j.media.2023.102833_bib0069) 2021; 11
10.1016/j.media.2023.102833_bib0003
De Asis-Cruz (10.1016/j.media.2023.102833_bib0009) 2021
Jakab (10.1016/j.media.2023.102833_bib0031) 2015; 36
10.1016/j.media.2023.102833_bib0046
10.1016/j.media.2023.102833_bib0005
10.1016/j.media.2023.102833_bib0049
Wu (10.1016/j.media.2023.102833_bib0070) 2021; 241
Khalili (10.1016/j.media.2023.102833_bib0035) 2019
Gholipour (10.1016/j.media.2023.102833_bib0020) 2017; 7
Glenn (10.1016/j.media.2023.102833_bib0021) 2010; 40
Rollins (10.1016/j.media.2023.102833_bib0056) 2021; 89
Zhao (10.1016/j.media.2023.102833_bib0074) 2022
Fidon (10.1016/j.media.2023.102833_bib0018) 2021; 1
Gholipour (10.1016/j.media.2023.102833_bib0019) 2014; 43
Jarvis (10.1016/j.media.2023.102833_bib0032) 2019; 29
van den Heuvel (10.1016/j.media.2023.102833_bib0066) 2021; 11
Dice (10.1016/j.media.2023.102833_bib0012) 1945; 26
Vasung (10.1016/j.media.2023.102833_bib0068) 2020; 30
Clouchoux (10.1016/j.media.2023.102833_bib0008) 2013; 23
10.1016/j.media.2023.102833_bib0010
Egaña-Ugrinovic (10.1016/j.media.2023.102833_bib0014) 2013; 209
Maier-Hein (10.1016/j.media.2023.102833_bib0041) 2020; 66
Makropoulos (10.1016/j.media.2023.102833_bib0042) 2018; 173
10.1016/j.media.2023.102833_bib0050
10.1016/j.media.2023.102833_bib0052
Dittrich (10.1016/j.media.2023.102833_bib0013) 2011; 22
10.1016/j.media.2023.102833_bib0051
10.1016/j.media.2023.102833_bib0017
Vasung (10.1016/j.media.2023.102833_bib0067) 2019; 187
Rüegger (10.1016/j.media.2023.102833_bib0058) 2014; 14
Jakab (10.1016/j.media.2023.102833_bib0030) 2021; 5
Prayer (10.1016/j.media.2023.102833_bib0054) 2006; 57
Hart (10.1016/j.media.2023.102833_bib0025) 2020; 4
Ronneberger (10.1016/j.media.2023.102833_bib0057) 2015
Fetit (10.1016/j.media.2023.102833_bib0015) 2020
Clewell (10.1016/j.media.2023.102833_bib0007) 1982; 306
Meuli (10.1016/j.media.2023.102833_bib0045) 2013; 23
Karimi (10.1016/j.media.2023.102833_bib0033) 2023; 85
Amunts (10.1016/j.media.2023.102833_bib0001) 2020; 369
Serag (10.1016/j.media.2023.102833_bib0061) 2012; 59
10.1016/j.media.2023.102833_bib0064
Wu (10.1016/j.media.2023.102833_bib0072) 2020; 3
Xu (10.1016/j.media.2023.102833_bib0073) 2022; 42
Kuklisova-Murgasova (10.1016/j.media.2023.102833_bib0038) 2012; 16
Sadhwani (10.1016/j.media.2023.102833_bib0059) 2022
Bach Cuadra (10.1016/j.media.2023.102833_bib0002) 2009
10.1016/j.media.2023.102833_bib0024
Zvi (10.1016/j.media.2023.102833_bib0075) 2020; 41
References_xml – reference: Pierre Deman, Sebastien Tourbier, Reto Meuli, Meritxell Bach Cuadra, 2020. Meribach/mevislabFetalMRI: MEVISLAB MIAL super-resolution reconstruction of fetal brain MRI v1.0.
– volume: 3
  year: 2020
  ident: bib0072
  article-title: Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation
  publication-title: JAMA Netw. Open
– volume: 41
  start-page: 1989
  year: 2020
  end-page: 1992
  ident: bib0075
  article-title: Fetal exposure to MR imaging: long-term neurodevelopmental outcome
  publication-title: AJNR Am. J. Neuroradiol.
– year: 2009
  ident: bib0002
  article-title: Brain tissue segmentation of fetal MR images
  publication-title: Workshop on Image Analysis for Developing Brain, in 12th International Conference on Medical Image Computing and Computer Assisted Intervention. Presented at the Workshop on Image Analysis for Developing Brain, in 12th International Conference on Medical Image Computing and Computer Assisted Intervention
– volume: 27
  start-page: 2110
  year: 2017
  end-page: 2118
  ident: bib0053
  article-title: Volumetric MRI study of the intrauterine growth restriction fetal brain
  publication-title: Eur. Radiol.
– volume: 222
  start-page: 2295
  year: 2017
  end-page: 2307
  ident: bib0039
  article-title: Normative biometry of the fetal brain using magnetic resonance imaging
  publication-title: Brain Struct. Funct.
– reference: [cs, eess].
– volume: 11
  start-page: 2369
  year: 2021
  ident: bib0069
  article-title: Methods and open-source toolkit for analyzing and visualizing challenge results
  publication-title: Sci. Rep.
– volume: 69
  start-page: 52
  year: 2018
  end-page: 59
  ident: bib0060
  article-title: Learning to combine complementary segmentation methods for fetal and 6-month infant brain MRI segmentation
  publication-title: Comput. Med. Imaging Graph.
– volume: 187
  start-page: 226
  year: 2019
  end-page: 254
  ident: bib0067
  article-title: Exploring early human brain development with structural and physiological neuroimaging
  publication-title: Neuroimage
– reference: Gwet, K.L., 2019. irrCAC: computing chance-corrected agreement coefficients (CAC), R Package version 1.0.
– reference: Tourbier, S., Bresson, X., Hagmann, P., Meuli, R., Bach Cuadra, M., 2019. sebastientourbier/mialsuperresolutiontoolkit: MIAL Super-Resolution Toolkit v1.0.
– volume: 306
  start-page: 1320
  year: 1982
  end-page: 1325
  ident: bib0007
  article-title: A Surgical Approach to the Treatment of Fetal Hydrocephalus
  publication-title: N. Engl. J. Med.
– volume: 15
  year: 2015
  ident: bib0063
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
– volume: 241
  year: 2021
  ident: bib0070
  article-title: Age-specific structural fetal brain atlases construction and cortical development quantification for chinese population
  publication-title: Neuroimage
– volume: 2021
  start-page: 2745
  year: 2021
  end-page: 2749
  ident: bib0071
  article-title: Longitudinal Chinese population structural fetal brain atlases construction: toward precise fetal brain segmentation
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 16
  start-page: 1550
  year: 2012
  end-page: 1564
  ident: bib0038
  article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal
  publication-title: Med. Image Anal.
– volume: 173
  start-page: 88
  year: 2018
  end-page: 112
  ident: bib0042
  article-title: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction
  publication-title: Neuroimage
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: bib0029
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
– reference: Bethlehem, R.a.I., Seidlitz, J., White, S.R., Vogel, J.W., Anderson, K.M., Adamson, C., Adler, S., Alexopoulos, G.S., Anagnostou, E., Areces-Gonzalez, A., Astle, D.E., Auyeung, B., Ayub, M., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S.A., Benegal, V., Beyer, F., Bae, J.B., Blangero, J., Cábez, M.B., Boardman, J.P., Borzage, M., Bosch-Bayard, J.F., Bourke, N., Calhoun, V.D., Chakravarty, M.M., Chen, C., Chertavian, C., Chetelat, G., Chong, Y.S., Cole, J.H., Corvin, A., Courchesne, E., Crivello, F., Cropley, V.L., Crosbie, J., Crossley, N., Delarue, M., Desrivieres, S., Devenyi, G., Biase, M.A.D., Dolan, R., Donald, K.A., Donohoe, G., Dunlop, K., Edwards, A.D., Elison, J.T., Ellis, C.T., Elman, J.A., Eyler, L., Fair, D.A., Fletcher, P.C., Fonagy, P., Franz, C.E., Galan-Garcia, L., Gholipour, A., Giedd, J., Gilmore, J.H., Glahn, D.C., Goodyer, I., Grant, P.E., Groenewold, N.A., Gunning, F.M., Gur, R.E., Gur, R.C., Hammill, C.F., Hansson, O., Hedden, T., Heinz, A., Henson, R., Heuer, K., Hoare, J., Holla, B., Holmes, A.J., Holt, R., Huang, H., Im, K., Ipser, J., Jack, C.R., Jackowski, A.P., Jia, T., Johnson, K.A., Jones, P.B., Jones, D.T., Kahn, R., Karlsson, H., Karlsson, L., Kawashima, R., Kelley, E.A., Kern, S., Kim, K., Kitzbichler, M.G., Kremen, W.S., Lalonde, F., Landeau, B., Lee, S., Lerch, J., Lewis, J.D., Li, J., Liao, W., Linares, D.P., Liston, C., Lombardo, M.V., Lv, J., Lynch, C., Mallard, T.T., Marcelis, M., Markello, R.D., Mazoyer, B., McGuire, P., Meaney, M.J., Mechelli, A., Medic, N., Misic, B., Morgan, S.E., Mothersill, D., Nigg, J., Ong, M.Q.W., Ortinau, C., Ossenkoppele, R., Ouyang, M., Palaniyappan, L., Paly, L., Pan, P.M., Pantelis, C., Park, M.M., Paus, T., Pausova, Z., Binette, A.P., Pierce, K., Qian, X., Qiu, J., Qiu, A., Raznahan, A., Rittman, T., Rollins, C.K., Romero-Garcia, R., Ronan, L., Rosenberg, M.D., Rowitch, D.H., Salum, G.A., Satterthwaite, T.D., Schaare, H.L., Schachar, R.J., Schultz, A.P., Schumann, G., Schöll, M., Sharp, D., Shinohara, R.T., Skoog, I., Smyser, C.D., Sperling, R.A., Stein, D.J., Stolicyn, A., Suckling, J., Sullivan, G., Taki, Y., Thyreau, B., Toro, R., Tsvetanov, K.A., Turk-Browne, N.B., Tuulari, J.J., Tzourio, C., Vachon-Presseau, É., Valdes-Sosa, M.J., Valdes-Sosa, P.A., Valk, S.L., Amelsvoort, T. van, Vandekar, S.N., Vasung, L., Victoria, L.W., Villeneuve, S., Villringer, A., Vértes, P.E., Wagstyl, K., Wang, Y.S., Warfield, S.K., Warrier, V., Westman, E., Westwater, M.L., Whalley, H.C., Witte, A.V., Yang, N., Yeo, B.T.T., Yun, H.J., Zalesky, A., Zar, H.J., Zettergren, A., Zhou, J.H., Ziauddeen, H., Zugman, A., Zuo, X.N., Aibl, Initiative, A.D.N., Investigators, A.D.R.W.B., Asrb, Team, C., Cam-CAN, Ccnp, 3r-Brain, Cobre, Group, E.D.B.A. working, FinnBrain, Study, H.A.B., Imagen, K., Nspn, Oasis-3, Project, O., Pond, The PREVENT-AD Research Group, V., Alexander-Bloch, A.F., 2021. Brain charts for the human lifespan.
– volume: 52
  start-page: 802
  year: 2022
  end-page: 816
  ident: bib0047
  article-title: Value of pre- and postnatal magnetic resonance imaging in the evaluation of congenital central nervous system anomalies
  publication-title: Pediatr. Radiol.
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib0006
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 49
  year: 2011
  end-page: 54
  ident: bib0022
  article-title: Safety of fetal MRI scanning
  publication-title: Fetal MRI
– volume: 14
  start-page: 15
  year: 2014
  ident: bib0058
  article-title: Minimally invasive, imaging guided virtual autopsy compared to conventional autopsy in foetal, newborn and infant cases: study protocol for the paediatric virtual autopsy trial
  publication-title: BMC Pediatr.
– volume: 8
  start-page: 167
  year: 2021
  ident: bib0048
  article-title: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset
  publication-title: Sci. Data
– volume: 209
  year: 2013
  ident: bib0014
  article-title: Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction
  publication-title: Am. J. Obstet. Gynecol.
– reference: [cs, stat].
– start-page: 647
  year: 2021
  end-page: 657
  ident: bib0016
  article-title: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
– volume: 22
  start-page: 107
  year: 2011
  end-page: 111
  ident: bib0013
  article-title: Atlas learning in fetal brain development
  publication-title: Top. Magn. Reson. Imaging.
– volume: 23
  start-page: 103
  year: 2013
  end-page: 109
  ident: bib0045
  article-title: Fetal surgery for myelomeningocele: a critical appraisal
  publication-title: Eur. J. Pediatr. Surg.
– volume: 118
  start-page: 584
  year: 2015
  end-page: 597
  ident: bib0065
  article-title: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization
  publication-title: Neuroimage
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib0011
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 23
  start-page: 1
  year: 2019
  end-page: 144
  ident: bib0023
  article-title: MRI in the diagnosis of fetal developmental brain abnormalities: the MERIDIAN diagnostic accuracy study
  publication-title: Health Technol. Assess.
– volume: 5
  start-page: 23
  year: 2021
  ident: bib0030
  article-title: Emerging magnetic resonance imaging techniques in open spina bifida in utero
  publication-title: Eur. Radiol. Exp.
– volume: 18
  start-page: 103
  year: 2018
  end-page: 114
  ident: bib0004
  article-title: Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly
  publication-title: Neuroimage Clin.
– reference: Payette, K., Steger, C., Dumast, P.de, Jakab, A., Cuadra, M.B., Vasung, L., Licandro, R., Barkovich, M., Li, H., 2022. Fetal tissue annotation challenge.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib0012
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 57
  start-page: 199
  year: 2006
  end-page: 216
  ident: bib0054
  article-title: MRI of normal fetal brain development
  publication-title: Eur. J. Radiol., Fetal Imaging
– volume: 1
  year: 2021
  ident: bib0018
  article-title: A spatio-temporal atlas of the developing fetal brain with spina bifida aperta
  publication-title: Open Res. Europe
– volume: 6
  start-page: 171
  year: 2012
  ident: bib0037
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front. Neurosci.
– volume: 66
  year: 2020
  ident: bib0041
  article-title: BIAS: transparent reporting of biomedical image analysis challenges
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 2932
  year: 2013
  end-page: 2943
  ident: bib0008
  article-title: Delayed cortical development in fetuses with complex congenital heart disease
  publication-title: Cereb. Cortex
– volume: 11
  start-page: 4191
  year: 2021
  ident: bib0062
  article-title: Infants with congenital heart defects have reduced brain volumes
  publication-title: Sci. Rep.
– volume: 28
  start-page: 1431
  year: 2010
  end-page: 1439
  ident: bib0028
  article-title: Ultrafast MRI of the fetus: an increasingly important tool in prenatal diagnosis of congenital anomalies
  publication-title: Magn. Reson. Imaging
– year: 2022
  ident: bib0059
  article-title: Fetal brain volume predicts neurodevelopment in congenital heart disease
  publication-title: Circulation
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0057
  article-title: U-Net: convolutional Networks for Biomedical Image Segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science
– volume: 11
  start-page: 2228
  year: 2021
  ident: bib0066
  article-title: Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth
  publication-title: Sci. Rep.
– volume: 89
  start-page: 143
  year: 2021
  end-page: 157
  ident: bib0056
  article-title: Regional brain growth trajectories in fetuses with congenital heart disease
  publication-title: Ann. Neurol.
– reference: Fidon, L., Aertsen, M., Kofler, F., Bink, A., David, A.L., Deprest, T., Emam, D., Guffens, F., Jakab, A., Kasprian, G., Kienast, P., Melbourne, A., Menze, B., Mufti, N., Pogledic, I., Prayer, D., Stuempflen, M., Van Elslander, E., Ourselin, S., Deprest, J., Vercauteren, T., 2022. A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation.
– volume: 369
  start-page: 988
  year: 2020
  end-page: 992
  ident: bib0001
  article-title: Julich-Brain: a 3D probabilistic atlas of the human brain's cytoarchitecture
  publication-title: Science
– volume: 32
  start-page: 448
  year: 1997
  end-page: 452
  ident: bib0044
  article-title: The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery
  publication-title: J. Pediatr. Surg., Pap. Presented 43rd Annu. Int. Congress
– volume: 85
  year: 2023
  ident: bib0033
  article-title: Learning to segment fetal brain tissue from noisy annotations
  publication-title: Med Image Anal.
– volume: 4
  start-page: 131
  year: 2020
  end-page: 140
  ident: bib0025
  article-title: Accuracy of in-utero MRI to detect fetal brain abnormalities and prognosticate developmental outcome: postnatal follow-up of the MERIDIAN cohort
  publication-title: Lancet Child Adolesc. Health
– volume: 30
  start-page: 1752
  year: 2020
  end-page: 1767
  ident: bib0068
  article-title: Quantitative in vivo MRI assessment of structural asymmetries and sexual dimorphism of transient fetal compartments in the human brain
  publication-title: Cereb. Cortex
– reference: de Dumast, P., Kebiri, H., Atat, C., Dunet, V., Koob, M., Cuadra, M.B., 2020. Segmentation of the cortical plate in fetal brain MRI with a topological loss.
– year: 2022
  ident: bib0074
  article-title: Automated 3D fetal brain segmentation using an optimized deep learning approach
  publication-title: Am. J. Neuroradiol.
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bib0043
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
– reference: MONAI Consortium, 2020. MONAI: medical Open Network for AI.
– year: 1991
  ident: bib0026
  article-title: Set Theory
– volume: 42
  start-page: 9435
  year: 2022
  end-page: 9449
  ident: bib0073
  article-title: Spatiotemporal atlas of the fetal brain depicts cortical developmental gradient
  publication-title: J. Neurosci.
– volume: 7
  year: 2017
  ident: bib0020
  article-title: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
  publication-title: Sci. Rep.
– start-page: 277
  year: 2014
  end-page: 289
  ident: bib0036
  article-title: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support
  publication-title: Intraoperative Imaging and Image-Guided Therapy
– reference: Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., Wiestler, B., Colen, R., Kotrotsou, A., Lamontagne, P., Marcus, D., Milchenko, M., Nazeri, A., Weber, M.-.A., Mahajan, A., Baid, U., Gerstner, E., Kwon, D., Acharya, G., Agarwal, M., Alam, M., Albiol, Alberto, Albiol, Antonio, Albiol, F.J., Alex, V., Allinson, N., Amorim, P.H.A., Amrutkar, A., Anand, G., Andermatt, S., Arbel, T., Arbelaez, P., Avery, A., Azmat, M., B., P., Bai, W., Banerjee, S., Barth, B., Batchelder, T., Batmanghelich, K., Battistella, E., Beers, A., Belyaev, M., Bendszus, M., Benson, E., Bernal, J., Bharath, H.N., Biros, G., Bisdas, S., Brown, J., Cabezas, M., Cao, S., Cardoso, J.M., Carver, E.N., Casamitjana, A., Castillo, L.S., Catà, M., Cattin, P., Cerigues, A., Chagas, V.S., Chandra, S., Chang, Y.-.J., Chang, S., Chang, K., Chazalon, J., Chen, S., Chen, W., Chen, J.W., Chen, Z., Cheng, K., Choudhury, A.R., Chylla, R., Clérigues, A., Colleman, S., Colmeiro, R.G.R., Combalia, M., Costa, A., Cui, X., Dai, Z., Dai, L., Daza, L.A., Deutsch, E., Ding, C., Dong, C., Dong, S., Dudzik, W., Eaton-Rosen, Z., Egan, G., Escudero, G., Estienne, T., Everson, R., Fabrizio, J., Fan, Y., Fang, L., Feng, X., Ferrante, E., Fidon, L., Fischer, M., French, A.P., Fridman, N., Fu, H., Fuentes, D., Gao, Y., Gates, E., Gering, D., Gholami, A., Gierke, W., Glocker, B., Gong, M., González-Villá, S., Grosges, T., Guan, Y., Guo, S., Gupta, S., Han, W.-.S., Han, I.S., Harmuth, K., He, H., Hernández-Sabaté, A., Herrmann, E., Himthani, N., Hsu, W., Hsu, C., Hu, Xiaojun, Hu, Xiaobin, Hu, Yan, Hu, Yifan, Hua, R., Huang, T.-.Y., Huang, W., Van Huffel, S., Huo, Q., HV, V., Iftekharuddin, K.M., Isensee, F., Islam, M., Jackson, A.S., Jambawalikar, S.R., Jesson, A., Jian, W., Jin, P., Jose, V.J.M., Jungo, A., Kainz, B., Kamnitsas, K., Kao, P.-.Y., Karnawat, A., Kellermeier, T., Kermi, A., Keutzer, K., Khadir, M.T., Khened, M., Kickingereder, P., Kim, G., King, N., Knapp, H., Knecht, U., Kohli, L., Kong, D., Kong, X., Koppers, S., Kori, A., Krishnamurthi, G., Krivov, E., Kumar, P., Kushibar, K., Lachinov, D., Lambrou, T., Lee, J., Lee, C., Lee, Y., Lee, M., Lefkovits, S., Lefkovits, L., Levitt, J., Li, T., Li, Hongwei, Li, W., Li, Hongyang, Li, Xiaochuan, Li, Y., Li, Heng, Li, Zhenye, Li, Xiaoyu, Li, Zeju, Li, XiaoGang, Li, W., Lin, Z.-.S., Lin, F., Lio, P., Liu, C., Liu, B., Liu, X., Liu, M., Liu, J., Liu, L., Llado, X., Lopez, M.M., Lorenzo, P.R., Lu, Z., Luo, L., Luo, Z., Ma, J., Ma, K., Mackie, T., Madabushi, A., Mahmoudi, I., Maier-Hein, K.H., Maji, P., Mammen, C.P., Mang, A., Manjunath, B.S., Marcinkiewicz, M., McDonagh, S., McKenna, S., McKinley, R., Mehl, M., Mehta, S., Mehta, R., Meier, R., Meinel, C., Merhof, D., Meyer, C., Miller, R., Mitra, S., Moiyadi, A., Molina-Garcia, D., Monteiro, M.A.B., Mrukwa, G., Myronenko, A., Nalepa, J., Ngo, T., Nie, D., Ning, H., Niu, C., Nuechterlein, N.K., Oermann, E., Oliveira, A., Oliveira, D.D.C., Oliver, A., Osman, A.F.I., Ou, Y.-.N., Ourselin, S., Paragios, N., Park, M.S., Paschke, B., Pauloski, J.G., Pawar, K., Pawlowski, N., Pei, L., Peng, S., Pereira, S.M., Perez-Beteta, J., Perez-Garcia, V.M., Pezold, S., Pham, B., Phophalia, A., Piella, G., Pillai, G.N., Piraud, M., Pisov, M., Popli, A., Pound, M.P., Pourreza, R., Prasanna, P., Prkovska, V., Pridmore, T.P., Puch, S., Puybareau, É., Qian, B., Qiao, X., Rajchl, M., Rane, S., Rebsamen, M., Ren, H., Ren, X., Revanuru, K., Rezaei, M., Rippel, O., Rivera, L.C., Robert, C., Rosen, B., Rueckert, D., Safwan, M., Salem, M., Salvi, J., Sanchez, I., Sánchez, I., Santos, H.M., Sartor, E., Schellingerhout, D., Scheufele, K., Scott, M.R., Scussel, A.A., Sedlar, S., Serrano-Rubio, J.P., Shah, N.J., Shah, N., Shaikh, M., Shankar, B.U., Shboul, Z., Shen, Haipeng, Shen, D., Shen, L., Shen, Haocheng, Shenoy, V., Shi, F., Shin, H.E., Shu, H., Sima, D., Sinclair, M., Smedby, O., Snyder, J.M., Soltaninejad, M., Song, G., Soni, M., Stawiaski, J., Subramanian, S., Sun, L., Sun, R., Sun, J., Sun, K., Sun, Y., Sun, G., Sun, S., Suter, Y.R., Szilagyi, L., Talbar, S., Tao, D., Tao, D., Teng, Z., Thakur, S., Thakur, M.H., Tharakan, S., Tiwari, P., Tochon, G., Tran, T., Tsai, Y.M., Tseng, K.-.L., Tuan, T.A., Turlapov, V., Tustison, N., Vakalopoulou, M., Valverde, S., Vanguri, R., Vasiliev, E., Ventura, J., Vera, L., Vercauteren, T., Verrastro, C.A., Vidyaratne, L., Vilaplana, V., Vivekanandan, A., Wang, G., Wang, Q., Wang, C.J., Wang, W., Wang, D., Wang, R., Wang, Y., Wang, C., Wang, G., Wen, N., Wen, X., Weninger, L., Wick, W., Wu, S., Wu, Q., Wu, Y., Xia, Y., Xu, Y., Xu, X., Xu, P., Yang, T.-.L., Yang, X., Yang, H.-.Y., Yang, J., Yang, H., Yang, G., Yao, H., Ye, X., Yin, C., Young-Moxon, B., Yu, J., Yue, X., Zhang, S., Zhang, A., Zhang, K., Zhang, Xuejie, Zhang, Lichi, Zhang, Xiaoyue, Zhang, Y., Zhang, Lei, Zhang, J., Zhang, Xiang, Zhang, T., Zhao, S., Zhao, Y., Zhao, X., Zhao, L., Zheng, Y., Zhong, L., Zhou, C., Zhou, X., Zhou, F., Zhu, H., Zhu, J., Zhuge, Y., Zong, W., Kalpathy-Cramer, J., Farahani, K., Davatzikos, C., van Leemput, K., Menze, B., 2019. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge.
– year: 2016
  ident: bib0040
  article-title: A Longitudinal Diffeomorphic Atlas-Based Tissue Labeling Framework for Fetal Brains Using Geodesic Regression. Presented at the 21st Computer Vision Winter Workshop
– year: 2020
  ident: bib0055
  article-title: R: A Language and Environment for Statistical Computing
– volume: 40
  start-page: 68
  year: 2010
  end-page: 81
  ident: bib0021
  article-title: MR imaging of the fetal brain
  publication-title: Pediatr. Radiol.
– volume: 21
  start-page: 1076
  year: 2011
  end-page: 1083
  ident: bib0034
  article-title: The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study
  publication-title: Cereb. Cortex
– reference: Payette, K., Jakab, A., 2021. Fetal tissue annotation challenge - FeTA MICCAI 2021 [WWW Document]. URL
– start-page: 241
  year: 2020
  end-page: 261
  ident: bib0015
  article-title: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling
  publication-title: Proceedings of the Third Conference on Medical Imaging with Deep Learning, Proceedings of Machine Learning Research. PMLR
– reference: Payette, K., Dumast, P.de, Jakab, A., Cuadra, M.B., Vasung, L., Licandro, R., Menze, B., Zurich, H.L., 2021b. Fetal brain tissue annotation and segmentation challenge.
– reference: (accessed 2.23.22).
– year: 2019
  ident: bib0035
  article-title: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks
  publication-title: Magn. Reson. Imaging
– volume: 59
  start-page: 2255
  year: 2012
  end-page: 2265
  ident: bib0061
  article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
  publication-title: Neuroimage
– reference: .
– year: 2021
  ident: bib0009
  article-title: Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging
  publication-title: Biol. Psychiatry: Cognit. Neurosci. Neuroimaging
– volume: 14
  start-page: 1226
  year: 2020
  ident: bib0027
  article-title: Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation
  publication-title: Front. Neurosci.
– volume: 43
  start-page: 237
  year: 2014
  end-page: 266
  ident: bib0019
  article-title: Fetal MRI: a technical update with educational aspirations
  publication-title: Concepts Magn. Reson. Part A Bridg. Educ. Res.
– volume: 36
  start-page: 465
  year: 2015
  end-page: 475
  ident: bib0031
  article-title: Fetal cerebral magnetic resonance imaging beyond morphology
  publication-title: Semin. Ultrasound CT MR
– volume: 29
  start-page: 3488
  year: 2019
  end-page: 3495
  ident: bib0032
  article-title: Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging
  publication-title: Eur. Radiol.
– ident: 10.1016/j.media.2023.102833_bib0017
– volume: 52
  start-page: 802
  year: 2022
  ident: 10.1016/j.media.2023.102833_bib0047
  article-title: Value of pre- and postnatal magnetic resonance imaging in the evaluation of congenital central nervous system anomalies
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05137-1
– start-page: 49
  year: 2011
  ident: 10.1016/j.media.2023.102833_bib0022
  article-title: Safety of fetal MRI scanning
– volume: 4
  start-page: 131
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0025
  article-title: Accuracy of in-utero MRI to detect fetal brain abnormalities and prognosticate developmental outcome: postnatal follow-up of the MERIDIAN cohort
  publication-title: Lancet Child Adolesc. Health
  doi: 10.1016/S2352-4642(19)30349-9
– volume: 43
  start-page: 237
  year: 2014
  ident: 10.1016/j.media.2023.102833_bib0019
  article-title: Fetal MRI: a technical update with educational aspirations
  publication-title: Concepts Magn. Reson. Part A Bridg. Educ. Res.
  doi: 10.1002/cmr.a.21321
– volume: 14
  start-page: 1226
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0027
  article-title: Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.591683
– volume: 23
  start-page: 103
  year: 2013
  ident: 10.1016/j.media.2023.102833_bib0045
  article-title: Fetal surgery for myelomeningocele: a critical appraisal
  publication-title: Eur. J. Pediatr. Surg.
  doi: 10.1055/s-0033-1343082
– volume: 30
  start-page: 1752
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0068
  article-title: Quantitative in vivo MRI assessment of structural asymmetries and sexual dimorphism of transient fetal compartments in the human brain
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhz200
– volume: 42
  start-page: 9435
  year: 2022
  ident: 10.1016/j.media.2023.102833_bib0073
  article-title: Spatiotemporal atlas of the fetal brain depicts cortical developmental gradient
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1285-22.2022
– ident: 10.1016/j.media.2023.102833_bib0052
– start-page: 277
  year: 2014
  ident: 10.1016/j.media.2023.102833_bib0036
  article-title: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support
– volume: 173
  start-page: 88
  year: 2018
  ident: 10.1016/j.media.2023.102833_bib0042
  article-title: The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.054
– volume: 11
  start-page: 4191
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0062
  article-title: Infants with congenital heart defects have reduced brain volumes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83690-3
– volume: 15
  year: 2015
  ident: 10.1016/j.media.2023.102833_bib0063
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 187
  start-page: 226
  year: 2019
  ident: 10.1016/j.media.2023.102833_bib0067
  article-title: Exploring early human brain development with structural and physiological neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.041
– volume: 34
  start-page: 1993
  year: 2015
  ident: 10.1016/j.media.2023.102833_bib0043
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 85
  year: 2023
  ident: 10.1016/j.media.2023.102833_bib0033
  article-title: Learning to segment fetal brain tissue from noisy annotations
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2022.102731
– year: 2022
  ident: 10.1016/j.media.2023.102833_bib0059
  article-title: Fetal brain volume predicts neurodevelopment in congenital heart disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.056305
– volume: 21
  start-page: 1076
  year: 2011
  ident: 10.1016/j.media.2023.102833_bib0034
  article-title: The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq179
– ident: 10.1016/j.media.2023.102833_bib0046
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.media.2023.102833_bib0012
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 6
  start-page: 171
  year: 2012
  ident: 10.1016/j.media.2023.102833_bib0037
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00171
– volume: 22
  start-page: 107
  year: 2011
  ident: 10.1016/j.media.2023.102833_bib0013
  article-title: Atlas learning in fetal brain development
  publication-title: Top. Magn. Reson. Imaging.
  doi: 10.1097/RMR.0b013e318267fe94
– year: 2019
  ident: 10.1016/j.media.2023.102833_bib0035
  article-title: Automatic brain tissue segmentation in fetal MRI using convolutional neural networks
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.05.020
– year: 2016
  ident: 10.1016/j.media.2023.102833_bib0040
– volume: 27
  start-page: 2110
  year: 2017
  ident: 10.1016/j.media.2023.102833_bib0053
  article-title: Volumetric MRI study of the intrauterine growth restriction fetal brain
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-016-4502-4
– volume: 40
  start-page: 68
  year: 2010
  ident: 10.1016/j.media.2023.102833_bib0021
  article-title: MR imaging of the fetal brain
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-009-1459-3
– year: 2020
  ident: 10.1016/j.media.2023.102833_bib0055
– volume: 89
  start-page: 143
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0056
  article-title: Regional brain growth trajectories in fetuses with congenital heart disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25940
– volume: 23
  start-page: 1
  year: 2019
  ident: 10.1016/j.media.2023.102833_bib0023
  article-title: MRI in the diagnosis of fetal developmental brain abnormalities: the MERIDIAN diagnostic accuracy study
  publication-title: Health Technol. Assess.
  doi: 10.3310/hta23490
– ident: 10.1016/j.media.2023.102833_bib0051
– volume: 1
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0018
  article-title: A spatio-temporal atlas of the developing fetal brain with spina bifida aperta
  publication-title: Open Res. Europe
  doi: 10.12688/openreseurope.13914.1
– volume: 306
  start-page: 1320
  year: 1982
  ident: 10.1016/j.media.2023.102833_bib0007
  article-title: A Surgical Approach to the Treatment of Fetal Hydrocephalus
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM198206033062202
– volume: 18
  start-page: 203
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0029
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 69
  start-page: 52
  year: 2018
  ident: 10.1016/j.media.2023.102833_bib0060
  article-title: Learning to combine complementary segmentation methods for fetal and 6-month infant brain MRI segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.08.007
– start-page: 241
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0015
  article-title: A deep learning approach to segmentation of the developing cortex in fetal brain MRI with minimal manual labeling
– volume: 2021
  start-page: 2745
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0071
  article-title: Longitudinal Chinese population structural fetal brain atlases construction: toward precise fetal brain segmentation
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– ident: 10.1016/j.media.2023.102833_bib0003
– volume: 8
  start-page: 167
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0048
  article-title: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00946-3
– year: 2009
  ident: 10.1016/j.media.2023.102833_bib0002
  article-title: Brain tissue segmentation of fetal MR images
– ident: 10.1016/j.media.2023.102833_bib0024
– ident: 10.1016/j.media.2023.102833_bib0049
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2023.102833_bib0057
  article-title: U-Net: convolutional Networks for Biomedical Image Segmentation
– start-page: 424
  year: 2016
  ident: 10.1016/j.media.2023.102833_bib0006
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– volume: 3
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0072
  article-title: Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.19940
– start-page: 647
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0016
  article-title: Label-set loss functions for partial supervision: application to fetal brain 3D MRI parcellation
– volume: 7
  year: 2017
  ident: 10.1016/j.media.2023.102833_bib0020
  article-title: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00525-w
– volume: 369
  start-page: 988
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0001
  article-title: Julich-Brain: a 3D probabilistic atlas of the human brain's cytoarchitecture
  publication-title: Science
  doi: 10.1126/science.abb4588
– volume: 18
  start-page: 103
  year: 2018
  ident: 10.1016/j.media.2023.102833_bib0004
  article-title: Cortical folding alterations in fetuses with isolated non-severe ventriculomegaly
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.01.006
– ident: 10.1016/j.media.2023.102833_bib0050
– volume: 66
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0041
  article-title: BIAS: transparent reporting of biomedical image analysis challenges
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101796
– volume: 14
  start-page: 15
  year: 2014
  ident: 10.1016/j.media.2023.102833_bib0058
  article-title: Minimally invasive, imaging guided virtual autopsy compared to conventional autopsy in foetal, newborn and infant cases: study protocol for the paediatric virtual autopsy trial
  publication-title: BMC Pediatr.
  doi: 10.1186/1471-2431-14-15
– volume: 23
  start-page: 2932
  year: 2013
  ident: 10.1016/j.media.2023.102833_bib0008
  article-title: Delayed cortical development in fetuses with complex congenital heart disease
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs281
– volume: 209
  year: 2013
  ident: 10.1016/j.media.2023.102833_bib0014
  article-title: Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2013.04.008
– year: 2022
  ident: 10.1016/j.media.2023.102833_bib0074
  article-title: Automated 3D fetal brain segmentation using an optimized deep learning approach
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A7419
– ident: 10.1016/j.media.2023.102833_bib0005
  doi: 10.1038/s41586-022-04554-y
– volume: 5
  start-page: 23
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0030
  article-title: Emerging magnetic resonance imaging techniques in open spina bifida in utero
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-021-00219-z
– volume: 16
  start-page: 1550
  year: 2012
  ident: 10.1016/j.media.2023.102833_bib0038
  article-title: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.07.004
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.media.2023.102833_bib0011
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: 10.1016/j.media.2023.102833_bib0010
  doi: 10.1007/978-3-030-87735-4_19
– volume: 118
  start-page: 584
  year: 2015
  ident: 10.1016/j.media.2023.102833_bib0065
  article-title: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.06.018
– volume: 41
  start-page: 1989
  year: 2020
  ident: 10.1016/j.media.2023.102833_bib0075
  article-title: Fetal exposure to MR imaging: long-term neurodevelopmental outcome
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6771
– volume: 28
  start-page: 1431
  year: 2010
  ident: 10.1016/j.media.2023.102833_bib0028
  article-title: Ultrafast MRI of the fetus: an increasingly important tool in prenatal diagnosis of congenital anomalies
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.06.024
– volume: 11
  start-page: 2228
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0066
  article-title: Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-81681-y
– volume: 36
  start-page: 465
  year: 2015
  ident: 10.1016/j.media.2023.102833_bib0031
  article-title: Fetal cerebral magnetic resonance imaging beyond morphology
  publication-title: Semin. Ultrasound CT MR
  doi: 10.1053/j.sult.2015.06.003
– year: 1991
  ident: 10.1016/j.media.2023.102833_bib0026
– volume: 11
  start-page: 2369
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0069
  article-title: Methods and open-source toolkit for analyzing and visualizing challenge results
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82017-6
– volume: 32
  start-page: 448
  year: 1997
  ident: 10.1016/j.media.2023.102833_bib0044
  article-title: The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery
  publication-title: J. Pediatr. Surg., Pap. Presented 43rd Annu. Int. Congress
– volume: 241
  year: 2021
  ident: 10.1016/j.media.2023.102833_bib0070
  article-title: Age-specific structural fetal brain atlases construction and cortical development quantification for chinese population
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118412
– volume: 29
  start-page: 3488
  year: 2019
  ident: 10.1016/j.media.2023.102833_bib0032
  article-title: Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5938-5
– volume: 57
  start-page: 199
  year: 2006
  ident: 10.1016/j.media.2023.102833_bib0054
  article-title: MRI of normal fetal brain development
  publication-title: Eur. J. Radiol., Fetal Imaging
– ident: 10.1016/j.media.2023.102833_bib0064
– volume: 59
  start-page: 2255
  year: 2012
  ident: 10.1016/j.media.2023.102833_bib0061
  article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.062
– volume: 222
  start-page: 2295
  year: 2017
  ident: 10.1016/j.media.2023.102833_bib0039
  article-title: Normative biometry of the fetal brain using magnetic resonance imaging
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-016-1342-6
– year: 2021
  ident: 10.1016/j.media.2023.102833_bib0009
  article-title: Adverse prenatal exposures and fetal brain development: insights from advanced fetal magnetic resonance imaging
  publication-title: Biol. Psychiatry: Cognit. Neurosci. Neuroimaging
SSID ssj0007440
Score 2.5689175
Snippet •Benchmark for future automatic multi-tissue fetal brain segmentation algorithms.•Used the largest publicly available fetal brain dataset with manual...
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102833
SubjectTerms Algorithms
Brain - diagnostic imaging
Congenital disorders
Female
Fetal brain MRI
Fetus - diagnostic imaging
Head
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Multi-class image segmentation
Pregnancy
Super-resolution reconstructions
White Matter
Title Fetal brain tissue annotation and segmentation challenge results
URI https://dx.doi.org/10.1016/j.media.2023.102833
https://www.ncbi.nlm.nih.gov/pubmed/37267773
https://www.proquest.com/docview/2822379184
Volume 88
WOSCitedRecordID wos001013162700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhB7QDBu5TIFibeSKrGT2n5jgk2AxoRgSH0z8SXTpjSZunaUf8_xJUmlahMg8RJFVhxH_r7YPvb5zkHodQocKW0OQKw4jTOlZMxNomNONU4M03miHNJH9PiYTaf8y2Dwo9XCXFW0rtlqxS_-K9RQBmBb6exfwN29FArgHkCHK8AO1z8C_tBYfaO0qR9GC9eto6Kum-BV6PbJzeksSI5qq_z12VRGYHgvKx_YqV2utsc4ZzPr2lOEACb9sdMv6yjk5T1V7xd65DNhN_XpT3MG7OkJqM3o_XJWBJ3J3CqCq8r09QBn7YU3X5tVEU78w54EJp1HXNgo2xDLuLGVTNKYZV69OTbrZV5y3A7IPs_fxtjutxnOx05SM7bNjt3qiPRTWedg-M2-2LYFFpbdtIFJehvTnMPQvb3_8WD6qZutbYBEr83zH9dGpnI-gBtNXbd6uc46cauUk_voXjAvon1PiwdoYOpdtLMWdHIX3fkc3CkeoreOK5HjSuS5EvVcgVsdrXMl6rgSBa48Qt8PD07efYhDSo1YZUm2iBnPCS0xVbkqDCVlqYwueWLSTGPCk1zCD2ojQtKJJIQbKpnCROMiSSWXRSrJY7RVN7V5iqKEMJWCcVDyXGeGas4KlpZEGgxTJlixQ4TbrhIqxJu3aU8q0ToWngvXv8L2r_D9O0RvukoXPtzKzY9PWgxEWDH6laAA0txc8VWLmIDx1B6SAamb5aWwbtWEciDPED3xUHZfQiieUErJs39t9jm62_8uL9DWYr40L9FtdQUQz_fQLTple4GgvwFHSKUI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fetal+brain+tissue+annotation+and+segmentation+challenge+results&rft.jtitle=Medical+image+analysis&rft.au=Payette%2C+Kelly&rft.au=Li%2C+Hongwei+Bran&rft.au=de+Dumast%2C+Priscille&rft.au=Licandro%2C+Roxane&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=88&rft_id=info:doi/10.1016%2Fj.media.2023.102833&rft.externalDocID=S1361841523000932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon