KomaMRI.jl: An open‐source framework for general MRI simulations with GPU acceleration

To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma). Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine Jg. 90; H. 1; S. 329 - 342
Hauptverfasser: Castillo‐Passi, Carlos, Coronado, Ronal, Varela‐Mattatall, Gabriel, Alberola‐López, Carlos, Botnar, René, Irarrazaval, Pablo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.07.2023
John Wiley and Sons Inc
Schlagworte:
ISSN:0740-3194, 1522-2594, 1522-2594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma). Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq-compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions. Koma was compared to two well-known open-source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature. Koma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.
AbstractList To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma). Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq-compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions. Koma was compared to two well-known open-source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature. Koma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.
To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma).PURPOSETo develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma).Koma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq-compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions.METHODSKoma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq-compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions.Koma was compared to two well-known open-source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature.RESULTSKoma was compared to two well-known open-source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature.Koma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.CONCLUSIONSKoma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.
Click here for author‐reader discussions
Click here for author‐reader discussions
PurposeTo develop an open‐source, high‐performance, easy‐to‐use, extensible, cross‐platform, and general MRI simulation framework (Koma).MethodsKoma was developed using the Julia programming language. Like other MRI simulators, it solves the Bloch equations with CPU and GPU parallelization. The inputs are the scanner parameters, the phantom, and the pulse sequence that is Pulseq‐compatible. The raw data is stored in the ISMRMRD format. For the reconstruction, MRIReco.jl is used. A graphical user interface utilizing web technologies was also designed. Two types of experiments were performed: one to compare the quality of the results and the execution speed, and the second to compare its usability. Finally, the use of Koma in quantitative imaging was demonstrated by simulating Magnetic Resonance Fingerprinting (MRF) acquisitions.ResultsKoma was compared to two well‐known open‐source MRI simulators, JEMRIS and MRiLab. Highly accurate results (with mean absolute differences below 0.1% compared to JEMRIS) and better GPU performance than MRiLab were demonstrated. In an experiment with students, Koma was proved to be easy to use, eight times faster on personal computers than JEMRIS, and 65% of test subjects recommended it. The potential for designing acquisition and reconstruction techniques was also shown through the simulation of MRF acquisitions, with conclusions that agree with the literature.ConclusionsKoma's speed and flexibility have the potential to make simulations more accessible for education and research. Koma is expected to be used for designing and testing novel pulse sequences before implementing them in the scanner with Pulseq files, and for creating synthetic data to train machine learning models.
Author Varela‐Mattatall, Gabriel
Coronado, Ronal
Alberola‐López, Carlos
Irarrazaval, Pablo
Botnar, René
Castillo‐Passi, Carlos
AuthorAffiliation 5 Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute Western University London Ontario Canada
1 School of Biomedical Engineering and Imaging Sciences King's College London London UK
3 Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Pontificia Universidad Católica de Chile Santiago Chile
4 Electrical Engineering Pontificia Universidad Católica de Chile Santiago Chile
7 Laboratorio de Procesado de Imagen Universidad de Valladolid Valladolid Spain
2 Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile
6 Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University London Ontario Canada
AuthorAffiliation_xml – name: 5 Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute Western University London Ontario Canada
– name: 1 School of Biomedical Engineering and Imaging Sciences King's College London London UK
– name: 2 Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile
– name: 6 Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University London Ontario Canada
– name: 7 Laboratorio de Procesado de Imagen Universidad de Valladolid Valladolid Spain
– name: 3 Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Pontificia Universidad Católica de Chile Santiago Chile
– name: 4 Electrical Engineering Pontificia Universidad Católica de Chile Santiago Chile
Author_xml – sequence: 1
  givenname: Carlos
  orcidid: 0000-0001-6227-0477
  surname: Castillo‐Passi
  fullname: Castillo‐Passi, Carlos
  organization: School of Biomedical Engineering and Imaging Sciences King's College London London UK, Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile, Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Pontificia Universidad Católica de Chile Santiago Chile
– sequence: 2
  givenname: Ronal
  orcidid: 0000-0001-6735-2607
  surname: Coronado
  fullname: Coronado, Ronal
  organization: Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile, Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Pontificia Universidad Católica de Chile Santiago Chile, Electrical Engineering Pontificia Universidad Católica de Chile Santiago Chile
– sequence: 3
  givenname: Gabriel
  orcidid: 0000-0001-6101-7218
  surname: Varela‐Mattatall
  fullname: Varela‐Mattatall, Gabriel
  organization: Centre for Functional and Metabolic Mapping (CFMM), Robarts Research Institute Western University London Ontario Canada, Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University London Ontario Canada
– sequence: 4
  givenname: Carlos
  orcidid: 0000-0003-3684-0055
  surname: Alberola‐López
  fullname: Alberola‐López, Carlos
  organization: Laboratorio de Procesado de Imagen Universidad de Valladolid Valladolid Spain
– sequence: 5
  givenname: René
  orcidid: 0000-0003-2811-2509
  surname: Botnar
  fullname: Botnar, René
  organization: School of Biomedical Engineering and Imaging Sciences King's College London London UK, Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile, Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Pontificia Universidad Católica de Chile Santiago Chile
– sequence: 6
  givenname: Pablo
  orcidid: 0000-0002-5186-2642
  surname: Irarrazaval
  fullname: Irarrazaval, Pablo
  organization: Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile, Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Pontificia Universidad Católica de Chile Santiago Chile, Electrical Engineering Pontificia Universidad Católica de Chile Santiago Chile, Laboratorio de Procesado de Imagen Universidad de Valladolid Valladolid Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36877139$$D View this record in MEDLINE/PubMed
BookMark eNplkc1O3DAUhS0EggG64AWQJTZ0kcF27Dhmg0aoUASIqioSO8uYG_CQ2IOdFHXHI_QZ-yT18Cd-Vpauv3t07jmraNEHDwhtUDKmhLCdLnZjpqpSLKARFYwVTCi-iEZEclKUVPEVtJrSlBCilOTLaKWsailpqUbo4jh05vTn0Xja7uKJx2EG_t_D3xSGaAE30XRwH-ItbkLE1-AhmhZnHCfXDa3pXfAJ37v-Bh_-OMfGWmgzMh-vo6XGtAm-PL9r6Pzg26_978XJ2eHR_uSksJzwvhBgDBFCWmoapYARqOqqUoRzJgVQK2S22kjDrWCXlam5AiEapphlVc2aslxDe0-6s-GygysLvs8e9Sy6zsQ_Ohin3_94d6Ovw29NiRJMViIrbD8rxHA3QOp151I-pDUewpA0k3UpFSs5zejWB3Sag_L5Ps3qedqCcpKpzbeWXr28pJ6BnSfAxpBShEZb1z-mlh26NlvT81517lU_9po3vn7YeBH9zP4HAFOi-A
CitedBy_id crossref_primary_10_1002_mp_17273
crossref_primary_10_1002_mrm_30074
crossref_primary_10_1002_nbm_5052
crossref_primary_10_1007_s10334_025_01281_z
crossref_primary_10_1002_mrm_30055
crossref_primary_10_1002_mrm_30611
crossref_primary_10_1002_mrm_30316
crossref_primary_10_1016_j_mri_2025_110428
crossref_primary_10_1002_nbm_70143
crossref_primary_10_1016_j_mri_2025_110462
crossref_primary_10_1002_mrm_70067
crossref_primary_10_1162_IMAG_a_121
crossref_primary_10_1002_mrm_70038
crossref_primary_10_1016_j_mri_2025_110487
crossref_primary_10_1002_mrm_70080
crossref_primary_10_1007_s10334_025_01236_4
crossref_primary_10_1162_imag_a_00377
crossref_primary_10_1007_s11517_025_03438_3
Cites_doi 10.1002/mrm.29384
10.1016/j.media.2020.101945
10.1016/0730-725X(84)90065-1
10.1002/mrm.26235
10.1038/nature11971
10.1137/080716542
10.1109/TSP.2002.807005
10.1002/mrm.25045
10.1109/TMI.2013.2292119
10.1002/mrm.29071
10.1186/s40658-016-0155-2
10.2463/mrms.tn.2018-0157
10.3390/s21186011
10.1002/mrm.1910100113
10.1109/TPAMI.2020.3012103
10.1002/mrm.26091
10.1063/1.1744152
10.1002/mrm.26644
10.1016/j.jmr.2017.05.007
10.1007/s10916-019-1470-7
10.1002/jmri.24619
10.1145/325165.325247
10.1186/1532-429X-16-48
10.1002/mrm.26639
10.1002/mrm.28792
10.1002/mrm.28727
10.1002/mrm.26089
10.1002/jmri.25810
10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
10.1016/j.neuroimage.2015.11.006
10.1002/mrm.25831
10.1371/journal.pone.0248816
10.1109/TMI.2016.2620961
10.1016/j.apnum.2017.09.007
10.2463/mrms.mp.2018-0022
10.1109/TMI.2009.2015756
10.1103/PhysRev.104.563
10.1038/s41598-021-00233-6
10.1002/mrm.20939
10.1016/j.cmpb.2020.105634
10.1137/141000671
10.1109/42.75611
10.1016/j.zemedi.2018.11.002
10.1016/j.advengsoft.2019.02.002
10.1561/2200000016
10.1002/mrm.25347
10.1016/j.neuroimage.2006.03.052
10.1109/TPDS.2018.2872064
10.1002/nbm.683
10.1371/journal.pone.0216594
10.1186/s12968-014-0063-3
10.1016/j.jmr.2021.107011
10.1103/PhysRev.98.1787
10.1002/mrm.22406
10.1006/jmre.1999.1956
10.1002/mrm.27176
ContentType Journal Article
Copyright 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29635
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate CASTILLO‐PASSI et al
EISSN 1522-2594
EndPage 342
ExternalDocumentID PMC10952765
36877139
10_1002_mrm_29635
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: NS/A000049/1
– fundername: ANID ‐ Millennium Science Initiative Program
  grantid: ICN2021_004
– fundername: ANID Basal
  grantid: FB210024
– fundername: PhD program in Biological and Medical Engineering of the Pontificia Universidad Catolica de Chile
– fundername: Hans Fischer Senior Fellow Award, Institute for Advanced Study at Technical University of Munich
– fundername: Millennium Nucleus
  grantid: NCN19_161
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c404t-5eaa0557c1af99e20e68669044275e1c57687f7a4c52b6a849e55f292c2682f33
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943787900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Nov 04 02:06:07 EST 2025
Sun Nov 09 12:12:20 EST 2025
Sat Nov 29 14:34:50 EST 2025
Mon Jul 21 05:23:13 EDT 2025
Tue Nov 18 22:21:10 EST 2025
Sat Nov 29 06:34:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Julia
Bloch equations
open source
GUI
GPU
simulation
Language English
License 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-5eaa0557c1af99e20e68669044275e1c57687f7a4c52b6a849e55f292c2682f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Agencia Estatal de Investigación, Grant/Award Numbers: PID2020‐115339RB‐I00, TED2021‐130090B‐I00; ANID ‐ Millennium Science Initiative Program, Grant/Award Number: ICN2021_004; ANID Basal, Grant/Award Number: FB210024; Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/P001009, EP/P007619/1, EP/P032311/1, EP/V044087/1; Fondo Nacional de Desarrollo Científico y Tecnológico, Grant/Award Numbers: 1210637, 1210638, 121074; Millennium Nucleus, Grant/Award Number: NCN19_161; PhD program in Biological and Medical Engineering of the Pontificia Universidad Catolica de Chile; Wellcome EPSRC Centre for Medical Engineering, Grant/Award Number: NS/A000049/1; Hans Fischer Senior Fellow Award, Institute for Advanced Study at Technical University of Munich
Click here for author‐reader discussions
ORCID 0000-0001-6227-0477
0000-0003-2811-2509
0000-0002-5186-2642
0000-0001-6735-2607
0000-0001-6101-7218
0000-0003-3684-0055
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10952765
PMID 36877139
PQID 2807405140
PQPubID 1016391
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10952765
proquest_miscellaneous_2783792341
proquest_journals_2807405140
pubmed_primary_36877139
crossref_citationtrail_10_1002_mrm_29635
crossref_primary_10_1002_mrm_29635
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Uecker M (e_1_2_8_25_1) 2021
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Wáng Y‐XJ (e_1_2_8_41_1) 2015; 5
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_46_1
  doi: 10.1002/mrm.29384
– ident: e_1_2_8_51_1
  doi: 10.1016/j.media.2020.101945
– ident: e_1_2_8_43_1
  doi: 10.1016/0730-725X(84)90065-1
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.26235
– volume-title: Mrirecon/bart: Version 0.7.00
  year: 2021
  ident: e_1_2_8_25_1
– ident: e_1_2_8_4_1
  doi: 10.1038/nature11971
– ident: e_1_2_8_55_1
  doi: 10.1137/080716542
– ident: e_1_2_8_53_1
  doi: 10.1109/TSP.2002.807005
– ident: e_1_2_8_28_1
– volume: 5
  year: 2015
  ident: e_1_2_8_41_1
  article-title: T 1 ρ$$ \rho $$ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging
  publication-title: Quant Imag Med Surg
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.25045
– ident: e_1_2_8_16_1
  doi: 10.1109/TMI.2013.2292119
– ident: e_1_2_8_35_1
  doi: 10.1002/mrm.29071
– ident: e_1_2_8_37_1
  doi: 10.1186/s40658-016-0155-2
– ident: e_1_2_8_5_1
  doi: 10.2463/mrms.tn.2018-0157
– ident: e_1_2_8_8_1
  doi: 10.3390/s21186011
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.1910100113
– ident: e_1_2_8_3_1
  doi: 10.1109/TPAMI.2020.3012103
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.26091
– ident: e_1_2_8_34_1
  doi: 10.1063/1.1744152
– ident: e_1_2_8_58_1
  doi: 10.1002/mrm.26644
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jmr.2017.05.007
– ident: e_1_2_8_6_1
  doi: 10.1007/s10916-019-1470-7
– ident: e_1_2_8_45_1
  doi: 10.1002/jmri.24619
– ident: e_1_2_8_49_1
  doi: 10.1145/325165.325247
– ident: e_1_2_8_61_1
  doi: 10.1186/1532-429X-16-48
– ident: e_1_2_8_52_1
  doi: 10.1002/mrm.26639
– ident: e_1_2_8_24_1
  doi: 10.1002/mrm.28792
– ident: e_1_2_8_54_1
  doi: 10.1002/mrm.28727
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.26089
– ident: e_1_2_8_42_1
  doi: 10.1002/jmri.25810
– ident: e_1_2_8_48_1
  doi: 10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neuroimage.2015.11.006
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.25831
– ident: e_1_2_8_44_1
  doi: 10.1371/journal.pone.0248816
– ident: e_1_2_8_20_1
  doi: 10.1109/TMI.2016.2620961
– ident: e_1_2_8_31_1
  doi: 10.1016/j.apnum.2017.09.007
– ident: e_1_2_8_18_1
  doi: 10.2463/mrms.mp.2018-0022
– ident: e_1_2_8_11_1
  doi: 10.1109/TMI.2009.2015756
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRev.104.563
– ident: e_1_2_8_57_1
  doi: 10.1038/s41598-021-00233-6
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.20939
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cmpb.2020.105634
– ident: e_1_2_8_21_1
  doi: 10.1137/141000671
– ident: e_1_2_8_32_1
  doi: 10.1109/42.75611
– ident: e_1_2_8_2_1
  doi: 10.1016/j.zemedi.2018.11.002
– ident: e_1_2_8_23_1
  doi: 10.1016/j.advengsoft.2019.02.002
– ident: e_1_2_8_27_1
– ident: e_1_2_8_56_1
  doi: 10.1561/2200000016
– ident: e_1_2_8_59_1
  doi: 10.1002/mrm.25347
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuroimage.2006.03.052
– ident: e_1_2_8_22_1
  doi: 10.1109/TPDS.2018.2872064
– ident: e_1_2_8_39_1
  doi: 10.1002/nbm.683
– ident: e_1_2_8_19_1
  doi: 10.1371/journal.pone.0216594
– ident: e_1_2_8_13_1
  doi: 10.1186/s12968-014-0063-3
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jmr.2021.107011
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRev.98.1787
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.22406
– ident: e_1_2_8_36_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_8_60_1
  doi: 10.1002/mrm.27176
SSID ssj0009974
Score 2.5288713
Snippet Click here for author‐reader discussions
To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma). Koma was developed using the...
PurposeTo develop an open‐source, high‐performance, easy‐to‐use, extensible, cross‐platform, and general MRI simulation framework (Koma).MethodsKoma was...
To develop an open-source, high-performance, easy-to-use, extensible, cross-platform, and general MRI simulation framework (Koma).PURPOSETo develop an...
Click here for author‐reader discussions
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 329
SubjectTerms Acceleration
Computer Processing and Modeling
Computer Simulation
Computers
Fingerprinting
Graphical user interface
Graphics processing units
Humans
Image reconstruction
Language
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Personal computers
Phantoms, Imaging
Programming languages
Scanners
Simulation
Simulators
Synthetic data
Title KomaMRI.jl: An open‐source framework for general MRI simulations with GPU acceleration
URI https://www.ncbi.nlm.nih.gov/pubmed/36877139
https://www.proquest.com/docview/2807405140
https://www.proquest.com/docview/2783792341
https://pubmed.ncbi.nlm.nih.gov/PMC10952765
Volume 90
WOSCitedRecordID wos000943787900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLe6DRAXBONfYUwGcUCqUhLHiRNupTBAdFM1bVJvkeM4o6hNqv6ZduQj8O2480l4jmM3XTmMA5eoSp7rOO-XZ7_nl99D6LUQfhZEWep4aSodmofCSUOWOkEoMyo9Cs5cpekBOzmJRqN42Gr9Mt_CXE5YUURXV_Hsv6oazoGy1aez_6Bu-6dwAn6D0uEIaofjjRT_tZzy49Mv3e-TOuinCmTZnAYdrO_kJierSjO80NzTHWjWWYynK5MfVwVpPw3PO1wImJ7may2aGlD8opCaBVot6ZWRGBdb-_V9DnZE7fGYmxjCin1cp5tMSruq7ys2BZ6VOuPbDLSqBqY-ubHNVY1yFXXStcF4Ct6-Fe0pzq6yITxQqQDv_ZmOlDc6rEMdxLdpscYiMqomDV0VuStriw3eNPhwtGnSdQXSDehq--zX4RU91fua2GtrFtGstNP5tEvAPgXrqdKkB1ybQW1eo-aAJgk0TaqmO2iPsCAGc7v34fTofLDmg441QbgZkSG9cslb2-_mUmnL_7mexttYF53dR_dqhwb3NBAfoJYs9tGd4xoC--h2lWMsFg_RaI3Md7hXYIXL3z9-akRii0gMiMQ1IjGI4wYisUIkBkTiJiIfofOjj2f9z05d2MMR1KVLJ5CcK-434fE8jiVxZRiFYexSCg9LekL5wCxnnIqApCGPaCyDICcxESSMSO77j9FuURbyKcJ-xmDBm9GUhy6VJI683Iu5H6bCI3ngZW30xjzDRNSs96r4yiTZ0lUbvbKiM0318jehA6OIpH7pF0nFKKUKCbht9NJeBjutNt94IcsVyLDIV1yd1GujJ1pvthcfhsvAFWujaEOjVkBxwG9eKcbfKi54D1wkwsLg2U1u_jm6u36tDtDucr6SL9AtcbkcL-aHaIeNosMaqH8Ad73QkQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KomaMRI.jl%3A+An+open%E2%80%90source+framework+for+general+MRI+simulations+with+GPU+acceleration&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Castillo%E2%80%90Passi%2C+Carlos&rft.au=Coronado%2C+Ronal&rft.au=Varela%E2%80%90Mattatall%2C+Gabriel&rft.au=Alberola%E2%80%90L%C3%B3pez%2C+Carlos&rft.date=2023-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=90&rft.issue=1&rft.spage=329&rft.epage=342&rft_id=info:doi/10.1002%2Fmrm.29635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_29635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon