A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction

We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented metho...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of fluid mechanics Ročník 759; číslo november; s. 404 - 431
Hlavní autori: Foures, Dimitry P. G., Dovetta, Nicolas, Sipp, Denis, Schmid, Peter J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 25.11.2014
Elsevier
Predmet:
ISSN:0022-1120, 0377-0257, 1469-7645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of $\mathit{Re}=150$ . The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several ‘measures’ on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements.
AbstractList We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier-Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier-Stokes (RANS) equations, which can be formulated as the classical Navier-Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier-Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of [formula omitted: see PDF] . The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several 'measures' on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements.
We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of $\mathit{Re}=150$ . The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several ‘measures’ on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements.
We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of Re = 150. The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several 'measures' on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements.
Author Dovetta, Nicolas
Sipp, Denis
Foures, Dimitry P. G.
Schmid, Peter J.
Author_xml – sequence: 1
  givenname: Dimitry P. G.
  surname: Foures
  fullname: Foures, Dimitry P. G.
  organization: DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK
– sequence: 2
  givenname: Nicolas
  surname: Dovetta
  fullname: Dovetta, Nicolas
  organization: LadHyX, Ecole Polytechnique, 91128 Palaiseau, France
– sequence: 3
  givenname: Denis
  surname: Sipp
  fullname: Sipp, Denis
  email: denis.sipp@onera.fr
  organization: ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon, France
– sequence: 4
  givenname: Peter J.
  surname: Schmid
  fullname: Schmid, Peter J.
  organization: Department of Mathematics, Imperial College London, London SW7 2AZ, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29041457$$DView record in Pascal Francis
https://polytechnique.hal.science/hal-01117094$$DView record in HAL
BookMark eNp1kc1qFEEUhQuJ4CS68wEaxIVgj_dWVf8thxATYVDwZ13c1E9SY3dXrKoZyc53yAv4LD6KT2K3MwQRXV04fOdwuOeYHY1htIw9RVgiYPNq44YlB5TLqq4fsAXKuiubWlZHbAHAeYnI4RE7TmkDgAK6ZsFoVRjKVFJKfvA9ZR_GYrD5OpjChVi8t7dj6E0qaWcjXVlTvKWdt_Hnt7sPOXy2qTTR7-zsofHHd9eHr0W0Oowpx62e0x6zh476ZJ8c7gn79Prs4-lFuX53_uZ0tS61BJlLoUWLIKTgNVneaIBaCoOmNq1p9GXV6ratBMeqamxNvLPSCjfpDrpWaOPECXuxz72mXt1EP1C8VYG8ulit1awBIjbQyR1O7LM9exPDl61NWW3CNo5TPYVdx6uWT1-bqOcHipKm3kUatU_32bwDibJqJu7lntMxpBStu0cQ1DyMmoZR8zBqGmbC-V-49vn343Mk3__PtDyYaLiM3lzZPyr_y_ALV46juw
CODEN JFLSA7
CitedBy_id crossref_primary_10_1017_dce_2022_37
crossref_primary_10_1016_j_jcp_2024_113697
crossref_primary_10_1017_flo_2021_19
crossref_primary_10_1016_j_cma_2024_117026
crossref_primary_10_1063_5_0218611
crossref_primary_10_1017_jfm_2017_313
crossref_primary_10_1088_0169_5983_47_5_051404
crossref_primary_10_2514_1_J057889
crossref_primary_10_3390_ma11112222
crossref_primary_10_1016_j_compfluid_2020_104827
crossref_primary_10_1088_1361_6501_acc049
crossref_primary_10_1016_j_rineng_2025_105100
crossref_primary_10_2514_1_J062711
crossref_primary_10_1007_s00162_024_00708_y
crossref_primary_10_1080_14685248_2019_1622016
crossref_primary_10_3389_fcvm_2021_742110
crossref_primary_10_1016_j_jcp_2016_04_022
crossref_primary_10_1017_jfm_2019_112
crossref_primary_10_1007_s10494_025_00671_6
crossref_primary_10_1017_jfm_2023_733
crossref_primary_10_1017_jfm_2023_972
crossref_primary_10_1016_j_compfluid_2023_106054
crossref_primary_10_2514_1_J060976
crossref_primary_10_1016_j_jcp_2022_111667
crossref_primary_10_1016_j_jcp_2024_113008
crossref_primary_10_1016_j_jcp_2025_114158
crossref_primary_10_2514_1_J059474
crossref_primary_10_1088_1361_6501_ad0319
crossref_primary_10_1016_j_compfluid_2023_106118
crossref_primary_10_1016_j_renene_2024_122071
crossref_primary_10_1007_s00162_024_00703_3
crossref_primary_10_1016_j_cma_2024_117052
crossref_primary_10_1007_s00348_025_04020_1
crossref_primary_10_1016_j_jcp_2017_06_042
crossref_primary_10_1017_jfm_2019_747
crossref_primary_10_1016_j_ast_2022_107328
crossref_primary_10_1016_j_buildenv_2025_113616
crossref_primary_10_1016_j_ijheatfluidflow_2022_109004
crossref_primary_10_1017_jfm_2020_1170
crossref_primary_10_1063_5_0089895
crossref_primary_10_1016_j_jcp_2023_112404
crossref_primary_10_1016_j_sna_2024_115320
crossref_primary_10_1016_j_ymssp_2025_113324
crossref_primary_10_1007_s10409_025_24675_x
crossref_primary_10_1007_s00162_025_00737_1
crossref_primary_10_1016_j_ifacol_2025_01_078
crossref_primary_10_1017_jfm_2021_232
crossref_primary_10_1016_j_compfluid_2021_104962
crossref_primary_10_1063_5_0252346
crossref_primary_10_1016_j_jcp_2021_110481
crossref_primary_10_1007_s10494_018_9967_6
crossref_primary_10_1016_j_jcp_2017_05_009
crossref_primary_10_1016_j_jweia_2022_105204
crossref_primary_10_1007_s11630_024_2035_8
crossref_primary_10_1007_s12650_024_00974_2
crossref_primary_10_1063_5_0087488
crossref_primary_10_1016_j_ijheatfluidflow_2022_109073
crossref_primary_10_1140_epje_s10189_023_00268_9
crossref_primary_10_1063_5_0103253
crossref_primary_10_1016_j_jcp_2019_07_054
crossref_primary_10_1016_j_jcp_2017_11_037
crossref_primary_10_1016_j_apm_2025_115984
crossref_primary_10_1017_jfm_2021_488
crossref_primary_10_1016_j_applthermaleng_2022_118962
crossref_primary_10_1088_1361_6420_ad9cb7
crossref_primary_10_1016_j_jocs_2017_05_014
crossref_primary_10_3390_fluids9040088
crossref_primary_10_1016_j_jcp_2019_06_065
crossref_primary_10_1016_j_taml_2020_01_031
crossref_primary_10_1016_j_jcp_2020_109517
crossref_primary_10_1017_jfm_2019_602
crossref_primary_10_1016_j_jcp_2020_109446
crossref_primary_10_1007_s00348_021_03213_8
crossref_primary_10_1016_j_anucene_2024_110982
crossref_primary_10_1016_j_cnsns_2023_107562
crossref_primary_10_1007_s12650_022_00906_y
crossref_primary_10_1017_jfm_2019_960
crossref_primary_10_1007_s00348_017_2336_8
crossref_primary_10_1016_j_ast_2025_110371
crossref_primary_10_1016_j_anucene_2024_110666
crossref_primary_10_1088_1361_6501_ac8dac
crossref_primary_10_1016_j_ast_2024_109770
Cites_doi 10.1007/s11340-008-9148-y
10.1017/S0022112009993764
10.1515/156939406778247589
10.1088/0957-0233/18/3/027
10.1111/j.1600-0870.1986.tb00459.x
10.1017/S0022112095001480
10.1364/JOSAA.12.001657
10.1063/1.1369605
10.1002/qj.49712354414
10.1017/S0022112008003662
10.1016/j.jcp.2005.06.023
10.1007/s00348-006-0220-z
10.1007/s00348-004-0880-5
10.1007/s00348-009-0778-3
10.1016/S0065-2687(08)60442-2
10.1115/1.4001478
10.1017/S0022112087002234
10.1146/annurev.fluid.36.050802.121926
10.1023/A:1011455900396
10.1146/annurev.fluid.38.050304.092139
ContentType Journal Article
Copyright 2014 Cambridge University Press
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Cambridge University Press
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
1XC
VOOES
DOI 10.1017/jfm.2014.566
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
ProQuest Science Database (NC LIVE)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Data-assimilation method for RANS-driven mean flow reconstruction
D. P. G. Foures, N. Dovetta, D. Sipp and P. J. Schmid
EISSN 1469-7645
EndPage 431
ExternalDocumentID oai:HAL:hal-01117094v1
29041457
10_1017_jfm_2014_566
GeographicLocations United Kingdom--UK
France
GeographicLocations_xml – name: United Kingdom--UK
– name: France
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AATMM
AAYXX
ABUFD
ABVKB
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFFHD
AFZFC
AKMAY
BQFHP
CITATION
PHGZM
PHGZT
PQGLB
-1F
-2V
-~N
6TJ
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABTAH
ABVFV
ABVZP
ABZUI
ACETC
ACKIV
ACRPL
ADNMO
ADOVH
AEBPU
AEMFK
AENCP
AI.
ALEEW
BESQT
CAG
CCUQV
CDIZJ
COF
H~9
I.9
IQODW
KAFGG
NMFBF
VH1
VOH
ZJOSE
ZY4
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
--K
--M
.~1
1B1
1XC
1~.
1~5
29L
457
4G.
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACLOT
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
IHE
J1W
JJJVA
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
VOOES
WUQ
XPP
ZMT
~G-
~HD
ID FETCH-LOGICAL-c404t-3c381034326ae27c00643d1d6d8d7cb58c885321557e6a29e4e3fcb5f0983cdf3
IEDL.DBID M2P
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344654200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
0377-0257
IngestDate Tue Oct 14 20:18:59 EDT 2025
Sat Aug 16 10:12:25 EDT 2025
Wed Apr 02 07:24:48 EDT 2025
Tue Nov 18 22:38:58 EST 2025
Sat Nov 29 03:03:34 EST 2025
Wed Mar 13 05:39:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue november
Keywords variational methods
general fluid mechanics
turbulence modelling
Lagrange multiplier
Algorithms
Computational fluid dynamics
Variational methods
Digital simulation
Modelling
System identification
Data assimilation
Navier-Stokes equations
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-3c381034326ae27c00643d1d6d8d7cb58c885321557e6a29e4e3fcb5f0983cdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://polytechnique.hal.science/hal-01117094
PQID 1992582645
PQPubID 34769
PageCount 28
ParticipantIDs hal_primary_oai_HAL_hal_01117094v1
proquest_journals_1992582645
pascalfrancis_primary_29041457
crossref_primary_10_1017_jfm_2014_566
crossref_citationtrail_10_1017_jfm_2014_566
cambridge_journals_10_1017_jfm_2014_566
PublicationCentury 2000
PublicationDate 2014-11-25
PublicationDateYYYYMMDD 2014-11-25
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2014
Publisher Cambridge University Press
Elsevier
Publisher_xml – name: Cambridge University Press
– name: Elsevier
References 2007; 39
2007; 18
2010; 48
1991; 33
2000; 65
2004; 36
1995; 12
2006; 14
1997; 123
2008; 615
2008; 48
2010; 650
2007; 42
2005; 38
2001; 13
1986; 38A
2010; 63
1995; 292
1987; 182
2006; 212
S0022112014005667_r3
S0022112014005667_r4
S0022112014005667_r1
S0022112014005667_r18
S0022112014005667_r19
S0022112014005667_r2
S0022112014005667_r7
S0022112014005667_r8
S0022112014005667_r5
S0022112014005667_r6
S0022112014005667_r20
S0022112014005667_r12
S0022112014005667_r13
S0022112014005667_r9
S0022112014005667_r10
S0022112014005667_r11
S0022112014005667_r16
S0022112014005667_r17
S0022112014005667_r14
S0022112014005667_r15
References_xml – volume: 292
  start-page: 183
  year: 1995
  end-page: 204
  article-title: Adjoint systems and their role in the receptivity problem for boundary layers
  publication-title: J. Fluid Mech.
– volume: 63
  year: 2010
  article-title: Dynamics and control of global instabilities in open flows: a linearized approach
  publication-title: Appl. Mech. Rev.
– volume: 14
  start-page: 505
  issue: 5
  year: 2006
  end-page: 535
  article-title: Iterative methods for data assimilation for burgers’s equation
  publication-title: J. Inverse Ill-Posed Probl.
– volume: 123
  start-page: 2449
  issue: 544
  year: 1997
  end-page: 2461
  article-title: Dual formulation of four-dimensional variational assimilation
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 650
  start-page: 513
  year: 2010
  end-page: 536
  article-title: Instability and sensitivity of the flow around a rotating circular cylinder
  publication-title: J. Fluid Mech.
– volume: 65
  start-page: 249
  issue: 3–4
  year: 2000
  end-page: 272
  article-title: Adjoint equation-based methods for control problems in incompressible, viscous flows
  publication-title: Flow Turbul. Combust.
– volume: 42
  start-page: 61
  year: 2007
  end-page: 78
  article-title: Optical stokes flow estimation: an imaging-based control approach
  publication-title: Exp. Fluids
– volume: 212
  start-page: 358
  issue: 1
  year: 2006
  end-page: 382
  article-title: Gappy data: to krig or not to krig?
  publication-title: J. Comput. Phys.
– volume: 182
  start-page: 23
  issue: 1
  year: 1987
  end-page: 45
  article-title: A finite-element study of the onset of vortex shedding in flow past variously shaped bodies
  publication-title: J. Fluid Mech.
– volume: 18
  start-page: 755
  year: 2007
  end-page: 763
  article-title: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization
  publication-title: Meas. Sci. Technol.
– volume: 615
  start-page: 221
  year: 2008
  end-page: 252
  article-title: Sensitivity analysis and passive control of the cylinder flow
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 1668
  year: 2001
  end-page: 1678
  article-title: Linear stability and receptivity analyses of the stokes layer produced by an impulsively started plate
  publication-title: Phys. Fluids
– volume: 48
  start-page: 381
  issue: 4
  year: 2008
  end-page: 402
  article-title: Overview of identification methods of mechanical parameters based on full-field measurements
  publication-title: Exp. Mech.
– volume: 38
  start-page: 21
  year: 2005
  end-page: 32
  article-title: Variationnal optical flow estimation for particle image velocimetry
  publication-title: Exp. Fluids
– volume: 33
  start-page: 141
  year: 1991
  end-page: 266
  article-title: Data assimilation in meteorology and oceanography
  publication-title: Adv. Geophys.
– volume: 36
  start-page: 255
  year: 2004
  end-page: 279
  article-title: Shape optimization in fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 48
  start-page: 369
  issue: 3
  year: 2010
  end-page: 393
  article-title: Variationnal fluid flow measurements from image sequences: synopsis and perspectives
  publication-title: Exp. Fluids
– volume: 39
  start-page: 129
  year: 2007
  end-page: 162
  article-title: Nonmodal stability theory
  publication-title: Annu. Rev. Fluid Mech.
– volume: 38A
  start-page: 97
  year: 1986
  end-page: 110
  article-title: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects
  publication-title: Tellus
– volume: 12
  start-page: 1657
  issue: 8
  year: 1995
  end-page: 1664
  article-title: Karhunen–Loeve procedure for gappy data
  publication-title: J. Opt. Soc. Amer. A
– ident: S0022112014005667_r1
  doi: 10.1007/s11340-008-9148-y
– ident: S0022112014005667_r15
  doi: 10.1017/S0022112009993764
– ident: S0022112014005667_r12
  doi: 10.1515/156939406778247589
– ident: S0022112014005667_r18
  doi: 10.1088/0957-0233/18/3/027
– ident: S0022112014005667_r10
  doi: 10.1111/j.1600-0870.1986.tb00459.x
– ident: S0022112014005667_r8
  doi: 10.1017/S0022112095001480
– ident: S0022112014005667_r3
  doi: 10.1364/JOSAA.12.001657
– ident: S0022112014005667_r11
  doi: 10.1063/1.1369605
– ident: S0022112014005667_r2
  doi: 10.1002/qj.49712354414
– ident: S0022112014005667_r13
  doi: 10.1017/S0022112008003662
– ident: S0022112014005667_r5
  doi: 10.1016/j.jcp.2005.06.023
– ident: S0022112014005667_r17
  doi: 10.1007/s00348-006-0220-z
– ident: S0022112014005667_r16
  doi: 10.1007/s00348-004-0880-5
– ident: S0022112014005667_r7
  doi: 10.1007/s00348-009-0778-3
– ident: S0022112014005667_r4
  doi: 10.1016/S0065-2687(08)60442-2
– ident: S0022112014005667_r20
  doi: 10.1115/1.4001478
– ident: S0022112014005667_r9
  doi: 10.1017/S0022112087002234
– ident: S0022112014005667_r14
  doi: 10.1146/annurev.fluid.36.050802.121926
– ident: S0022112014005667_r6
  doi: 10.1023/A:1011455900396
– ident: S0022112014005667_r19
  doi: 10.1146/annurev.fluid.38.050304.092139
SSID ssj0013097
ssj0000536
Score 2.5218503
Snippet We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A...
We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier-Stokes equations. A...
SourceID hal
proquest
pascalfrancis
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 404
SubjectTerms Algorithms
Computational fluid dynamics
Computational methods in fluid dynamics
Computer simulation
Cylinders
Data
Direct numerical simulation
Exact sciences and technology
Filtration
Flow measurement
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Frameworks
Fundamental areas of phenomenology (including applications)
Identification methods
Lagrange multiplier
Mathematical models
Mechanics
Methods
Navier-Stokes equations
NMR
Nuclear magnetic resonance
Physics
Problems
Reconstruction
Reynolds averaged Navier-Stokes method
Reynolds number
Reynolds stresses
Stokes law (fluid mechanics)
Two dimensional flow
Title A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
URI https://www.cambridge.org/core/product/identifier/S0022112014005667/type/journal_article
https://www.proquest.com/docview/1992582645
https://polytechnique.hal.science/hal-01117094
Volume 759
WOSCitedRecordID wos000344654200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000536
  issn: 0022-1120
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL1iG0hDiEEZojAqC4F4QIZ8OHH8hArqNBCUaAOp2gORazuiUNKyVEP8e-5N3LAKjRdeXCm9rZLcDx8nx-cCPFZJKXHlo7iOVcYFIg5MqUxzbaWyCJ-jyIqm2YQcj7PJROX-gVvtaZXrmtgUarsw9Iz8BdEkE8TCInm5_MGpaxS9XfUtNLZgB5FNSJSu91H-5y1CoORaLRxxReCJ7yQZ_bWkbeiheJ6kG7IKG9PT1hciR95Y6hrvV9k2uvirZjcT0eHe_17CLbjpISgbtjFzG664qgd7Ho4yn-x1D65f0CrswbWGK2rqO_B5yIhXyhF2z77PWi4daztRM4TA7Nj9qhZzW3ONaYLlyrKxptmXn6wW31zN7RlVWPyFrlg5X_xkzaK8E7Ldh0-Ho4-vj7hv08CNCMSKx4ZUwmiDaqpdJE2DcmxoU5tZaaZJZjLEBAgtEulSHSknXFzi8TJQWWxsGd-F7WpRuXvAArw9UyNM5mQmhJ5qJWRaIgSZKm3w7_rwtPNU4ZOtLlqimizQpwX5tECf9uHZ2o-F8Wrn1HRjfon1k8562ap8XGL3CEOiMyFp7qPhu4KOYZ0MJa6Vz8M-DDYipjOPVCBCkcg-HKzj48JFdMFx_99fP4BdOh3aDxklB7CN3nEP4ao5X83qswHsDN-MJm_x89VonB8PKCE-NGNOozzBMU9OfwO18BJ1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB21BQQIUQggAqWsEBUHtOCPtdd7QCgCqlRNA4JW6gmz2V2LQLBDHbXqn-I3MuMvGqFy64GrPbHs7Nt5b-3ZNwBPVZRJXPkorkOVcIGKA6dUorm2UlmUz0FgRdVsQo7HyeGh-rACv9q9MFRW2ebEKlHbwtA78pdUJhmhFhbR6_lPTl2j6Otq20KjhsWuOz3BJVv5auctju9WEGy_238z5E1XAW6EJxY8NGRqRfspY-0CaSpStr6NbWKlmUSJSZDCkAkj6WIdKCdcmOHxzFNJaGwW4nVX4ZJAJiSv_r3g_Z-vFp6SrTs56hivKbQni-pvGW1798WLKF6ycViiw9WvVIx5Y65LHJ-sbqzxF0dUxLe9_r_9ZbfgZiOx2aCeE7dhxeU9WG_kNmuSWdmD62e8GHtwpaqFNeUd-DxgVDfLcVkx_TGtawVZ3WmbocRnH91pXsxsyTWmAUzHlo01qQv-aVF8dyW3R8Qg-Auds2xWnLDqpUNn1HsXDi7k6e_BWl7k7j4wD4djYoRJnEyE0BOthIwzlFgTpQ1erg_POmSkTTIp07oQT6aIoZQwlCKG-vC8xU1qGjd3aioyOyd6q4ue1y4m58Q9QQh2IWQ9PhyMUjqGPOBLT4ljvw-bSwjtwgPlCV9Esg8bLR7PPEQHxgf_Pv0Yrg7390bpaGe8-xCu0a3R3s8g2oA1HCn3CC6b48W0PNqsJh-DLxcN3d_QZ2fZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-assimilation+method+for+Reynolds-averaged+Navier%E2%80%93Stokes-driven+mean+flow+reconstruction&rft.jtitle=Journal+of+non-Newtonian+fluid+mechanics&rft.au=Foures%2C+Dimitry+P.+G.&rft.au=Dovetta%2C+Nicolas&rft.au=Sipp%2C+Denis&rft.au=Schmid%2C+Peter+J.&rft.date=2014-11-25&rft.pub=Elsevier&rft.issn=0377-0257&rft.volume=759&rft.issue=november&rft.spage=404&rft.epage=431&rft_id=info:doi/10.1017%2Fjfm.2014.566&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01117094v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon