A stabilized finite point method for analysis of fluid mechanics problems

In this paper a meshless procedure termed ‘the finite point method’ for solving convection-diffusion and fluid flow type problems is presented. The method is based on the use of a weighted least-square interpolation procedure together with point collocation for evaluating the approximation integrals...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 139; číslo 1; s. 315 - 346
Hlavní autoři: Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L., Sacco, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.1996
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper a meshless procedure termed ‘the finite point method’ for solving convection-diffusion and fluid flow type problems is presented. The method is based on the use of a weighted least-square interpolation procedure together with point collocation for evaluating the approximation integrals. Special emphasis is given to the stabilization of the convective terms and the Neumann boundary condition which has been found to be essential to obtain accurate results. Some examples of application to diffusive and convective transport and compressible flow problems using quadratic FP interpolations are presented.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0045-7825
1879-2138
DOI:10.1016/S0045-7825(96)01088-2