A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms

Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment Jg. 709; S. 135934
Hauptverfasser: Sharma, Ekta, Deo, Ravinesh C., Prasad, Ramendra, Parisi, Alfio V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 20.03.2020
Schlagworte:
ISSN:0048-9697, 1879-1026, 1879-1026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hybrid early-warning artificial intelligence (AI) framework that can emulate hourly air quality variables (i.e., Particulate Matter 2.5, PM2.5; Particulate Matter 10, PM10 and lower atmospheric visibility, VIS), the atmospheric variables associated with increased respiratory induced mortality and recurrent health-care cost. Firstly, hourly air quality data series (January-2015 to December-2017) are demarcated into their respective intrinsic mode functions (IMFs) and a residual sub-series that reveal patterns and resolve data complexity characteristics, followed by partial autocorrelation function applied to each IMF and residual sub-series to unveil historical changes in air quality. To design the prescribed hybrid model, the data is partitioned into training (70%), validation (15%) and testing (15%) sub-sets. The online sequential-extreme learning machine (OS-ELM) algorithm integrated with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is designed as a data pre-processing system to robustly extract predictive patterns and fine-tune the model generalization to a near-optimal global solution, which represents modelled air quality at hourly forecast horizons. The resulting early warning AI-based framework denoted as ICEEMDAN-OS-ELM model, is individually constructed by forecasting each IMF and residual sub-series, with hourly PM2.5, PM10, and VIS obtained by the aggregated sum of forecasted IMFs and residual sub-series. The results are benchmarked with many competing predictive approaches; e.g., hybrid ICEEMDAN-multiple-linear regression (MLR), ICEEMDAN-M5 model tree and standalone versions: OS-ELM, MLR, M5 model tree. Statistical metrics including the root-mean-square error (RMSE), mean absolute error (MAE), Willmott's Index (WI), Legates & McCabe's Index (ELM) and Nash–Sutcliffe coefficients (ENS) are used to evaluate the model's accuracy. Both visual and statistical results show that the proposed ICEEMDAN-OS-ELM model registers superior results, outperforming alternative comparison approaches. For instance, for PM2.5,ELM values ranged from 0.65–0.82 vs. 0.59–0.77 for ICEEMDAN-M5 tree, 0.59–0.74 for ICEEMDAN-MLR, 0.28–0.54 for OS-ELM, 0.27–0.54 for M5 tree and 0.25–0.53 for the MLR model. For remaining air quality variables (i.e., PM10 & VIS), the objective model (ICEEMDAN-OS-ELM) outperformed the comparative models. In particular, ICEEMDAN-OS-ELM registered relatively low RMSE/MAE, ranging from approximately 0.7–1.03 μg/m3(MAE), 1.01–1.47 μg/m3(RMSE) for PM2.5 whereas for PM10, these metrics registered a value of 1.29–3.84 μg/m3(MAE), 3.01–7.04 μg/m3(RMSE) and for Visibility, they were 0.01–3.72 μg/m3 (MAE (Mm−1)), 0.04–5.98 μg/m3 (RMSE (Mm−1)). Visual analysis of forecasted and observed air quality through a Taylor diagram illustrates the objective model's preciseness, confirming the versatility of early warning AI-model in generating air quality forecasts. The excellent performance ascertains the hybrid model's potential utility for air quality monitoring and subsequent public health risk mitigation. [Display omitted] •An artificial intelligence predictive framework devised for air quality prediction.•Efficient forecasting of air quality with 5 modelling approaches was recorded.•OS-ELM coupled with ICEEMDAN outperformed the other models.•AI models show potential in health informatics and Australia's environment sector.•AI models can empower public health risk mitigation to a create liveable society.
AbstractList Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hybrid early-warning artificial intelligence (AI) framework that can emulate hourly air quality variables (i.e., Particulate Matter 2.5, PM₂.₅; Particulate Matter 10, PM₁₀ and lower atmospheric visibility, VIS), the atmospheric variables associated with increased respiratory induced mortality and recurrent health-care cost. Firstly, hourly air quality data series (January-2015 to December-2017) are demarcated into their respective intrinsic mode functions (IMFs) and a residual sub-series that reveal patterns and resolve data complexity characteristics, followed by partial autocorrelation function applied to each IMF and residual sub-series to unveil historical changes in air quality. To design the prescribed hybrid model, the data is partitioned into training (70%), validation (15%) and testing (15%) sub-sets. The online sequential-extreme learning machine (OS-ELM) algorithm integrated with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is designed as a data pre-processing system to robustly extract predictive patterns and fine-tune the model generalization to a near-optimal global solution, which represents modelled air quality at hourly forecast horizons. The resulting early warning AI-based framework denoted as ICEEMDAN-OS-ELM model, is individually constructed by forecasting each IMF and residual sub-series, with hourly PM₂.₅, PM₁₀, and VIS obtained by the aggregated sum of forecasted IMFs and residual sub-series. The results are benchmarked with many competing predictive approaches; e.g., hybrid ICEEMDAN-multiple-linear regression (MLR), ICEEMDAN-M5 model tree and standalone versions: OS-ELM, MLR, M5 model tree. Statistical metrics including the root-mean-square error (RMSE), mean absolute error (MAE), Willmott's Index (WI), Legates & McCabe's Index (ELM) and Nash–Sutcliffe coefficients (ENS) are used to evaluate the model's accuracy. Both visual and statistical results show that the proposed ICEEMDAN-OS-ELM model registers superior results, outperforming alternative comparison approaches. For instance, for PM₂.₅,ELM values ranged from 0.65–0.82 vs. 0.59–0.77 for ICEEMDAN-M5 tree, 0.59–0.74 for ICEEMDAN-MLR, 0.28–0.54 for OS-ELM, 0.27–0.54 for M5 tree and 0.25–0.53 for the MLR model. For remaining air quality variables (i.e., PM₁₀ & VIS), the objective model (ICEEMDAN-OS-ELM) outperformed the comparative models. In particular, ICEEMDAN-OS-ELM registered relatively low RMSE/MAE, ranging from approximately 0.7–1.03 μg/m³(MAE), 1.01–1.47 μg/m³(RMSE) for PM₂.₅ whereas for PM₁₀, these metrics registered a value of 1.29–3.84 μg/m³(MAE), 3.01–7.04 μg/m³(RMSE) and for Visibility, they were 0.01–3.72 μg/m³ (MAE (Mm⁻¹)), 0.04–5.98 μg/m³ (RMSE (Mm⁻¹)). Visual analysis of forecasted and observed air quality through a Taylor diagram illustrates the objective model's preciseness, confirming the versatility of early warning AI-model in generating air quality forecasts. The excellent performance ascertains the hybrid model's potential utility for air quality monitoring and subsequent public health risk mitigation.
Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hybrid early-warning artificial intelligence (AI) framework that can emulate hourly air quality variables (i.e., Particulate Matter 2.5, PM2.5; Particulate Matter 10, PM10 and lower atmospheric visibility, VIS), the atmospheric variables associated with increased respiratory induced mortality and recurrent health-care cost. Firstly, hourly air quality data series (January-2015 to December-2017) are demarcated into their respective intrinsic mode functions (IMFs) and a residual sub-series that reveal patterns and resolve data complexity characteristics, followed by partial autocorrelation function applied to each IMF and residual sub-series to unveil historical changes in air quality. To design the prescribed hybrid model, the data is partitioned into training (70%), validation (15%) and testing (15%) sub-sets. The online sequential-extreme learning machine (OS-ELM) algorithm integrated with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is designed as a data pre-processing system to robustly extract predictive patterns and fine-tune the model generalization to a near-optimal global solution, which represents modelled air quality at hourly forecast horizons. The resulting early warning AI-based framework denoted as ICEEMDAN-OS-ELM model, is individually constructed by forecasting each IMF and residual sub-series, with hourly PM2.5, PM10, and VIS obtained by the aggregated sum of forecasted IMFs and residual sub-series. The results are benchmarked with many competing predictive approaches; e.g., hybrid ICEEMDAN-multiple-linear regression (MLR), ICEEMDAN-M5 model tree and standalone versions: OS-ELM, MLR, M5 model tree. Statistical metrics including the root-mean-square error (RMSE), mean absolute error (MAE), Willmott's Index (WI), Legates & McCabe's Index (ELM) and Nash-Sutcliffe coefficients (ENS) are used to evaluate the model's accuracy. Both visual and statistical results show that the proposed ICEEMDAN-OS-ELM model registers superior results, outperforming alternative comparison approaches. For instance, for PM2.5,ELM values ranged from 0.65-0.82 vs. 0.59-0.77 for ICEEMDAN-M5 tree, 0.59-0.74 for ICEEMDAN-MLR, 0.28-0.54 for OS-ELM, 0.27-0.54 for M5 tree and 0.25-0.53 for the MLR model. For remaining air quality variables (i.e., PM10 & VIS), the objective model (ICEEMDAN-OS-ELM) outperformed the comparative models. In particular, ICEEMDAN-OS-ELM registered relatively low RMSE/MAE, ranging from approximately 0.7-1.03 μg/m3(MAE), 1.01-1.47 μg/m3(RMSE) for PM2.5 whereas for PM10, these metrics registered a value of 1.29-3.84 μg/m3(MAE), 3.01-7.04 μg/m3(RMSE) and for Visibility, they were 0.01-3.72 μg/m3 (MAE (Mm-1)), 0.04-5.98 μg/m3 (RMSE (Mm-1)). Visual analysis of forecasted and observed air quality through a Taylor diagram illustrates the objective model's preciseness, confirming the versatility of early warning AI-model in generating air quality forecasts. The excellent performance ascertains the hybrid model's potential utility for air quality monitoring and subsequent public health risk mitigation.Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hybrid early-warning artificial intelligence (AI) framework that can emulate hourly air quality variables (i.e., Particulate Matter 2.5, PM2.5; Particulate Matter 10, PM10 and lower atmospheric visibility, VIS), the atmospheric variables associated with increased respiratory induced mortality and recurrent health-care cost. Firstly, hourly air quality data series (January-2015 to December-2017) are demarcated into their respective intrinsic mode functions (IMFs) and a residual sub-series that reveal patterns and resolve data complexity characteristics, followed by partial autocorrelation function applied to each IMF and residual sub-series to unveil historical changes in air quality. To design the prescribed hybrid model, the data is partitioned into training (70%), validation (15%) and testing (15%) sub-sets. The online sequential-extreme learning machine (OS-ELM) algorithm integrated with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is designed as a data pre-processing system to robustly extract predictive patterns and fine-tune the model generalization to a near-optimal global solution, which represents modelled air quality at hourly forecast horizons. The resulting early warning AI-based framework denoted as ICEEMDAN-OS-ELM model, is individually constructed by forecasting each IMF and residual sub-series, with hourly PM2.5, PM10, and VIS obtained by the aggregated sum of forecasted IMFs and residual sub-series. The results are benchmarked with many competing predictive approaches; e.g., hybrid ICEEMDAN-multiple-linear regression (MLR), ICEEMDAN-M5 model tree and standalone versions: OS-ELM, MLR, M5 model tree. Statistical metrics including the root-mean-square error (RMSE), mean absolute error (MAE), Willmott's Index (WI), Legates & McCabe's Index (ELM) and Nash-Sutcliffe coefficients (ENS) are used to evaluate the model's accuracy. Both visual and statistical results show that the proposed ICEEMDAN-OS-ELM model registers superior results, outperforming alternative comparison approaches. For instance, for PM2.5,ELM values ranged from 0.65-0.82 vs. 0.59-0.77 for ICEEMDAN-M5 tree, 0.59-0.74 for ICEEMDAN-MLR, 0.28-0.54 for OS-ELM, 0.27-0.54 for M5 tree and 0.25-0.53 for the MLR model. For remaining air quality variables (i.e., PM10 & VIS), the objective model (ICEEMDAN-OS-ELM) outperformed the comparative models. In particular, ICEEMDAN-OS-ELM registered relatively low RMSE/MAE, ranging from approximately 0.7-1.03 μg/m3(MAE), 1.01-1.47 μg/m3(RMSE) for PM2.5 whereas for PM10, these metrics registered a value of 1.29-3.84 μg/m3(MAE), 3.01-7.04 μg/m3(RMSE) and for Visibility, they were 0.01-3.72 μg/m3 (MAE (Mm-1)), 0.04-5.98 μg/m3 (RMSE (Mm-1)). Visual analysis of forecasted and observed air quality through a Taylor diagram illustrates the objective model's preciseness, confirming the versatility of early warning AI-model in generating air quality forecasts. The excellent performance ascertains the hybrid model's potential utility for air quality monitoring and subsequent public health risk mitigation.
Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hybrid early-warning artificial intelligence (AI) framework that can emulate hourly air quality variables (i.e., Particulate Matter 2.5, PM2.5; Particulate Matter 10, PM10 and lower atmospheric visibility, VIS), the atmospheric variables associated with increased respiratory induced mortality and recurrent health-care cost. Firstly, hourly air quality data series (January-2015 to December-2017) are demarcated into their respective intrinsic mode functions (IMFs) and a residual sub-series that reveal patterns and resolve data complexity characteristics, followed by partial autocorrelation function applied to each IMF and residual sub-series to unveil historical changes in air quality. To design the prescribed hybrid model, the data is partitioned into training (70%), validation (15%) and testing (15%) sub-sets. The online sequential-extreme learning machine (OS-ELM) algorithm integrated with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is designed as a data pre-processing system to robustly extract predictive patterns and fine-tune the model generalization to a near-optimal global solution, which represents modelled air quality at hourly forecast horizons. The resulting early warning AI-based framework denoted as ICEEMDAN-OS-ELM model, is individually constructed by forecasting each IMF and residual sub-series, with hourly PM2.5, PM10, and VIS obtained by the aggregated sum of forecasted IMFs and residual sub-series. The results are benchmarked with many competing predictive approaches; e.g., hybrid ICEEMDAN-multiple-linear regression (MLR), ICEEMDAN-M5 model tree and standalone versions: OS-ELM, MLR, M5 model tree. Statistical metrics including the root-mean-square error (RMSE), mean absolute error (MAE), Willmott's Index (WI), Legates & McCabe's Index (ELM) and Nash–Sutcliffe coefficients (ENS) are used to evaluate the model's accuracy. Both visual and statistical results show that the proposed ICEEMDAN-OS-ELM model registers superior results, outperforming alternative comparison approaches. For instance, for PM2.5,ELM values ranged from 0.65–0.82 vs. 0.59–0.77 for ICEEMDAN-M5 tree, 0.59–0.74 for ICEEMDAN-MLR, 0.28–0.54 for OS-ELM, 0.27–0.54 for M5 tree and 0.25–0.53 for the MLR model. For remaining air quality variables (i.e., PM10 & VIS), the objective model (ICEEMDAN-OS-ELM) outperformed the comparative models. In particular, ICEEMDAN-OS-ELM registered relatively low RMSE/MAE, ranging from approximately 0.7–1.03 μg/m3(MAE), 1.01–1.47 μg/m3(RMSE) for PM2.5 whereas for PM10, these metrics registered a value of 1.29–3.84 μg/m3(MAE), 3.01–7.04 μg/m3(RMSE) and for Visibility, they were 0.01–3.72 μg/m3 (MAE (Mm−1)), 0.04–5.98 μg/m3 (RMSE (Mm−1)). Visual analysis of forecasted and observed air quality through a Taylor diagram illustrates the objective model's preciseness, confirming the versatility of early warning AI-model in generating air quality forecasts. The excellent performance ascertains the hybrid model's potential utility for air quality monitoring and subsequent public health risk mitigation. [Display omitted] •An artificial intelligence predictive framework devised for air quality prediction.•Efficient forecasting of air quality with 5 modelling approaches was recorded.•OS-ELM coupled with ICEEMDAN outperformed the other models.•AI models show potential in health informatics and Australia's environment sector.•AI models can empower public health risk mitigation to a create liveable society.
Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges considering the chaotic, non-linear and high dimensional nature of air quality predictor variables. The novelty of this research is to propose a hybrid early-warning artificial intelligence (AI) framework that can emulate hourly air quality variables (i.e., Particulate Matter 2.5, PM ; Particulate Matter 10, PM and lower atmospheric visibility, VIS), the atmospheric variables associated with increased respiratory induced mortality and recurrent health-care cost. Firstly, hourly air quality data series (January-2015 to December-2017) are demarcated into their respective intrinsic mode functions (IMFs) and a residual sub-series that reveal patterns and resolve data complexity characteristics, followed by partial autocorrelation function applied to each IMF and residual sub-series to unveil historical changes in air quality. To design the prescribed hybrid model, the data is partitioned into training (70%), validation (15%) and testing (15%) sub-sets. The online sequential-extreme learning machine (OS-ELM) algorithm integrated with improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is designed as a data pre-processing system to robustly extract predictive patterns and fine-tune the model generalization to a near-optimal global solution, which represents modelled air quality at hourly forecast horizons. The resulting early warning AI-based framework denoted as ICEEMDAN-OS-ELM model, is individually constructed by forecasting each IMF and residual sub-series, with hourly PM , PM , and VIS obtained by the aggregated sum of forecasted IMFs and residual sub-series. The results are benchmarked with many competing predictive approaches; e.g., hybrid ICEEMDAN-multiple-linear regression (MLR), ICEEMDAN-M5 model tree and standalone versions: OS-ELM, MLR, M5 model tree. Statistical metrics including the root-mean-square error (RMSE), mean absolute error (MAE), Willmott's Index (WI), Legates & McCabe's Index (E ) and Nash-Sutcliffe coefficients (E ) are used to evaluate the model's accuracy. Both visual and statistical results show that the proposed ICEEMDAN-OS-ELM model registers superior results, outperforming alternative comparison approaches. For instance, for PM E values ranged from 0.65-0.82 vs. 0.59-0.77 for ICEEMDAN-M5 tree, 0.59-0.74 for ICEEMDAN-MLR, 0.28-0.54 for OS-ELM, 0.27-0.54 for M5 tree and 0.25-0.53 for the MLR model. For remaining air quality variables (i.e., PM & VIS), the objective model (ICEEMDAN-OS-ELM) outperformed the comparative models. In particular, ICEEMDAN-OS-ELM registered relatively low RMSE/MAE, ranging from approximately 0.7-1.03 μg/m (MAE), 1.01-1.47 μg/m (RMSE) for PM whereas for PM , these metrics registered a value of 1.29-3.84 μg/m (MAE), 3.01-7.04 μg/m (RMSE) and for Visibility, they were 0.01-3.72 μg/m (MAE (Mm )), 0.04-5.98 μg/m (RMSE (Mm )). Visual analysis of forecasted and observed air quality through a Taylor diagram illustrates the objective model's preciseness, confirming the versatility of early warning AI-model in generating air quality forecasts. The excellent performance ascertains the hybrid model's potential utility for air quality monitoring and subsequent public health risk mitigation.
ArticleNumber 135934
Author Deo, Ravinesh C.
Parisi, Alfio V.
Sharma, Ekta
Prasad, Ramendra
Author_xml – sequence: 1
  givenname: Ekta
  surname: Sharma
  fullname: Sharma, Ekta
  email: ekta.sharma@usq.edu.au
  organization: Advanced Data Analytics: Environmental Modelling and Simulation Group, School of Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia
– sequence: 2
  givenname: Ravinesh C.
  orcidid: 0000-0002-2290-6749
  surname: Deo
  fullname: Deo, Ravinesh C.
  email: ravinesh.deo@usq.edu.au
  organization: Advanced Data Analytics: Environmental Modelling and Simulation Group, School of Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia
– sequence: 3
  givenname: Ramendra
  surname: Prasad
  fullname: Prasad, Ramendra
  organization: Department of Science, School of Science and Technology, The University of Fiji, Fiji
– sequence: 4
  givenname: Alfio V.
  surname: Parisi
  fullname: Parisi, Alfio V.
  email: alfio.parisi@usq.edu.au
  organization: Advanced Data Analytics: Environmental Modelling and Simulation Group, School of Sciences, University of Southern Queensland, Springfield, QLD 4300, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31869708$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URKeFVwAv2WSwY8dxkFiMKm5SJTawjhznpOPBl6ntdJgX4jlxNEMXbKg3luzv_6Vzvit04YMHhN5QsqaEine7ddImhwz-YV0T2q0pazrGn6EVlW1XUVKLC7QihMuqE117ia5S2pFyWklfoEtGZXklcoV-b_D2OEQzYmUivp-VNfmIQUV7rA4qeuPv8BSVg0OIP9_jjcfbMJdPPIUIWqW8AC6MYPHB5C0O3hoPOMH9DD4bZTH8yhEcYAvnOqf0tjAJKz9icHsTjS7cUoJH0MHtQzLZBI-VvQuxtLr0Ej2flE3w6nxfox-fPn6_-VLdfvv89WZzW2lOeK5a0GMD7TBIPgzNJLSAWitoNKsV12V6wYSkQvKW03aQepoaQdgwkEbRmk3ArtHbU-8-hjJByr0zSYO1ykOYU18zKVvJRc2fgDLCWEtFU9DXZ3QeHIz9Phqn4rH_q6EA7QnQMaQUYXpEKOkX4f2ufxTeL8L7k_CS_PBPsmBq2V6Oytgn5DenPJStPhiICwdew2iK39yPwfy34w9lttGV
CitedBy_id crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_3390_rs14030805
crossref_primary_10_1016_j_engappai_2022_105352
crossref_primary_10_1007_s00477_022_02231_0
crossref_primary_10_1016_j_envpol_2021_116429
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1155_2022_7632841
crossref_primary_10_1016_j_envint_2025_109389
crossref_primary_10_1007_s00477_024_02693_4
crossref_primary_10_2478_amns_2023_2_00477
crossref_primary_10_1371_journal_pone_0284811
crossref_primary_10_1002_for_3218
crossref_primary_10_3390_atmos12010064
crossref_primary_10_1016_j_apr_2020_06_028
crossref_primary_10_1016_j_jclepro_2022_133383
crossref_primary_10_1155_2020_9427102
crossref_primary_10_1007_s11356_022_22601_z
crossref_primary_10_1016_j_knosys_2021_107379
crossref_primary_10_1088_1755_1315_616_1_012002
crossref_primary_10_3390_systems12020039
crossref_primary_10_1016_j_jclepro_2020_122824
crossref_primary_10_1016_j_apr_2024_102273
crossref_primary_10_1016_j_jag_2025_104368
crossref_primary_10_1016_j_scitotenv_2023_161744
crossref_primary_10_1016_j_uclim_2024_101985
crossref_primary_10_1016_j_jastp_2025_106461
crossref_primary_10_1007_s11869_020_00817_7
crossref_primary_10_1088_1742_6596_2136_1_012063
crossref_primary_10_3390_su14095394
crossref_primary_10_3390_app112412014
crossref_primary_10_1109_ACCESS_2021_3076345
crossref_primary_10_1016_j_jclepro_2020_121027
crossref_primary_10_1016_j_oceaneng_2022_112258
crossref_primary_10_1016_j_scitotenv_2021_149654
crossref_primary_10_1016_j_knosys_2021_107789
crossref_primary_10_1109_ACCESS_2020_3039002
crossref_primary_10_1016_j_asoc_2020_106957
crossref_primary_10_1016_j_compbiomed_2022_105529
crossref_primary_10_1155_2022_3973665
crossref_primary_10_1016_j_atmosenv_2025_121079
crossref_primary_10_1016_j_apr_2023_101752
crossref_primary_10_1016_j_jclepro_2021_129500
crossref_primary_10_1007_s11600_021_00678_3
crossref_primary_10_1016_j_apr_2022_101426
crossref_primary_10_1016_j_psep_2022_05_055
crossref_primary_10_1016_j_apr_2021_101144
crossref_primary_10_1016_j_jclepro_2022_130414
crossref_primary_10_3389_fenvs_2021_747101
crossref_primary_10_1016_j_chemosphere_2022_136252
crossref_primary_10_1007_s12517_022_09578_2
crossref_primary_10_1016_j_compbiomed_2025_110566
crossref_primary_10_3390_en15010147
crossref_primary_10_1007_s00477_021_01969_3
crossref_primary_10_3390_rs14051136
crossref_primary_10_1016_j_jhydrol_2021_126350
crossref_primary_10_3390_environments11060107
crossref_primary_10_1016_j_jclepro_2020_124469
crossref_primary_10_1111_exsy_13449
crossref_primary_10_1109_ACCESS_2024_3401091
crossref_primary_10_3390_cli11090188
crossref_primary_10_1016_j_measurement_2023_112954
crossref_primary_10_1155_2022_1206405
crossref_primary_10_1007_s12161_021_02048_7
crossref_primary_10_1007_s11869_022_01261_5
crossref_primary_10_1016_j_jclepro_2020_124023
crossref_primary_10_1016_j_uclim_2025_102359
crossref_primary_10_3390_atmos13091456
crossref_primary_10_1007_s10462_023_10424_4
crossref_primary_10_1109_ACCESS_2022_3210974
crossref_primary_10_3390_s24051532
crossref_primary_10_1016_j_apr_2021_101153
crossref_primary_10_1016_j_atmosenv_2022_119111
crossref_primary_10_1016_j_scitotenv_2023_167234
crossref_primary_10_1016_j_energy_2022_125609
crossref_primary_10_1016_j_apenergy_2023_121607
Cites_doi 10.13031/2013.29502
10.1029/2003WR002355
10.1109/TNN.2006.880583
10.1016/j.chemolab.2014.02.007
10.1016/j.atmosenv.2008.09.067
10.1097/01.ede.0000112210.68754.fa
10.1016/j.enconman.2014.12.015
10.1007/s11269-014-0638-7
10.1080/10473289.2003.10466276
10.1016/j.healthplace.2009.10.007
10.2166/wst.2013.222
10.1002/joc.2419
10.1093/aje/kwg096
10.1080/02626669909492273
10.1061/(ASCE)1084-0699(2003)8:6(319)
10.1029/1998WR900018
10.1016/j.enconman.2014.12.050
10.1007/s11269-013-0440-y
10.1016/0957-1272(92)90041-P
10.1016/j.bspc.2014.06.009
10.1016/j.geoderma.2018.05.035
10.1371/journal.pone.0201011
10.1016/j.envsoft.2006.06.008
10.1016/0022-1694(70)90255-6
10.1016/j.neucom.2011.12.064
10.1289/ehp.1001991
10.1016/j.neucom.2009.02.013
10.1016/j.matcom.2008.01.028
10.1289/ehp.1002203
10.1097/01.ede.0000101023.41844.ac
10.1002/tqem.21464
10.1289/ehp.1103898
10.1016/j.atmosenv.2016.01.034
10.1007/s10661-016-5094-9
10.1016/j.measurement.2016.06.042
10.1016/j.atmosres.2015.03.018
10.5194/gmd-7-1247-2014
10.1007/s11869-017-0477-9
10.1007/s00484-006-0054-7
10.1080/02723646.1981.10642213
10.1016/j.atmosres.2013.11.002
10.3390/e19070380
10.1016/j.envint.2014.10.005
10.1016/j.atmosres.2018.07.005
10.1016/j.atmosenv.2014.11.050
10.1016/j.atmosenv.2006.04.052
10.1016/j.apenergy.2019.113541
10.1016/j.simpat.2007.09.005
10.1016/1352-2310(94)00278-S
10.1016/j.biosystemseng.2009.12.011
10.1109/TSTE.2014.2365580
10.1016/S1352-2310(99)00091-6
10.1029/2002JD002914
10.1016/j.atmosenv.2005.11.076
10.1016/j.atmosenv.2004.02.026
10.1007/s11783-014-0634-4
10.1016/j.rser.2019.01.014
10.1001/jama.295.10.1127
10.1016/j.scitotenv.2018.01.195
10.5694/j.1326-5377.2002.tb04982.x
10.1016/j.engappai.2004.02.002
10.1080/10473289.1997.10463923
10.1098/rspa.1998.0193
10.1016/j.neucom.2004.04.016
10.3390/en12122407
10.1016/j.envsoft.2005.12.002
10.1136/oem.2004.014282
10.1142/S1793536909000047
10.1142/S1793536912500252
10.1080/10473289.2001.10464254
10.1016/j.atmosenv.2014.11.049
10.1016/j.neunet.2010.09.008
10.1016/j.envres.2017.07.044
10.1016/S1672-6529(11)60020-6
10.1007/s00477-016-1265-z
10.1016/S1352-2310(98)00352-5
10.5094/APR.2013.049
10.1073/pnas.1102467108
10.1007/s004840050108
10.1080/01431160701241738
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1161/CIR.0b013e3181dbece1
10.1097/00001648-199903000-00006
10.1007/s11269-016-1288-8
10.1097/EDE.0b013e3181c15d5a
10.1016/j.atmosenv.2019.01.027
10.1142/S1793536910000422
10.1061/(ASCE)0887-3801(1994)8:2(201)
10.2166/hydro.2013.134
10.1016/j.apenergy.2016.01.130
10.1016/j.apenergy.2018.02.140
10.5194/acp-12-1-2012
10.5194/adgeo-5-89-2005
10.1016/1352-2310(96)00085-4
10.5194/hess-8-940-2004
10.1155/2016/8301962
10.1016/j.scitotenv.2010.12.040
10.1016/j.envres.2015.09.007
10.1080/10962247.2014.934484
10.1016/j.knosys.2018.10.036
10.1007/s00376-012-1259-9
10.1016/j.scitotenv.2014.07.051
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.135934
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31869708
10_1016_j_scitotenv_2019_135934
S0048969719359297
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
AFKWA
AJOXV
AMFUW
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-7ecd5e7bb84bb5f6c6e2cae5c32a4c007636816847417b8cff5603bb05a123fe3
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512281700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 19:24:19 EDT 2025
Sun Sep 28 09:11:39 EDT 2025
Wed Feb 19 02:31:25 EST 2025
Sat Nov 29 07:25:17 EST 2025
Tue Nov 18 22:02:17 EST 2025
Sun Apr 06 06:53:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords r2
VIS
D
FDMS
μg/m3
ELM
Qld
ENS
NEPH
NEPM
SD
D-TEOM
WI
MLR
CHAG
PM2.5
CEEMDAN
EEMD
BMA
ICEEMDAN
EMD
WHO
DERM
PM2.5, iFOR
AI
OS-ELM
TEOM
RMSE
Real-time air quality forecasts
ppm
BAM
AQ
MAE
μm
PACF
r
PM2.5, iOBS
OEH
IMFs
NSW
PM10
Particulate matter (PM2.5, PM10)
Visibility
DoE
Artificial intelligence
Particulate matter (PM(2.5), PM)
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-7ecd5e7bb84bb5f6c6e2cae5c32a4c007636816847417b8cff5603bb05a123fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2290-6749
PMID 31869708
PQID 2330337165
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388784624
proquest_miscellaneous_2330337165
pubmed_primary_31869708
crossref_primary_10_1016_j_scitotenv_2019_135934
crossref_citationtrail_10_1016_j_scitotenv_2019_135934
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_135934
PublicationCentury 2000
PublicationDate 2020-03-20
PublicationDateYYYYMMDD 2020-03-20
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohammadi, Shamshirband, Anisi, Alam, Petković (bb0425) 2015; 91
OEH N (bb0465) 2019
Ghimire, Deo, Raj, Mi (bb0215) 2019; 253
Karunanithi, Grenney, Whitley, Bovee (bb0315) 1994; 8
Witten, Frank, Hall (bb0605) 2011
Foresee, Hagan (bb0200) 1997; 3
Glinianaia, Rankin, Bell, Pless-Mulloli, Howel (bb0230) 2004; 15
Deo, Tiwari, Adamowski, Quilty (bb0160) 2016; 31
Wang, Xu, Chau, Chen (bb0580) 2013; 15
Hess, Cope, Lee, Manins, Mills, Puri (bb0260) 2000; 13
Ren, Suganthan, Srikanth (bb0510) 2015; 6
Colominas, Schlotthauer, Torres (bb0125) 2014; 14
NPE (bb0460) 2016; 1
Zhou, Fu, Zhuang, Levy (bb0655) 2010; 118
Zhou, Jiang, Wang, Zhou (bb0660) 2014; 496
Smith, Kolenikov, Cox (bb0545) 2003; 108
Liu, Wang, Chen, Dong, Zhu, Wang (bb0405) 2011; 8
Roberts (bb0515) 2013; 182
Al-Musaylh, Deo, Li, Adamowski (bb0040) 2018; 217
Kisi, Parmar, Soni, Demir (bb0340) 2017; 10
Wu, Huang (bb0620) 2009; 1
DERM (bb0175) 2011
Banhazi, Rutley, Pitchford (bb0055) 2010; 105
Bowman (bb0070) 2000
Leitte, Schlink, Herbarth, Wiedensohler, Pan, Hu (bb0380) 2011; 119
Kim, Kim, Kim, Lee, Han (bb0330) 2006; 40
Kim, Valdés (bb0325) 2003; 8
Loomis, Castillejos, Gold, McDonnell, Borja-Aburto (bb0410) 1999
Lan, Soh, Huang (bb0365) 2009; 72
Nan-Ying, Guang-Bin, Saratchandran, Sundararajan (bb0440) 2006; 17
AIHW, Vos, Barker, Stevenson, Stanley, Lopez (bb0015) 2007; 337
Ren, Tong (bb0505) 2006; 51
Haupt, Pasini, Marzban (bb0255) 2008
Byrne, Sipe, Dodson (bb0085) 2014
Higginbotham, Freeman, Connor, Albrecht (bb0265) 2010; 16
Silva-Ramírez, Pino-Mejías, López-Coello, Cubiles-de-la-Vega (bb0535) 2011; 24
Chung, Chang, Kleeman, Perry, Cahill, Dutcher (bb0115) 2001; 51
Chai, Draxler (bb0090) 2014; 7
Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (bb0430) 2015; 92
Schauer, Rogge, Hildemann, Mazurek, Cass, Simoneit (bb0525) 1996; 30
Anctil, Lauzon (bb0045) 2004; 8
Due, Watt, Salter, Trieu (bb0190) 2013
Ouyang, Lu, Xin, Zhang, Cheng, Yu (bb0480) 2016; 30
Kjellstrom, Neller, Simpson (bb0345) 2002; 177
Confalonieri, Menne, Akhtar, Ebi, Hauengue, Kovats (bb0130) 2007
Kim, Kabir, Kabir (bb0335) 2015; 74
HVRA (bb0275) 2009
Glikson, Rutherford, Simpson, Mitchell, Yago (bb0225) 1995; 29
Asadollahfardi, Madinejad, Aria, Motamadi (bb0050) 2016; 25
Li, Li (bb0385) 2016; 2016
Brook, Rajagopalan, Pope, Brook, Bhatnagar, Diez-Roux (bb0075) 2010; 121
Kukkonen, Olsson, Schultz, Baklanov, Klein, Miranda (bb0360) 2012; 12
Walsh (bb0570) 2014; 8
Al-Musaylh, Deo, Adamowski, Li (bb0035) 2018; 17
Fu, Nunifu, Leung (bb0205) 2014; 64
Mishra, Goyal, Upadhyay (bb0420) 2015; 102
Bateson, Schwartz (bb0060) 2004; 15
Willmott (bb0590) 1982; 63
Willmott (bb0595) 1984
Willmott, Robeson, Matsuura (bb0600) 2012; 32
Yadav, Ch, Mathur, Adamowski (bb0630) 2016; 92
Hyslop (bb0280) 2009; 43
Gille, Russell, Bailey, House, Flowers, McCormick (bb0220) 2017
Xiaoli, Chengwei (bb0625) 2017; 19
Huang Norden, Shen, Long Steven, Wu Manli, Shih Hsing, Zheng (bb0270) 1998; 454
Allen, Sioutas, Koutrakis, Reiss, Lurmann, Roberts (bb0030) 1997; 47
Deo, Wen, Qi (bb0165) 2016; 168
Ghimire, Deo, Raj, Mi (bb0210) 2019; 12
Rutherford, Clark, McTainsh, Simpson, Mitchell (bb0520) 1999; 42
Deo, Tiwari, Adamowski, Quilty (bb0170) 2017; 31
Mannes, Jalaludin, Morgan, Lincoln, Sheppeard, Corbett (bb0415) 2005; 62
Karatzas, Kaltsatos (bb0310) 2007; 15
Oprea, Mihalache, Popescu (bb0475) 2016
Gupta, Christopher, Box, Box (bb0245) 2007; 28
Pereira, Lee, Bell, Regan, Malacova, Mullins (bb0485) 2017; 159
Zhao, Che, Zhang, Ma, Wang, Wang (bb0645) 2013; 4
Rea, Paton-Walsh, Turquety, Cope, Griffith (bb0500) 2016; 131
Abbot, Marohasy (bb0005) 2012; 29
Colominas, Schlotthauer, Torres, Flandrin (bb0120) 2012; 4
Wang, Witten (bb0575) 1997
Li, Zhu (bb0390) 2018; 626
Legates, McCabe (bb0375) 1999; 35
Dominici, Peng, Bell, Pham, McDermott, Zeger (bb0185) 2006; 295
Chen, Jakeman, Norton (bb0105) 2008; 78
Rahimikhoob, Asadi, Mashal (bb0495) 2013; 27
Wu, Huang (bb0615) 2009; 1
CSIRO and Bureau of Meteorology (bb0135) 2015
O’Neill, Zanobetti, Schwartz (bb0470) 2003; 157
Niska, Hiltunen, Karppinen, Ruuskanen, Kolehmainen (bb0455) 2004; 17
Chen, Zhang, Zhang, Zhu, Yang, Chen (bb0110) 2019; 202
Dawson, Abrahart, See (bb0145) 2007; 22
Simpson (bb0540) 1992; 26
Abbot, Marohasy (bb0010) 2014; 138
Bhattacharya, Solomatine (bb0065) 2005; 63
Jain, Srinivasulu (bb0285) 2004; 40
Chan, Simpson, Mctainsh, Vowles, Cohen, Bailey (bb0100) 1999; 33
Sousa, Martins, Alvim-Ferraz, Pereira (bb0550) 2007; 22
Zhao, Gu, Xue, Zhang, Ren (bb0650) 2018; 13
Kaufmann, Kauppi, Mann, Stock (bb0320) 2011; 108
Ali, Prasad (bb0020) 2019; 104
Harmel, Smith, Migliaccio (bb0250) 2010; 53
Liang, Huang, Saratchandran, Sundararajan (bb0395) 2006; 17
Morgan, Sheppeard, Khalaj, Ayyar, Lincoln, Jalaludin (bb0435) 2010
Ali, Deo, Downs, Maraseni (bb0025) 2018; 213
Krzyzanowski, Bundeshaus, Negru, Salvi (bb0355) 2005; 4
Junninen, Niska, Tuppurainen, Ruuskanen, Kolehmainen (bb0305) 2004; 38
Vlachogianni, Kassomenos, Karppinen, Karakitsios, Kukkonen (bb0565) 2011; 409
Ye, Squartini, Piazza (bb0635) 2013; 116
Chaloulakou, Grivas, Spyrellis (bb0095) 2003; 53
Nash, Sutcliffe (bb0445) 1970; 10
Wu, Huang (bb0610) 2009; 1
Langrish, Li, Wang, Lee, Barnes, Miller (bb0370) 2012; 120
Gómez-Carracedo, Andrade, López-Mahía, Muniategui, Prada (bb0235) 2014; 134
Lin, Pai, Yang (bb0400) 2011; 217
Sun, Bertrand-Krajewski (bb0555) 2013; 68
CWA (bb0140) 2018
Uhlenbrook, Seibert, Leibundgut, Rodhe (bb0560) 1999; 44
Broome, Fann, Cristina, Fulcher, Duc, Morgan (bb0080) 2015; 143
Krause, Boyle, Bäse (bb0350) 2005; 5
Deo, Şahin (bb0155) 2016; 188
Jiang, Li, Li, Yang (bb0295) 2019; 164
Deo, Şahin (bb0150) 2015; 161–162
Yeh, Shieh, Huang (bb0640) 2010; 2
Willmott (bb0585) 1981; 2
Sehgal, Tiwari, Chatterjee (bb0530) 2014; 28
Prasad, Deo, Li, Maraseni (bb0490) 2018; 330
Junger, Ponce de Leon (bb0300) 2015; 102
Green, Fuller (bb0240) 2006; 40
DoE Q (bb0180) 2019
Nenes, Pandis, Pilinis (bb0450) 1999; 33
EJA (bb0195) 2016
James, Witten, Hastie, Tibshirani (bb0290) 2013; 112
Deo (10.1016/j.scitotenv.2019.135934_bb0160) 2016; 31
Liu (10.1016/j.scitotenv.2019.135934_bb0405) 2011; 8
Simpson (10.1016/j.scitotenv.2019.135934_bb0540) 1992; 26
Wu (10.1016/j.scitotenv.2019.135934_bb0615) 2009; 1
Junger (10.1016/j.scitotenv.2019.135934_bb0300) 2015; 102
Nan-Ying (10.1016/j.scitotenv.2019.135934_bb0440) 2006; 17
Pereira (10.1016/j.scitotenv.2019.135934_bb0485) 2017; 159
Mohammadi (10.1016/j.scitotenv.2019.135934_bb0425) 2015; 91
Oprea (10.1016/j.scitotenv.2019.135934_bb0475) 2016
Anctil (10.1016/j.scitotenv.2019.135934_bb0045) 2004; 8
Fu (10.1016/j.scitotenv.2019.135934_bb0205) 2014; 64
HVRA (10.1016/j.scitotenv.2019.135934_bb0275) 2009
Colominas (10.1016/j.scitotenv.2019.135934_bb0120) 2012; 4
Haupt (10.1016/j.scitotenv.2019.135934_bb0255) 2008
Ren (10.1016/j.scitotenv.2019.135934_bb0510) 2015; 6
Yadav (10.1016/j.scitotenv.2019.135934_bb0630) 2016; 92
Zhou (10.1016/j.scitotenv.2019.135934_bb0655) 2010; 118
Leitte (10.1016/j.scitotenv.2019.135934_bb0380) 2011; 119
Banhazi (10.1016/j.scitotenv.2019.135934_bb0055) 2010; 105
Junninen (10.1016/j.scitotenv.2019.135934_bb0305) 2004; 38
CSIRO and Bureau of Meteorology (10.1016/j.scitotenv.2019.135934_bb0135) 2015
Bateson (10.1016/j.scitotenv.2019.135934_bb0060) 2004; 15
Jiang (10.1016/j.scitotenv.2019.135934_bb0295) 2019; 164
Chen (10.1016/j.scitotenv.2019.135934_bb0110) 2019; 202
Sun (10.1016/j.scitotenv.2019.135934_bb0555) 2013; 68
Gupta (10.1016/j.scitotenv.2019.135934_bb0245) 2007; 28
Colominas (10.1016/j.scitotenv.2019.135934_bb0125) 2014; 14
Mishra (10.1016/j.scitotenv.2019.135934_bb0420) 2015; 102
CWA (10.1016/j.scitotenv.2019.135934_bb0140) 2018
Ali (10.1016/j.scitotenv.2019.135934_bb0025) 2018; 213
Kjellstrom (10.1016/j.scitotenv.2019.135934_bb0345) 2002; 177
Lan (10.1016/j.scitotenv.2019.135934_bb0365) 2009; 72
Due (10.1016/j.scitotenv.2019.135934_bb0190) 2013
Deo (10.1016/j.scitotenv.2019.135934_bb0155) 2016; 188
Wu (10.1016/j.scitotenv.2019.135934_bb0610) 2009; 1
DERM (10.1016/j.scitotenv.2019.135934_bb0175) 2011
Jain (10.1016/j.scitotenv.2019.135934_bb0285) 2004; 40
Ren (10.1016/j.scitotenv.2019.135934_bb0505) 2006; 51
Broome (10.1016/j.scitotenv.2019.135934_bb0080) 2015; 143
Rea (10.1016/j.scitotenv.2019.135934_bb0500) 2016; 131
Li (10.1016/j.scitotenv.2019.135934_bb0385) 2016; 2016
Krzyzanowski (10.1016/j.scitotenv.2019.135934_bb0355) 2005; 4
AIHW (10.1016/j.scitotenv.2019.135934_bb0015) 2007; 337
Ali (10.1016/j.scitotenv.2019.135934_bb0020) 2019; 104
Loomis (10.1016/j.scitotenv.2019.135934_bb0410) 1999
Gille (10.1016/j.scitotenv.2019.135934_bb0220) 2017
James (10.1016/j.scitotenv.2019.135934_bb0290) 2013; 112
DoE Q (10.1016/j.scitotenv.2019.135934_bb0180) 2019
Smith (10.1016/j.scitotenv.2019.135934_bb0545) 2003; 108
Bhattacharya (10.1016/j.scitotenv.2019.135934_bb0065) 2005; 63
Chan (10.1016/j.scitotenv.2019.135934_bb0100) 1999; 33
Harmel (10.1016/j.scitotenv.2019.135934_bb0250) 2010; 53
Silva-Ramírez (10.1016/j.scitotenv.2019.135934_bb0535) 2011; 24
Krause (10.1016/j.scitotenv.2019.135934_bb0350) 2005; 5
O’Neill (10.1016/j.scitotenv.2019.135934_bb0470) 2003; 157
Chung (10.1016/j.scitotenv.2019.135934_bb0115) 2001; 51
Deo (10.1016/j.scitotenv.2019.135934_bb0170) 2017; 31
Bowman (10.1016/j.scitotenv.2019.135934_bb0070) 2000
Kim (10.1016/j.scitotenv.2019.135934_bb0335) 2015; 74
Deo (10.1016/j.scitotenv.2019.135934_bb0165) 2016; 168
Huang Norden (10.1016/j.scitotenv.2019.135934_bb0270) 1998; 454
Liang (10.1016/j.scitotenv.2019.135934_bb0395) 2006; 17
Lin (10.1016/j.scitotenv.2019.135934_bb0400) 2011; 217
Rahimikhoob (10.1016/j.scitotenv.2019.135934_bb0495) 2013; 27
Mannes (10.1016/j.scitotenv.2019.135934_bb0415) 2005; 62
Glikson (10.1016/j.scitotenv.2019.135934_bb0225) 1995; 29
Abbot (10.1016/j.scitotenv.2019.135934_bb0005) 2012; 29
Roberts (10.1016/j.scitotenv.2019.135934_bb0515) 2013; 182
Dawson (10.1016/j.scitotenv.2019.135934_bb0145) 2007; 22
Wang (10.1016/j.scitotenv.2019.135934_bb0580) 2013; 15
Gómez-Carracedo (10.1016/j.scitotenv.2019.135934_bb0235) 2014; 134
Brook (10.1016/j.scitotenv.2019.135934_bb0075) 2010; 121
Willmott (10.1016/j.scitotenv.2019.135934_bb0600) 2012; 32
Zhao (10.1016/j.scitotenv.2019.135934_bb0645) 2013; 4
Karunanithi (10.1016/j.scitotenv.2019.135934_bb0315) 1994; 8
Witten (10.1016/j.scitotenv.2019.135934_bb0605) 2011
Abbot (10.1016/j.scitotenv.2019.135934_bb0010) 2014; 138
Allen (10.1016/j.scitotenv.2019.135934_bb0030) 1997; 47
Willmott (10.1016/j.scitotenv.2019.135934_bb0595) 1984
Zhou (10.1016/j.scitotenv.2019.135934_bb0660) 2014; 496
Al-Musaylh (10.1016/j.scitotenv.2019.135934_bb0035) 2018; 17
Kisi (10.1016/j.scitotenv.2019.135934_bb0340) 2017; 10
Sousa (10.1016/j.scitotenv.2019.135934_bb0550) 2007; 22
Nash (10.1016/j.scitotenv.2019.135934_bb0445) 1970; 10
Al-Musaylh (10.1016/j.scitotenv.2019.135934_bb0040) 2018; 217
Morgan (10.1016/j.scitotenv.2019.135934_bb0435) 2010
Wang (10.1016/j.scitotenv.2019.135934_bb0575) 1997
Kaufmann (10.1016/j.scitotenv.2019.135934_bb0320) 2011; 108
Dominici (10.1016/j.scitotenv.2019.135934_bb0185) 2006; 295
OEH N (10.1016/j.scitotenv.2019.135934_bb0465) 2019
Willmott (10.1016/j.scitotenv.2019.135934_bb0590) 1982; 63
Ghimire (10.1016/j.scitotenv.2019.135934_bb0210) 2019; 12
Foresee (10.1016/j.scitotenv.2019.135934_bb0200) 1997; 3
Ye (10.1016/j.scitotenv.2019.135934_bb0635) 2013; 116
Yeh (10.1016/j.scitotenv.2019.135934_bb0640) 2010; 2
Karatzas (10.1016/j.scitotenv.2019.135934_bb0310) 2007; 15
EJA (10.1016/j.scitotenv.2019.135934_bb0195) 2016
Hyslop (10.1016/j.scitotenv.2019.135934_bb0280) 2009; 43
Willmott (10.1016/j.scitotenv.2019.135934_bb0585) 1981; 2
Kim (10.1016/j.scitotenv.2019.135934_bb0330) 2006; 40
Byrne (10.1016/j.scitotenv.2019.135934_bb0085) 2014
Confalonieri (10.1016/j.scitotenv.2019.135934_bb0130) 2007
Deo (10.1016/j.scitotenv.2019.135934_bb0150) 2015; 161–162
Sehgal (10.1016/j.scitotenv.2019.135934_bb0530) 2014; 28
Glinianaia (10.1016/j.scitotenv.2019.135934_bb0230) 2004; 15
Niska (10.1016/j.scitotenv.2019.135934_bb0455) 2004; 17
Vlachogianni (10.1016/j.scitotenv.2019.135934_bb0565) 2011; 409
Mohammadi (10.1016/j.scitotenv.2019.135934_bb0430) 2015; 92
Rutherford (10.1016/j.scitotenv.2019.135934_bb0520) 1999; 42
Chaloulakou (10.1016/j.scitotenv.2019.135934_bb0095) 2003; 53
Green (10.1016/j.scitotenv.2019.135934_bb0240) 2006; 40
Hess (10.1016/j.scitotenv.2019.135934_bb0260) 2000; 13
Kim (10.1016/j.scitotenv.2019.135934_bb0325) 2003; 8
Kukkonen (10.1016/j.scitotenv.2019.135934_bb0360) 2012; 12
Chai (10.1016/j.scitotenv.2019.135934_bb0090) 2014; 7
NPE (10.1016/j.scitotenv.2019.135934_bb0460) 2016; 1
Xiaoli (10.1016/j.scitotenv.2019.135934_bb0625) 2017; 19
Li (10.1016/j.scitotenv.2019.135934_bb0390) 2018; 626
Chen (10.1016/j.scitotenv.2019.135934_bb0105) 2008; 78
Asadollahfardi (10.1016/j.scitotenv.2019.135934_bb0050) 2016; 25
Walsh (10.1016/j.scitotenv.2019.135934_bb0570) 2014; 8
Ghimire (10.1016/j.scitotenv.2019.135934_bb0215) 2019; 253
Legates (10.1016/j.scitotenv.2019.135934_bb0375) 1999; 35
Prasad (10.1016/j.scitotenv.2019.135934_bb0490) 2018; 330
Wu (10.1016/j.scitotenv.2019.135934_bb0620) 2009; 1
Langrish (10.1016/j.scitotenv.2019.135934_bb0370) 2012; 120
Nenes (10.1016/j.scitotenv.2019.135934_bb0450) 1999; 33
Uhlenbrook (10.1016/j.scitotenv.2019.135934_bb0560) 1999; 44
Ouyang (10.1016/j.scitotenv.2019.135934_bb0480) 2016; 30
Zhao (10.1016/j.scitotenv.2019.135934_bb0650) 2018; 13
Schauer (10.1016/j.scitotenv.2019.135934_bb0525) 1996; 30
Higginbotham (10.1016/j.scitotenv.2019.135934_bb0265) 2010; 16
References_xml – volume: 30
  start-page: 3837
  year: 1996
  end-page: 3855
  ident: bb0525
  article-title: Source apportionment of airborne particulate matter using organic compounds as tracers
  publication-title: Atmos. Environ.
– volume: 28
  start-page: 4483
  year: 2007
  end-page: 4498
  ident: bb0245
  article-title: Multi year satellite remote sensing of particulate matter air quality over Sydney, Australia
  publication-title: Int. J. Remote Sens.
– volume: 102
  start-page: 96
  year: 2015
  end-page: 104
  ident: bb0300
  article-title: Imputation of missing data in time series for air pollutants
  publication-title: Atmos. Environ.
– volume: 8
  start-page: 201
  year: 1994
  end-page: 220
  ident: bb0315
  article-title: Neural networks for river flow prediction
  publication-title: J. Comput. Civ. Eng.
– volume: 8
  start-page: 319
  year: 2003
  end-page: 328
  ident: bb0325
  article-title: Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
  publication-title: J. Hydrol. Eng.
– volume: 27
  start-page: 4815
  year: 2013
  end-page: 4826
  ident: bb0495
  article-title: A comparison between conventional and M5 model tree methods for converting pan evaporation to reference evapotranspiration for semi-arid region
  publication-title: Water Resour. Manag.
– start-page: 443
  year: 1984
  end-page: 460
  ident: bb0595
  article-title: On the evaluation of model performance in physical geography
  publication-title: Spatial Statistics and Models
– volume: 1
  year: 2016
  ident: bb0460
  article-title: National Pollutant Energy, Department of the Environment and Energy
– volume: 8
  start-page: 940
  year: 2004
  end-page: 958
  ident: bb0045
  article-title: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 64
  year: 2014
  ident: bb0205
  article-title: A two-step approach for relating TEOM and dichotomous air sampler PM 2.5 measurements
  publication-title: J. Air Waste Manage. Assoc.
– volume: 40
  start-page: 1
  year: 2004
  end-page: 12
  ident: bb0285
  article-title: Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
  publication-title: Water Resour. Res.
– volume: 182
  year: 2013
  ident: bb0515
  article-title: Have the short-term mortality effects of particulate matter air pollution changed in Australia over the period 1993–2007?
  publication-title: Environ. Pollut.
– year: 2017
  ident: bb0220
  article-title: Observation and Measurement of Atmospheric Pollution
  publication-title: Tech Conf on Obs and Meas of Atmos Pollut, Proc, Pap
– volume: 8
  start-page: 1
  year: 2014
  end-page: 17
  ident: bb0570
  article-title: PM2.5: global progress in controlling the motor vehicle contribution
  publication-title: Frontiers of Environmental Science & Engineering
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bb0610
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 118
  start-page: 1204
  year: 2010
  end-page: 1210
  ident: bb0655
  article-title: Risk-based prioritization among air pollution control strategies in the Yangtze River Delta, China
  publication-title: Environ. Health Perspect.
– volume: 337
  year: 2007
  ident: bb0015
  article-title: The Burden of Disease and Injury in Australia 2003
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bb0440
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– start-page: 103
  year: 2016
  end-page: 108
  ident: bb0475
  article-title: A Comparative Study of Computational Intelligence Techniques Applied to PM2.5 Air Pollution Forecasting
– start-page: 118
  year: 1999
  end-page: 123
  ident: bb0410
  article-title: Air pollution and infant mortality in Mexico City
  publication-title: Epidemiology
– volume: 30
  start-page: 2311
  year: 2016
  end-page: 2325
  ident: bb0480
  article-title: Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction
  publication-title: Water Resour. Manag.
– year: 2011
  ident: bb0605
  article-title: Data Mining - Practical Machine Learning Tools and Techniques
– volume: 63
  start-page: 381
  year: 2005
  end-page: 396
  ident: bb0065
  article-title: Neural networks and M5 model trees in modelling water level–discharge relationship
  publication-title: Neurocomputing
– year: 2013
  ident: bb0190
  article-title: Modelling October 2013 Bushfire Pollution Episode in New South Wales, Australia
– volume: 168
  start-page: 568
  year: 2016
  end-page: 593
  ident: bb0165
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl. Energy
– volume: 330
  start-page: 136
  year: 2018
  end-page: 161
  ident: bb0490
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
– volume: 63
  start-page: 1309
  year: 1982
  end-page: 1313
  ident: bb0590
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 161–162
  start-page: 65
  year: 2015
  end-page: 81
  ident: bb0150
  article-title: Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia
  publication-title: Atmos. Res.
– volume: 4
  start-page: 427
  year: 2013
  end-page: 434
  ident: bb0645
  article-title: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China
  publication-title: Atmospheric Pollution Research
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: bb0090
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– year: 2009
  ident: bb0275
  article-title: Hunter Valley Research Foundation
– start-page: 128
  year: 1997
  end-page: 137
  ident: bb0575
  article-title: Inducing model trees for continuous classes
  publication-title: European Conference on Machine Learning, Prague
– volume: 31
  start-page: 1211
  year: 2017
  end-page: 1240
  ident: bb0170
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 22
  start-page: 97
  year: 2007
  end-page: 103
  ident: bb0550
  article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
  publication-title: Environ. Model Softw.
– volume: 112
  year: 2013
  ident: bb0290
  article-title: An Introduction to Statistical Learning
– volume: 159
  start-page: 9
  year: 2017
  end-page: 15
  ident: bb0485
  article-title: Development of a model for particulate matter pollution in Australia with implications for other satellite-based models
  publication-title: Environ. Res.
– year: 2019
  ident: bb0180
  article-title: Queensland (Qld) Government Department of Environment and Science (DoE)
– volume: 2
  start-page: 184
  year: 1981
  end-page: 194
  ident: bb0585
  article-title: On the validation of models
  publication-title: Phys. Geogr.
– volume: 134
  start-page: 23
  year: 2014
  end-page: 33
  ident: bb0235
  article-title: A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 92
  start-page: 162
  year: 2015
  end-page: 171
  ident: bb0430
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Convers. Manag.
– volume: 143
  start-page: 19
  year: 2015
  end-page: 25
  ident: bb0080
  article-title: The health benefits of reducing air pollution in Sydney, Australia
  publication-title: Environ. Res.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: bb0445
  article-title: River flow forecasting through conceptual models part I—a discussion of principles
  publication-title: J. Hydrol.
– volume: 120
  start-page: 367
  year: 2012
  end-page: 372
  ident: bb0370
  article-title: Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease
  publication-title: Environ. Health Perspect.
– volume: 2
  start-page: 135
  year: 2010
  end-page: 156
  ident: bb0640
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 51
  start-page: 109
  year: 2001
  end-page: 120
  ident: bb0115
  article-title: Comparison of real-time instruments used to monitor airborne particulate matter
  publication-title: J. Air Waste Manage. Assoc.
– year: 2016
  ident: bb0195
  article-title: Clearing the Air: Why Australia Urgently Needs Effective National Air Pollution Laws
– volume: 4
  year: 2012
  ident: bb0120
  article-title: Noise-assisted EMD methods in action
  publication-title: Adv. Adapt. Data Anal.
– year: 2007
  ident: bb0130
  article-title: Human health. climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 44
  start-page: 779
  year: 1999
  end-page: 797
  ident: bb0560
  article-title: Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure
  publication-title: Hydrol. Sci. J.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bb0620
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 14
  start-page: 19
  year: 2014
  end-page: 29
  ident: bb0125
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomedical Signal Processing and Control
– volume: 202
  start-page: 180
  year: 2019
  end-page: 189
  ident: bb0110
  article-title: Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 217
  year: 1999
  end-page: 225
  ident: bb0520
  article-title: Characteristics of rural dust events shown to impact on asthma severity in Brisbane, Australia
  publication-title: Int. J. Biometeorol.
– volume: 105
  start-page: 395
  year: 2010
  end-page: 401
  ident: bb0055
  article-title: Validation and fine-tuning of a predictive model for air quality in livestock buildings
  publication-title: Biosyst. Eng.
– volume: 138
  start-page: 166
  year: 2014
  end-page: 178
  ident: bb0010
  article-title: Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
  publication-title: Atmos. Res.
– volume: 119
  start-page: 508
  year: 2011
  end-page: 513
  ident: bb0380
  article-title: Size-segregated particle number concentrations and respiratory emergency room visits in Beijing, China
  publication-title: Environ. Health Perspect.
– volume: 74
  start-page: 136
  year: 2015
  end-page: 143
  ident: bb0335
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ. Int.
– volume: 217
  start-page: 5318
  year: 2011
  end-page: 5327
  ident: bb0400
  article-title: Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 191
  year: 2011
  end-page: 200
  ident: bb0405
  article-title: An improved particle swarm optimization for feature selection
  publication-title: Journal of Bionic Engineering
– year: 2018
  ident: bb0140
  article-title: Quarterly Update of Australia’s National Greenhouse gas Inventory: March 2018, Incorporating Emissions from the NEM up to June 2018
– volume: 12
  start-page: 2407
  year: 2019
  ident: bb0210
  article-title: Deep learning neural networks trained with MODIS satellite-derived predictors for long-term global solar radiation prediction
  publication-title: Energies
– volume: 16
  start-page: 259
  year: 2010
  end-page: 266
  ident: bb0265
  article-title: Environmental injustice and air pollution in coal affected communities, Hunter Valley, Australia
  publication-title: Health & Place
– volume: 33
  start-page: 1553
  year: 1999
  end-page: 1560
  ident: bb0450
  article-title: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models
  publication-title: Atmos. Environ.
– volume: 53
  start-page: 1183
  year: 2003
  end-page: 1190
  ident: bb0095
  article-title: Neural network and multiple regression models for PM10 prediction in Athens: a comparative assessment
  publication-title: J. Air Waste Manage. Assoc.
– volume: 253
  start-page: 113541
  year: 2019
  ident: bb0215
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl. Energy
– year: 2015
  ident: bb0135
  article-title: Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bb0270
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
– volume: 40
  start-page: 5608
  year: 2006
  ident: bb0240
  article-title: The implications of tapered element oscillating microbalance (TEOM) software configuration on particulate matter measurements in the UK and Europe
  publication-title: Atmos. Environ.
– volume: 78
  start-page: 379
  year: 2008
  end-page: 400
  ident: bb0105
  article-title: Artificial intelligence techniques: an introduction to their use for modelling environmental systems
  publication-title: Math. Comput. Simul.
– volume: 24
  start-page: 121
  year: 2011
  end-page: 129
  ident: bb0535
  article-title: Missing value imputation on missing completely at random data using multilayer perceptrons
  publication-title: Neural Netw.
– volume: 32
  start-page: 2088
  year: 2012
  end-page: 2094
  ident: bb0600
  article-title: A refined index of model performance
  publication-title: Int. J. Climatol.
– volume: 121
  start-page: 2331
  year: 2010
  end-page: 2378
  ident: bb0075
  article-title: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association
  publication-title: Circulation
– volume: 17
  start-page: 159
  year: 2004
  end-page: 167
  ident: bb0455
  article-title: Evolving the neural network model for forecasting air pollution time series
  publication-title: Eng. Appl. Artif. Intell.
– volume: 188
  start-page: 90
  year: 2016
  ident: bb0155
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
– year: 2008
  ident: bb0255
  article-title: Artificial Intelligence Methods in the Environmental Sciences
– year: 2019
  ident: bb0465
  article-title: New South Wales (NSW) Office of Environment and Heritage (OEH)
– volume: 19
  start-page: 380
  year: 2017
  ident: bb0625
  article-title: Pretreatment and wavelength selection method for near-infrared spectra signal based on improved CEEMDAN energy entropy and permutation entropy
  publication-title: Entropy
– volume: 217
  start-page: 422
  year: 2018
  end-page: 439
  ident: bb0040
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
– volume: 13
  start-page: 67
  year: 2000
  end-page: 73
  ident: bb0260
  article-title: The Australian air quality forecasting system
  publication-title: AMOS Bulletin
– year: 2014
  ident: bb0085
  article-title: Australian Environmental Planning: Challenges and Future Prospects
– volume: 15
  start-page: 143
  year: 2004
  end-page: 149
  ident: bb0060
  article-title: Who is sensitive to the effects of particulate air pollution on mortality?: a case-crossover analysis of effect modifiers
  publication-title: Epidemiology
– volume: 409
  start-page: 1559
  year: 2011
  end-page: 1571
  ident: bb0565
  article-title: Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 682
  year: 1997
  end-page: 689
  ident: bb0030
  article-title: Evaluation of the TEOM® method for measurement of ambient particulate mass in urban areas
  publication-title: J. Air Waste Manage. Assoc.
– volume: 496
  start-page: 264
  year: 2014
  end-page: 274
  ident: bb0660
  article-title: A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network
  publication-title: Sci. Total Environ.
– volume: 2016
  year: 2016
  ident: bb0385
  article-title: Improved CEEMDAN and PSO-SVR modeling for near-infrared noninvasive glucose detection
  publication-title: Computational and mathematical methods in medicine
– volume: 15
  start-page: 36
  year: 2004
  end-page: 45
  ident: bb0230
  article-title: Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence
  publication-title: Epidemiology
– volume: 131
  start-page: 150
  year: 2016
  end-page: 163
  ident: bb0500
  article-title: Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia
  publication-title: Atmos. Environ.
– volume: 295
  start-page: 1127
  year: 2006
  end-page: 1134
  ident: bb0185
  article-title: Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases
  publication-title: Jama
– volume: 91
  start-page: 433
  year: 2015
  end-page: 441
  ident: bb0425
  article-title: Support vector regression based prediction of global solar radiation on a horizontal surface
  publication-title: Energy Convers. Manag.
– year: 2011
  ident: bb0175
  article-title: Department of Environment and Resource Management
– volume: 177
  start-page: 604
  year: 2002
  end-page: 608
  ident: bb0345
  article-title: Air pollution and its health impacts: the changing panorama
  publication-title: Med. J. Aust.
– volume: 29
  start-page: 717
  year: 2012
  end-page: 730
  ident: bb0005
  article-title: Application of artificial neural networks to rainfall forecasting in Queensland, Australia
  publication-title: Adv. Atmos. Sci.
– volume: 43
  start-page: 182
  year: 2009
  end-page: 195
  ident: bb0280
  article-title: Impaired visibility: the air pollution people see
  publication-title: Atmos. Environ.
– volume: 15
  start-page: 1377
  year: 2013
  end-page: 1390
  ident: bb0580
  article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD
  publication-title: J. Hydroinf.
– volume: 29
  start-page: 549
  year: 1995
  end-page: 562
  ident: bb0225
  article-title: Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia
  publication-title: Atmos. Environ.
– volume: 108
  start-page: 11790
  year: 2011
  end-page: 11793
  ident: bb0320
  article-title: Reconciling anthropogenic climate change with observed temperature 1998–2008
  publication-title: Proc. Natl. Acad. Sci.
– volume: 626
  start-page: 1421
  year: 2018
  end-page: 1438
  ident: bb0390
  article-title: Research and application of a novel hybrid air quality early-warning system: a case study in China
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 873
  year: 2017
  end-page: 883
  ident: bb0340
  article-title: Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models
  publication-title: Air Quality, Atmosphere & Health
– volume: 108
  year: 2003
  ident: bb0545
  article-title: Spatiotemporal modeling of PM2.5 data with missing values
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 25
  start-page: 71
  year: 2016
  end-page: 83
  ident: bb0050
  article-title: Predicting particulate matter (PM2.5) concentrations in the air of Shahr-e Ray City, Iran, by using an artificial neural network
  publication-title: Environ. Qual. Manag.
– volume: 12
  start-page: 1
  year: 2012
  end-page: 87
  ident: bb0360
  article-title: A review of operational, regional-scale, chemical weather forecasting models in Europe
  publication-title: Atmos. Chem. Phys.
– volume: 116
  start-page: 94
  year: 2013
  end-page: 101
  ident: bb0635
  article-title: Online sequential extreme learning machine in nonstationary environments
  publication-title: Neurocomputing
– volume: 104
  start-page: 281
  year: 2019
  end-page: 295
  ident: bb0020
  article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition
  publication-title: Renew. Sust. Energ. Rev.
– volume: 22
  start-page: 1034
  year: 2007
  end-page: 1052
  ident: bb0145
  article-title: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environ. Model Softw.
– volume: 33
  start-page: 3237
  year: 1999
  end-page: 3250
  ident: bb0100
  article-title: Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bb0395
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 68
  start-page: 50
  year: 2013
  end-page: 58
  ident: bb0555
  article-title: Input variable selection and calibration data selection for storm water quality regression models
  publication-title: Water Sci. Technol.
– volume: 40
  start-page: 593
  year: 2006
  end-page: 605
  ident: bb0330
  article-title: Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon
  publication-title: Atmos. Environ.
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: bb0375
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
– volume: 28
  start-page: 2793
  year: 2014
  end-page: 2811
  ident: bb0530
  article-title: Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting
  publication-title: Water Resour. Manag.
– volume: 92
  start-page: 433
  year: 2016
  end-page: 445
  ident: bb0630
  article-title: Discharge forecasting using an Online Sequential Extreme Learning Machine (OS-ELM) model: a case study in Neckar River, Germany
  publication-title: Measurement
– volume: 17
  start-page: 422
  year: 2018
  end-page: 439
  ident: bb0035
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
– volume: 31
  start-page: 1211
  year: 2016
  end-page: 1240
  ident: bb0160
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 62
  start-page: 524
  year: 2005
  end-page: 530
  ident: bb0415
  article-title: Impact of ambient air pollution on birth weight in Sydney, Australia
  publication-title: Occup. Environ. Med.
– volume: 6
  start-page: 236
  year: 2015
  end-page: 244
  ident: bb0510
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Transactions on Sustainable Energy
– volume: 3
  start-page: 1930
  year: 1997
  end-page: 1935
  ident: bb0200
  article-title: Gauss-Newton approximation to Bayesian learning
  publication-title: Proceedings of International Conference on Neural Networks (ICNN’97)
– volume: 157
  start-page: 1074
  year: 2003
  end-page: 1082
  ident: bb0470
  article-title: Modifiers of the temperature and mortality association in seven US cities
  publication-title: Am. J. Epidemiol.
– volume: 53
  start-page: 55
  year: 2010
  end-page: 63
  ident: bb0250
  article-title: Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation
  publication-title: Trans. ASABE
– volume: 4
  start-page: 14
  year: 2005
  ident: bb0355
  article-title: Particulate Matter Air Pollution: How it Harms Health
– volume: 15
  start-page: 1310
  year: 2007
  end-page: 1319
  ident: bb0310
  article-title: Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece
  publication-title: Simul. Model. Pract. Theory
– volume: 72
  start-page: 3391
  year: 2009
  end-page: 3395
  ident: bb0365
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
– volume: 164
  start-page: 174
  year: 2019
  end-page: 192
  ident: bb0295
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
  publication-title: Knowl.-Based Syst.
– volume: 102
  start-page: 239
  year: 2015
  end-page: 248
  ident: bb0420
  article-title: Artificial intelligence based approach to forecast PM2.5 during haze episodes: a case study of Delhi, India
  publication-title: Atmos. Environ.
– volume: 38
  start-page: 2895
  year: 2004
  end-page: 2907
  ident: bb0305
  article-title: Methods for imputation of missing values in air quality data sets
  publication-title: Atmos. Environ.
– year: 2000
  ident: bb0070
  article-title: Australian Rainforests: Islands of Green in a Land of Fire
– volume: 213
  start-page: 450
  year: 2018
  end-page: 464
  ident: bb0025
  article-title: Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting
  publication-title: Atmos. Res.
– volume: 26
  start-page: 99
  year: 1992
  end-page: 105
  ident: bb0540
  article-title: A statistical analysis of particulate data sets in Brisbane, Australia
  publication-title: Atmospheric Environment. Part B. Urban Atmosphere
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  ident: bb0350
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Adv. Geosci.
– start-page: 47
  year: 2010
  end-page: 55
  ident: bb0435
  article-title: Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia
  publication-title: Epidemiology
– volume: 13
  start-page: e0201011
  year: 2018
  ident: bb0650
  article-title: Short period PM2.5 prediction based on multivariate linear regression model
  publication-title: PLoS One
– volume: 51
  start-page: 87
  year: 2006
  end-page: 96
  ident: bb0505
  article-title: Temperature modifies the health effects of particulate matter in Brisbane, Australia
  publication-title: Int. J. Biometeorol.
– volume: 1
  start-page: 1
  year: 2009
  end-page: 41
  ident: bb0615
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0085
– volume: 53
  start-page: 55
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0250
  article-title: Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation
  publication-title: Trans. ASABE
  doi: 10.13031/2013.29502
– volume: 40
  start-page: 1
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135934_bb0285
  article-title: Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002355
– volume: 17
  start-page: 1411
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135934_bb0440
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 134
  start-page: 23
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0235
  article-title: A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.02.007
– volume: 43
  start-page: 182
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135934_bb0280
  article-title: Impaired visibility: the air pollution people see
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.09.067
– volume: 15
  start-page: 143
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135934_bb0060
  article-title: Who is sensitive to the effects of particulate air pollution on mortality?: a case-crossover analysis of effect modifiers
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000112210.68754.fa
– volume: 4
  start-page: 14
  year: 2005
  ident: 10.1016/j.scitotenv.2019.135934_bb0355
– volume: 91
  start-page: 433
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0425
  article-title: Support vector regression based prediction of global solar radiation on a horizontal surface
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.015
– volume: 28
  start-page: 2793
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0530
  article-title: Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0638-7
– volume: 53
  start-page: 1183
  year: 2003
  ident: 10.1016/j.scitotenv.2019.135934_bb0095
  article-title: Neural network and multiple regression models for PM10 prediction in Athens: a comparative assessment
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2003.10466276
– year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0195
– volume: 112
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0290
– volume: 16
  start-page: 259
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0265
  article-title: Environmental injustice and air pollution in coal affected communities, Hunter Valley, Australia
  publication-title: Health & Place
  doi: 10.1016/j.healthplace.2009.10.007
– volume: 68
  start-page: 50
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0555
  article-title: Input variable selection and calibration data selection for storm water quality regression models
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.222
– volume: 32
  start-page: 2088
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135934_bb0600
  article-title: A refined index of model performance
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2419
– volume: 157
  start-page: 1074
  year: 2003
  ident: 10.1016/j.scitotenv.2019.135934_bb0470
  article-title: Modifiers of the temperature and mortality association in seven US cities
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwg096
– start-page: 103
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0475
– volume: 44
  start-page: 779
  year: 1999
  ident: 10.1016/j.scitotenv.2019.135934_bb0560
  article-title: Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669909492273
– year: 2000
  ident: 10.1016/j.scitotenv.2019.135934_bb0070
– volume: 8
  start-page: 319
  year: 2003
  ident: 10.1016/j.scitotenv.2019.135934_bb0325
  article-title: Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(319)
– volume: 35
  start-page: 233
  year: 1999
  ident: 10.1016/j.scitotenv.2019.135934_bb0375
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900018
– volume: 92
  start-page: 162
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0430
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.050
– volume: 27
  start-page: 4815
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0495
  article-title: A comparison between conventional and M5 model tree methods for converting pan evaporation to reference evapotranspiration for semi-arid region
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0440-y
– volume: 26
  start-page: 99
  year: 1992
  ident: 10.1016/j.scitotenv.2019.135934_bb0540
  article-title: A statistical analysis of particulate data sets in Brisbane, Australia
  publication-title: Atmospheric Environment. Part B. Urban Atmosphere
  doi: 10.1016/0957-1272(92)90041-P
– year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0190
– volume: 14
  start-page: 19
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0125
  article-title: Improved complete ensemble EMD: a suitable tool for biomedical signal processing
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.06.009
– volume: 330
  start-page: 136
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0490
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.035
– volume: 13
  start-page: e0201011
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0650
  article-title: Short period PM2.5 prediction based on multivariate linear regression model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201011
– volume: 22
  start-page: 1034
  year: 2007
  ident: 10.1016/j.scitotenv.2019.135934_bb0145
  article-title: HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2006.06.008
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.scitotenv.2019.135934_bb0445
  article-title: River flow forecasting through conceptual models part I—a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 116
  start-page: 94
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0635
  article-title: Online sequential extreme learning machine in nonstationary environments
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.064
– volume: 118
  start-page: 1204
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0655
  article-title: Risk-based prioritization among air pollution control strategies in the Yangtze River Delta, China
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1001991
– volume: 72
  start-page: 3391
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135934_bb0365
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– start-page: 128
  year: 1997
  ident: 10.1016/j.scitotenv.2019.135934_bb0575
  article-title: Inducing model trees for continuous classes
– volume: 78
  start-page: 379
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135934_bb0105
  article-title: Artificial intelligence techniques: an introduction to their use for modelling environmental systems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2008.01.028
– volume: 119
  start-page: 508
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0380
  article-title: Size-segregated particle number concentrations and respiratory emergency room visits in Beijing, China
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1002203
– volume: 15
  start-page: 36
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135934_bb0230
  article-title: Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000101023.41844.ac
– volume: 25
  start-page: 71
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0050
  article-title: Predicting particulate matter (PM2.5) concentrations in the air of Shahr-e Ray City, Iran, by using an artificial neural network
  publication-title: Environ. Qual. Manag.
  doi: 10.1002/tqem.21464
– volume: 120
  start-page: 367
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135934_bb0370
  article-title: Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1103898
– volume: 131
  start-page: 150
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0500
  article-title: Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.01.034
– volume: 337
  year: 2007
  ident: 10.1016/j.scitotenv.2019.135934_bb0015
– volume: 188
  start-page: 90
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0155
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5094-9
– volume: 182
  issue: 9
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0515
  article-title: Have the short-term mortality effects of particulate matter air pollution changed in Australia over the period 1993–2007?
  publication-title: Environ. Pollut.
– year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0135
– volume: 92
  start-page: 433
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0630
  article-title: Discharge forecasting using an Online Sequential Extreme Learning Machine (OS-ELM) model: a case study in Neckar River, Germany
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.06.042
– volume: 161–162
  start-page: 65
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0150
  article-title: Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.03.018
– volume: 7
  start-page: 1247
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0090
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– year: 2017
  ident: 10.1016/j.scitotenv.2019.135934_bb0220
  article-title: Observation and Measurement of Atmospheric Pollution
– volume: 10
  start-page: 873
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135934_bb0340
  article-title: Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models
  publication-title: Air Quality, Atmosphere & Health
  doi: 10.1007/s11869-017-0477-9
– volume: 51
  start-page: 87
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135934_bb0505
  article-title: Temperature modifies the health effects of particulate matter in Brisbane, Australia
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-006-0054-7
– volume: 2
  start-page: 184
  year: 1981
  ident: 10.1016/j.scitotenv.2019.135934_bb0585
  article-title: On the validation of models
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.1981.10642213
– volume: 138
  start-page: 166
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0010
  article-title: Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.11.002
– volume: 217
  start-page: 5318
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0400
  article-title: Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms
  publication-title: Appl. Math. Comput.
– volume: 19
  start-page: 380
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135934_bb0625
  article-title: Pretreatment and wavelength selection method for near-infrared spectra signal based on improved CEEMDAN energy entropy and permutation entropy
  publication-title: Entropy
  doi: 10.3390/e19070380
– volume: 74
  start-page: 136
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0335
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.10.005
– volume: 213
  start-page: 450
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0025
  article-title: Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2018.07.005
– year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0175
– volume: 102
  start-page: 239
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0420
  article-title: Artificial intelligence based approach to forecast PM2.5 during haze episodes: a case study of Delhi, India
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.11.050
– volume: 40
  start-page: 5608
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135934_bb0240
  article-title: The implications of tapered element oscillating microbalance (TEOM) software configuration on particulate matter measurements in the UK and Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.04.052
– volume: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0460
– volume: 253
  start-page: 113541
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0215
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113541
– volume: 15
  start-page: 1310
  year: 2007
  ident: 10.1016/j.scitotenv.2019.135934_bb0310
  article-title: Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2007.09.005
– volume: 29
  start-page: 549
  year: 1995
  ident: 10.1016/j.scitotenv.2019.135934_bb0225
  article-title: Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia
  publication-title: Atmos. Environ.
  doi: 10.1016/1352-2310(94)00278-S
– volume: 105
  start-page: 395
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0055
  article-title: Validation and fine-tuning of a predictive model for air quality in livestock buildings
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.12.011
– volume: 6
  start-page: 236
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0510
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Transactions on Sustainable Energy
  doi: 10.1109/TSTE.2014.2365580
– volume: 13
  start-page: 67
  year: 2000
  ident: 10.1016/j.scitotenv.2019.135934_bb0260
  article-title: The Australian air quality forecasting system
  publication-title: AMOS Bulletin
– volume: 33
  start-page: 3237
  year: 1999
  ident: 10.1016/j.scitotenv.2019.135934_bb0100
  article-title: Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00091-6
– volume: 108
  year: 2003
  ident: 10.1016/j.scitotenv.2019.135934_bb0545
  article-title: Spatiotemporal modeling of PM2.5 data with missing values
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1029/2002JD002914
– year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0180
– volume: 40
  start-page: 593
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135934_bb0330
  article-title: Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.11.076
– volume: 38
  start-page: 2895
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135934_bb0305
  article-title: Methods for imputation of missing values in air quality data sets
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.02.026
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0570
  article-title: PM2.5: global progress in controlling the motor vehicle contribution
  publication-title: Frontiers of Environmental Science & Engineering
  doi: 10.1007/s11783-014-0634-4
– volume: 104
  start-page: 281
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0020
  article-title: Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2019.01.014
– volume: 295
  start-page: 1127
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135934_bb0185
  article-title: Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases
  publication-title: Jama
  doi: 10.1001/jama.295.10.1127
– year: 2008
  ident: 10.1016/j.scitotenv.2019.135934_bb0255
– volume: 626
  start-page: 1421
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0390
  article-title: Research and application of a novel hybrid air quality early-warning system: a case study in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.195
– volume: 177
  start-page: 604
  year: 2002
  ident: 10.1016/j.scitotenv.2019.135934_bb0345
  article-title: Air pollution and its health impacts: the changing panorama
  publication-title: Med. J. Aust.
  doi: 10.5694/j.1326-5377.2002.tb04982.x
– volume: 17
  start-page: 159
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135934_bb0455
  article-title: Evolving the neural network model for forecasting air pollution time series
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2004.02.002
– year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0605
– volume: 47
  start-page: 682
  year: 1997
  ident: 10.1016/j.scitotenv.2019.135934_bb0030
  article-title: Evaluation of the TEOM® method for measurement of ambient particulate mass in urban areas
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.1997.10463923
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.scitotenv.2019.135934_bb0270
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 63
  start-page: 381
  year: 2005
  ident: 10.1016/j.scitotenv.2019.135934_bb0065
  article-title: Neural networks and M5 model trees in modelling water level–discharge relationship
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.04.016
– volume: 12
  start-page: 2407
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0210
  article-title: Deep learning neural networks trained with MODIS satellite-derived predictors for long-term global solar radiation prediction
  publication-title: Energies
  doi: 10.3390/en12122407
– volume: 22
  start-page: 97
  year: 2007
  ident: 10.1016/j.scitotenv.2019.135934_bb0550
  article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2005.12.002
– volume: 62
  start-page: 524
  year: 2005
  ident: 10.1016/j.scitotenv.2019.135934_bb0415
  article-title: Impact of ambient air pollution on birth weight in Sydney, Australia
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oem.2004.014282
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135934_bb0615
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 4
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135934_bb0120
  article-title: Noise-assisted EMD methods in action
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536912500252
– volume: 51
  start-page: 109
  year: 2001
  ident: 10.1016/j.scitotenv.2019.135934_bb0115
  article-title: Comparison of real-time instruments used to monitor airborne particulate matter
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2001.10464254
– volume: 102
  start-page: 96
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0300
  article-title: Imputation of missing data in time series for air pollutants
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.11.049
– volume: 3
  start-page: 1930
  year: 1997
  ident: 10.1016/j.scitotenv.2019.135934_bb0200
  article-title: Gauss-Newton approximation to Bayesian learning
– volume: 24
  start-page: 121
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0535
  article-title: Missing value imputation on missing completely at random data using multilayer perceptrons
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.09.008
– volume: 159
  start-page: 9
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135934_bb0485
  article-title: Development of a model for particulate matter pollution in Australia with implications for other satellite-based models
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.07.044
– volume: 8
  start-page: 191
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0405
  article-title: An improved particle swarm optimization for feature selection
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(11)60020-6
– volume: 31
  start-page: 1211
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0160
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1265-z
– volume: 33
  start-page: 1553
  year: 1999
  ident: 10.1016/j.scitotenv.2019.135934_bb0450
  article-title: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(98)00352-5
– volume: 4
  start-page: 427
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0645
  article-title: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China
  publication-title: Atmospheric Pollution Research
  doi: 10.5094/APR.2013.049
– volume: 108
  start-page: 11790
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0320
  article-title: Reconciling anthropogenic climate change with observed temperature 1998–2008
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1102467108
– volume: 42
  start-page: 217
  year: 1999
  ident: 10.1016/j.scitotenv.2019.135934_bb0520
  article-title: Characteristics of rural dust events shown to impact on asthma severity in Brisbane, Australia
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s004840050108
– year: 2007
  ident: 10.1016/j.scitotenv.2019.135934_bb0130
– volume: 17
  start-page: 1411
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135934_bb0395
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 28
  start-page: 4483
  year: 2007
  ident: 10.1016/j.scitotenv.2019.135934_bb0245
  article-title: Multi year satellite remote sensing of particulate matter air quality over Sydney, Australia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701241738
– year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0140
– volume: 63
  start-page: 1309
  year: 1982
  ident: 10.1016/j.scitotenv.2019.135934_bb0590
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– volume: 121
  start-page: 2331
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0075
  article-title: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e3181dbece1
– start-page: 118
  year: 1999
  ident: 10.1016/j.scitotenv.2019.135934_bb0410
  article-title: Air pollution and infant mortality in Mexico City
  publication-title: Epidemiology
  doi: 10.1097/00001648-199903000-00006
– volume: 30
  start-page: 2311
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0480
  article-title: Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1288-8
– start-page: 47
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0435
  article-title: Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181c15d5a
– volume: 202
  start-page: 180
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0110
  article-title: Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.01.027
– volume: 2
  start-page: 135
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135934_bb0640
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000422
– volume: 8
  start-page: 201
  year: 1994
  ident: 10.1016/j.scitotenv.2019.135934_bb0315
  article-title: Neural networks for river flow prediction
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(201)
– volume: 15
  start-page: 1377
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135934_bb0580
  article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2013.134
– volume: 168
  start-page: 568
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0165
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.130
– volume: 217
  start-page: 422
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0040
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.140
– volume: 12
  start-page: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135934_bb0360
  article-title: A review of operational, regional-scale, chemical weather forecasting models in Europe
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-1-2012
– year: 2009
  ident: 10.1016/j.scitotenv.2019.135934_bb0275
– volume: 5
  start-page: 89
  year: 2005
  ident: 10.1016/j.scitotenv.2019.135934_bb0350
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-5-89-2005
– year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0465
– volume: 30
  start-page: 3837
  year: 1996
  ident: 10.1016/j.scitotenv.2019.135934_bb0525
  article-title: Source apportionment of airborne particulate matter using organic compounds as tracers
  publication-title: Atmos. Environ.
  doi: 10.1016/1352-2310(96)00085-4
– volume: 8
  start-page: 940
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135934_bb0045
  article-title: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
  doi: 10.5194/hess-8-940-2004
– volume: 2016
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135934_bb0385
  article-title: Improved CEEMDAN and PSO-SVR modeling for near-infrared noninvasive glucose detection
  publication-title: Computational and mathematical methods in medicine
  doi: 10.1155/2016/8301962
– volume: 17
  start-page: 422
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135934_bb0035
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.140
– volume: 31
  start-page: 1211
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135934_bb0170
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1265-z
– volume: 409
  start-page: 1559
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135934_bb0565
  article-title: Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.12.040
– volume: 143
  start-page: 19
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135934_bb0080
  article-title: The health benefits of reducing air pollution in Sydney, Australia
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.09.007
– volume: 64
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0205
  article-title: A two-step approach for relating TEOM and dichotomous air sampler PM 2.5 measurements
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10962247.2014.934484
– volume: 164
  start-page: 174
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135934_bb0295
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.10.036
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135934_bb0620
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– start-page: 443
  year: 1984
  ident: 10.1016/j.scitotenv.2019.135934_bb0595
  article-title: On the evaluation of model performance in physical geography
– volume: 29
  start-page: 717
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135934_bb0005
  article-title: Application of artificial neural networks to rainfall forecasting in Queensland, Australia
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-012-1259-9
– volume: 1
  start-page: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135934_bb0610
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 496
  start-page: 264
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135934_bb0660
  article-title: A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.07.051
SSID ssj0000781
Score 2.588708
Snippet Modelling air quality with a practical tool that produces real-time forecasts to mitigate risk to public health continues to face significant challenges...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135934
SubjectTerms air quality
algorithms
Artificial intelligence
atmospheric visibility
autocorrelation
health care costs
ICEEMDAN
monitoring
mortality
Particulate matter (PM2.5, PM10)
particulates
public health
Real-time air quality forecasts
risk reduction
trees
Visibility
Title A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms
URI https://dx.doi.org/10.1016/j.scitotenv.2019.135934
https://www.ncbi.nlm.nih.gov/pubmed/31869708
https://www.proquest.com/docview/2330337165
https://www.proquest.com/docview/2388784624
Volume 709
WOSCitedRecordID wos000512281700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLaBKCEGgDx7VInGzXDl-rd1bBEGAUBVVRcrNWm_WJCF1IscNzR_i__CPmPXs2olKKBy4OJHtHXs1n2dnZudByJsOd4ZcxMyOY6mKaseZzbMwtKXrB8wJQFHCROHP7Pw8Ggzifqv10-TCLKcsz6Obm3j-X1kN54DZKnX2H9hdE4UT8B-YDkdgOxz_ivFda7RSaVgWHxc6Z3JlSVXH2P6u3SCZicjSbsER0J1WkZtS8EUVCF11yEEvLRbTsDDoulQedhDoyq1oWk7A3VVIpsR6z_JqPsbCI4qINZQqbF3Hhll8-nVWAFVdJH3SgNVIGR20UM5UmuZaHl7tC6qKbVcy_FtZLyrv0Od7wZfqPUaN87df8AXC-AImnQ-Lekhf9V8cY5ZPNp7pcF_tAQFz1_FsFzdzJErtiMWwnmDqvRHrzInXBHPHC2L0mt5aM9B9MTkFlQOmBvNSAX_x6e0RwJP5VYUaTzXyYk7ULKJ1aKO5tEP2XBbEIGj3uh97g0-NesCizkag4W-fu08eGErbNKZtFlGlGV0-Jo-0SUO7CMUnpCXzNrmPTU5XbXLQa3gIt2k2L9rkIbqMKWbCPSU_uhSRSwG5VCOXbiCX1sg9o92cIm7pGm5phVuqcEsRt7TBLdW4pQa31OCWAm5pjduKCN3ALW1w-4x8ed-7fPvB1m1EbOE7fmkzKYaBZGka-WkaZKEIpSu4DITncl-orWgvVN1nfFCuWRqJLAMrwEtTJ-Cg1mXSOyC7-SyXR4SCcj-UWepEDOwQwdVvpspbcTBKUjcSxyQ0rEqErrGvWr1MExNMOUlqdieK3Qmy-5g49cA5lpm5e8iZwUKitWXUghMA9t2DXxv0JLCeqE1CnsvZ9SJxPVBqPdYJgz_dA6oJGC4u0DlE6NVvbVD7fOuVF2S_-Ypfkt2yuJavyD2xLMeL4oTssEF0oj-aXzRjCMQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+air+quality+early-warning+framework%3A+An+hourly+forecasting+model+with+online+sequential+extreme+learning+machines+and+empirical+mode+decomposition+algorithms&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sharma%2C+Ekta&rft.au=Deo%2C+Ravinesh+C&rft.au=Prasad%2C+Ramendra&rft.au=Parisi%2C+Alfio+V&rft.date=2020-03-20&rft.eissn=1879-1026&rft.volume=709&rft.spage=135934&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.135934&rft_id=info%3Apmid%2F31869708&rft.externalDocID=31869708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon