A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction
We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented metho...
Uložené v:
| Vydané v: | Journal of fluid mechanics Ročník 759; číslo november; s. 404 - 431 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge, UK
Cambridge University Press
25.11.2014
Elsevier |
| Predmet: | |
| ISSN: | 0022-1120, 0377-0257, 1469-7645 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of
$\mathit{Re}=150$
. The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several ‘measures’ on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements. |
|---|---|
| AbstractList | We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier-Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier-Stokes (RANS) equations, which can be formulated as the classical Navier-Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier-Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of [formula omitted: see PDF] . The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several 'measures' on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements. We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of $\mathit{Re}=150$ . The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several ‘measures’ on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements. We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A general operator (referred to as the measure operator) is defined in order to mathematically describe an experimental measure. The presented method is applied to the case of mean flow measurements. Such a flow can be described by the Reynolds-averaged Navier–Stokes (RANS) equations, which can be formulated as the classical Navier–Stokes equations driven by a forcing term involving the Reynolds stresses. The stress term is an unknown of the equations and is thus chosen as the control parameter in our study. The data-assimilation algorithm is derived to minimize the error between a mean flow measurement and the measure performed on a numerical solution of the steady, forced Navier–Stokes equations; the optimal forcing is found when this error is minimal. We demonstrate the developed data-assimilation framework on a test case: the two-dimensional flow around an infinite cylinder at a Reynolds number of Re = 150. The mean flow is computed by time-averaging instantaneous flow fields from a direct numerical simulation (DNS). We then perform several 'measures' on this mean flow and apply the data-assimilation method to reconstruct the full mean flow field. Spatial interpolation, extrapolation, state vector reconstruction and noise filtering are considered independently. The efficacy of the developed identification algorithm is quantified for each of these cases and compared with more traditional methods when possible. We also analyse the identified forcing in terms of unsteadiness characterization, present a way to recover the second-order statistical moments of the fluctuating velocities and finally explore the possibility of pressure reconstruction from velocity measurements. |
| Author | Dovetta, Nicolas Sipp, Denis Foures, Dimitry P. G. Schmid, Peter J. |
| Author_xml | – sequence: 1 givenname: Dimitry P. G. surname: Foures fullname: Foures, Dimitry P. G. organization: DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK – sequence: 2 givenname: Nicolas surname: Dovetta fullname: Dovetta, Nicolas organization: LadHyX, Ecole Polytechnique, 91128 Palaiseau, France – sequence: 3 givenname: Denis surname: Sipp fullname: Sipp, Denis email: denis.sipp@onera.fr organization: ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon, France – sequence: 4 givenname: Peter J. surname: Schmid fullname: Schmid, Peter J. organization: Department of Mathematics, Imperial College London, London SW7 2AZ, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29041457$$DView record in Pascal Francis https://polytechnique.hal.science/hal-01117094$$DView record in HAL |
| BookMark | eNp1kc1qFEEUhQuJ4CS68wEaxIVgj_dWVf8thxATYVDwZ13c1E9SY3dXrKoZyc53yAv4LD6KT2K3MwQRXV04fOdwuOeYHY1htIw9RVgiYPNq44YlB5TLqq4fsAXKuiubWlZHbAHAeYnI4RE7TmkDgAK6ZsFoVRjKVFJKfvA9ZR_GYrD5OpjChVi8t7dj6E0qaWcjXVlTvKWdt_Hnt7sPOXy2qTTR7-zsofHHd9eHr0W0Oowpx62e0x6zh476ZJ8c7gn79Prs4-lFuX53_uZ0tS61BJlLoUWLIKTgNVneaIBaCoOmNq1p9GXV6ratBMeqamxNvLPSCjfpDrpWaOPECXuxz72mXt1EP1C8VYG8ulit1awBIjbQyR1O7LM9exPDl61NWW3CNo5TPYVdx6uWT1-bqOcHipKm3kUatU_32bwDibJqJu7lntMxpBStu0cQ1DyMmoZR8zBqGmbC-V-49vn343Mk3__PtDyYaLiM3lzZPyr_y_ALV46juw |
| CODEN | JFLSA7 |
| CitedBy_id | crossref_primary_10_1017_dce_2022_37 crossref_primary_10_1016_j_jcp_2024_113697 crossref_primary_10_1017_flo_2021_19 crossref_primary_10_1016_j_cma_2024_117026 crossref_primary_10_1063_5_0218611 crossref_primary_10_1017_jfm_2017_313 crossref_primary_10_1088_0169_5983_47_5_051404 crossref_primary_10_2514_1_J057889 crossref_primary_10_3390_ma11112222 crossref_primary_10_1016_j_compfluid_2020_104827 crossref_primary_10_1088_1361_6501_acc049 crossref_primary_10_1016_j_rineng_2025_105100 crossref_primary_10_2514_1_J062711 crossref_primary_10_1007_s00162_024_00708_y crossref_primary_10_1080_14685248_2019_1622016 crossref_primary_10_3389_fcvm_2021_742110 crossref_primary_10_1016_j_jcp_2016_04_022 crossref_primary_10_1017_jfm_2019_112 crossref_primary_10_1007_s10494_025_00671_6 crossref_primary_10_1017_jfm_2023_733 crossref_primary_10_1017_jfm_2023_972 crossref_primary_10_1016_j_compfluid_2023_106054 crossref_primary_10_2514_1_J060976 crossref_primary_10_1016_j_jcp_2022_111667 crossref_primary_10_1016_j_jcp_2024_113008 crossref_primary_10_1016_j_jcp_2025_114158 crossref_primary_10_2514_1_J059474 crossref_primary_10_1088_1361_6501_ad0319 crossref_primary_10_1016_j_compfluid_2023_106118 crossref_primary_10_1016_j_renene_2024_122071 crossref_primary_10_1007_s00162_024_00703_3 crossref_primary_10_1016_j_cma_2024_117052 crossref_primary_10_1007_s00348_025_04020_1 crossref_primary_10_1016_j_jcp_2017_06_042 crossref_primary_10_1017_jfm_2019_747 crossref_primary_10_1016_j_ast_2022_107328 crossref_primary_10_1016_j_buildenv_2025_113616 crossref_primary_10_1016_j_ijheatfluidflow_2022_109004 crossref_primary_10_1017_jfm_2020_1170 crossref_primary_10_1063_5_0089895 crossref_primary_10_1016_j_jcp_2023_112404 crossref_primary_10_1016_j_sna_2024_115320 crossref_primary_10_1016_j_ymssp_2025_113324 crossref_primary_10_1007_s10409_025_24675_x crossref_primary_10_1007_s00162_025_00737_1 crossref_primary_10_1016_j_ifacol_2025_01_078 crossref_primary_10_1017_jfm_2021_232 crossref_primary_10_1016_j_compfluid_2021_104962 crossref_primary_10_1063_5_0252346 crossref_primary_10_1016_j_jcp_2021_110481 crossref_primary_10_1007_s10494_018_9967_6 crossref_primary_10_1016_j_jcp_2017_05_009 crossref_primary_10_1016_j_jweia_2022_105204 crossref_primary_10_1007_s11630_024_2035_8 crossref_primary_10_1007_s12650_024_00974_2 crossref_primary_10_1063_5_0087488 crossref_primary_10_1016_j_ijheatfluidflow_2022_109073 crossref_primary_10_1140_epje_s10189_023_00268_9 crossref_primary_10_1063_5_0103253 crossref_primary_10_1016_j_jcp_2019_07_054 crossref_primary_10_1016_j_jcp_2017_11_037 crossref_primary_10_1016_j_apm_2025_115984 crossref_primary_10_1017_jfm_2021_488 crossref_primary_10_1016_j_applthermaleng_2022_118962 crossref_primary_10_1088_1361_6420_ad9cb7 crossref_primary_10_1016_j_jocs_2017_05_014 crossref_primary_10_3390_fluids9040088 crossref_primary_10_1016_j_jcp_2019_06_065 crossref_primary_10_1016_j_taml_2020_01_031 crossref_primary_10_1016_j_jcp_2020_109517 crossref_primary_10_1017_jfm_2019_602 crossref_primary_10_1016_j_jcp_2020_109446 crossref_primary_10_1007_s00348_021_03213_8 crossref_primary_10_1016_j_anucene_2024_110982 crossref_primary_10_1016_j_cnsns_2023_107562 crossref_primary_10_1007_s12650_022_00906_y crossref_primary_10_1017_jfm_2019_960 crossref_primary_10_1007_s00348_017_2336_8 crossref_primary_10_1016_j_ast_2025_110371 crossref_primary_10_1016_j_anucene_2024_110666 crossref_primary_10_1088_1361_6501_ac8dac crossref_primary_10_1016_j_ast_2024_109770 |
| Cites_doi | 10.1007/s11340-008-9148-y 10.1017/S0022112009993764 10.1515/156939406778247589 10.1088/0957-0233/18/3/027 10.1111/j.1600-0870.1986.tb00459.x 10.1017/S0022112095001480 10.1364/JOSAA.12.001657 10.1063/1.1369605 10.1002/qj.49712354414 10.1017/S0022112008003662 10.1016/j.jcp.2005.06.023 10.1007/s00348-006-0220-z 10.1007/s00348-004-0880-5 10.1007/s00348-009-0778-3 10.1016/S0065-2687(08)60442-2 10.1115/1.4001478 10.1017/S0022112087002234 10.1146/annurev.fluid.36.050802.121926 10.1023/A:1011455900396 10.1146/annurev.fluid.38.050304.092139 |
| ContentType | Journal Article |
| Copyright | 2014 Cambridge University Press 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2014 Cambridge University Press – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 1XC VOOES |
| DOI | 10.1017/jfm.2014.566 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library ProQuest Science Database (NC LIVE) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Databases ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| DocumentTitleAlternate | Data-assimilation method for RANS-driven mean flow reconstruction D. P. G. Foures, N. Dovetta, D. Sipp and P. J. Schmid |
| EISSN | 1469-7645 |
| EndPage | 431 |
| ExternalDocumentID | oai:HAL:hal-01117094v1 29041457 10_1017_jfm_2014_566 |
| GeographicLocations | United Kingdom--UK France |
| GeographicLocations_xml | – name: United Kingdom--UK – name: France |
| GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 AATMM AAYXX ABUFD ABVKB ABXAU ABXHF ACDLN ADMLS AEUYN AFFHD AFZFC AKMAY BQFHP CITATION PHGZM PHGZT PQGLB -1F -2V -~N 6TJ 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABTAH ABVFV ABVZP ABZUI ACETC ACKIV ACRPL ADNMO ADOVH AEBPU AEMFK AENCP AI. ALEEW BESQT CAG CCUQV CDIZJ COF H~9 I.9 IQODW KAFGG NMFBF VH1 VOH ZJOSE ZY4 ~V1 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U --K --M .~1 1B1 1XC 1~. 1~5 29L 457 4G. 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABMAC ABNUV ABWVN ABXDB ACDAQ ACLOT ACNNM ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF IHE J1W JJJVA KOM LX7 M41 MO0 N9A NDZJH O-L OAUVE OZT P-8 P-9 PC. Q38 R2- RPZ SCE SDF SDG SES SEW SPC SPCBC SPD SSG SST SSZ T5K VOOES WUQ XPP ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-c404t-3c381034326ae27c00643d1d6d8d7cb58c885321557e6a29e4e3fcb5f0983cdf3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344654200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1120 0377-0257 |
| IngestDate | Tue Oct 14 20:18:59 EDT 2025 Sat Aug 16 10:12:25 EDT 2025 Wed Apr 02 07:24:48 EDT 2025 Tue Nov 18 22:38:58 EST 2025 Sat Nov 29 03:03:34 EST 2025 Wed Mar 13 05:39:14 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | november |
| Keywords | variational methods general fluid mechanics turbulence modelling Lagrange multiplier Algorithms Computational fluid dynamics Variational methods Digital simulation Modelling System identification Data assimilation Navier-Stokes equations |
| Language | English |
| License | https://www.cambridge.org/core/terms CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-3c381034326ae27c00643d1d6d8d7cb58c885321557e6a29e4e3fcb5f0983cdf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://polytechnique.hal.science/hal-01117094 |
| PQID | 1992582645 |
| PQPubID | 34769 |
| PageCount | 28 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01117094v1 proquest_journals_1992582645 pascalfrancis_primary_29041457 crossref_primary_10_1017_jfm_2014_566 crossref_citationtrail_10_1017_jfm_2014_566 cambridge_journals_10_1017_jfm_2014_566 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-25 |
| PublicationDateYYYYMMDD | 2014-11-25 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of fluid mechanics |
| PublicationTitleAlternate | J. Fluid Mech |
| PublicationYear | 2014 |
| Publisher | Cambridge University Press Elsevier |
| Publisher_xml | – name: Cambridge University Press – name: Elsevier |
| References | 2007; 39 2007; 18 2010; 48 1991; 33 2000; 65 2004; 36 1995; 12 2006; 14 1997; 123 2008; 615 2008; 48 2010; 650 2007; 42 2005; 38 2001; 13 1986; 38A 2010; 63 1995; 292 1987; 182 2006; 212 S0022112014005667_r3 S0022112014005667_r4 S0022112014005667_r1 S0022112014005667_r18 S0022112014005667_r19 S0022112014005667_r2 S0022112014005667_r7 S0022112014005667_r8 S0022112014005667_r5 S0022112014005667_r6 S0022112014005667_r20 S0022112014005667_r12 S0022112014005667_r13 S0022112014005667_r9 S0022112014005667_r10 S0022112014005667_r11 S0022112014005667_r16 S0022112014005667_r17 S0022112014005667_r14 S0022112014005667_r15 |
| References_xml | – volume: 292 start-page: 183 year: 1995 end-page: 204 article-title: Adjoint systems and their role in the receptivity problem for boundary layers publication-title: J. Fluid Mech. – volume: 63 year: 2010 article-title: Dynamics and control of global instabilities in open flows: a linearized approach publication-title: Appl. Mech. Rev. – volume: 14 start-page: 505 issue: 5 year: 2006 end-page: 535 article-title: Iterative methods for data assimilation for burgers’s equation publication-title: J. Inverse Ill-Posed Probl. – volume: 123 start-page: 2449 issue: 544 year: 1997 end-page: 2461 article-title: Dual formulation of four-dimensional variational assimilation publication-title: Q. J. R. Meteorol. Soc. – volume: 650 start-page: 513 year: 2010 end-page: 536 article-title: Instability and sensitivity of the flow around a rotating circular cylinder publication-title: J. Fluid Mech. – volume: 65 start-page: 249 issue: 3–4 year: 2000 end-page: 272 article-title: Adjoint equation-based methods for control problems in incompressible, viscous flows publication-title: Flow Turbul. Combust. – volume: 42 start-page: 61 year: 2007 end-page: 78 article-title: Optical stokes flow estimation: an imaging-based control approach publication-title: Exp. Fluids – volume: 212 start-page: 358 issue: 1 year: 2006 end-page: 382 article-title: Gappy data: to krig or not to krig? publication-title: J. Comput. Phys. – volume: 182 start-page: 23 issue: 1 year: 1987 end-page: 45 article-title: A finite-element study of the onset of vortex shedding in flow past variously shaped bodies publication-title: J. Fluid Mech. – volume: 18 start-page: 755 year: 2007 end-page: 763 article-title: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization publication-title: Meas. Sci. Technol. – volume: 615 start-page: 221 year: 2008 end-page: 252 article-title: Sensitivity analysis and passive control of the cylinder flow publication-title: J. Fluid Mech. – volume: 13 start-page: 1668 year: 2001 end-page: 1678 article-title: Linear stability and receptivity analyses of the stokes layer produced by an impulsively started plate publication-title: Phys. Fluids – volume: 48 start-page: 381 issue: 4 year: 2008 end-page: 402 article-title: Overview of identification methods of mechanical parameters based on full-field measurements publication-title: Exp. Mech. – volume: 38 start-page: 21 year: 2005 end-page: 32 article-title: Variationnal optical flow estimation for particle image velocimetry publication-title: Exp. Fluids – volume: 33 start-page: 141 year: 1991 end-page: 266 article-title: Data assimilation in meteorology and oceanography publication-title: Adv. Geophys. – volume: 36 start-page: 255 year: 2004 end-page: 279 article-title: Shape optimization in fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 48 start-page: 369 issue: 3 year: 2010 end-page: 393 article-title: Variationnal fluid flow measurements from image sequences: synopsis and perspectives publication-title: Exp. Fluids – volume: 39 start-page: 129 year: 2007 end-page: 162 article-title: Nonmodal stability theory publication-title: Annu. Rev. Fluid Mech. – volume: 38A start-page: 97 year: 1986 end-page: 110 article-title: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects publication-title: Tellus – volume: 12 start-page: 1657 issue: 8 year: 1995 end-page: 1664 article-title: Karhunen–Loeve procedure for gappy data publication-title: J. Opt. Soc. Amer. A – ident: S0022112014005667_r1 doi: 10.1007/s11340-008-9148-y – ident: S0022112014005667_r15 doi: 10.1017/S0022112009993764 – ident: S0022112014005667_r12 doi: 10.1515/156939406778247589 – ident: S0022112014005667_r18 doi: 10.1088/0957-0233/18/3/027 – ident: S0022112014005667_r10 doi: 10.1111/j.1600-0870.1986.tb00459.x – ident: S0022112014005667_r8 doi: 10.1017/S0022112095001480 – ident: S0022112014005667_r3 doi: 10.1364/JOSAA.12.001657 – ident: S0022112014005667_r11 doi: 10.1063/1.1369605 – ident: S0022112014005667_r2 doi: 10.1002/qj.49712354414 – ident: S0022112014005667_r13 doi: 10.1017/S0022112008003662 – ident: S0022112014005667_r5 doi: 10.1016/j.jcp.2005.06.023 – ident: S0022112014005667_r17 doi: 10.1007/s00348-006-0220-z – ident: S0022112014005667_r16 doi: 10.1007/s00348-004-0880-5 – ident: S0022112014005667_r7 doi: 10.1007/s00348-009-0778-3 – ident: S0022112014005667_r4 doi: 10.1016/S0065-2687(08)60442-2 – ident: S0022112014005667_r20 doi: 10.1115/1.4001478 – ident: S0022112014005667_r9 doi: 10.1017/S0022112087002234 – ident: S0022112014005667_r14 doi: 10.1146/annurev.fluid.36.050802.121926 – ident: S0022112014005667_r6 doi: 10.1023/A:1011455900396 – ident: S0022112014005667_r19 doi: 10.1146/annurev.fluid.38.050304.092139 |
| SSID | ssj0013097 ssj0000536 |
| Score | 2.5218503 |
| Snippet | We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier–Stokes equations. A... We present a data-assimilation technique based on a variational formulation and a Lagrange multipliers approach to enforce the Navier-Stokes equations. A... |
| SourceID | hal proquest pascalfrancis crossref cambridge |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 404 |
| SubjectTerms | Algorithms Computational fluid dynamics Computational methods in fluid dynamics Computer simulation Cylinders Data Direct numerical simulation Exact sciences and technology Filtration Flow measurement Fluid dynamics Fluid flow Fluid mechanics Fluids Frameworks Fundamental areas of phenomenology (including applications) Identification methods Lagrange multiplier Mathematical models Mechanics Methods Navier-Stokes equations NMR Nuclear magnetic resonance Physics Problems Reconstruction Reynolds averaged Navier-Stokes method Reynolds number Reynolds stresses Stokes law (fluid mechanics) Two dimensional flow |
| Title | A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction |
| URI | https://www.cambridge.org/core/product/identifier/S0022112014005667/type/journal_article https://www.proquest.com/docview/1992582645 https://polytechnique.hal.science/hal-01117094 |
| Volume | 759 |
| WOSCitedRecordID | wos000344654200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1469-7645 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000536 issn: 0022-1120 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database (ProQuest) customDbUrl: eissn: 1469-7645 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7645 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: eissn: 1469-7645 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1469-7645 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL1iG0hDiEEZojAqC4F4QIZ8OHH8hArqNBCUaAOp2gORazuiUNKyVEP8e-5N3LAKjRdeXCm9rZLcDx8nx-cCPFZJKXHlo7iOVcYFIg5MqUxzbaWyCJ-jyIqm2YQcj7PJROX-gVvtaZXrmtgUarsw9Iz8BdEkE8TCInm5_MGpaxS9XfUtNLZgB5FNSJSu91H-5y1CoORaLRxxReCJ7yQZ_bWkbeiheJ6kG7IKG9PT1hciR95Y6hrvV9k2uvirZjcT0eHe_17CLbjpISgbtjFzG664qgd7Ho4yn-x1D65f0CrswbWGK2rqO_B5yIhXyhF2z77PWi4daztRM4TA7Nj9qhZzW3ONaYLlyrKxptmXn6wW31zN7RlVWPyFrlg5X_xkzaK8E7Ldh0-Ho4-vj7hv08CNCMSKx4ZUwmiDaqpdJE2DcmxoU5tZaaZJZjLEBAgtEulSHSknXFzi8TJQWWxsGd-F7WpRuXvAArw9UyNM5mQmhJ5qJWRaIgSZKm3w7_rwtPNU4ZOtLlqimizQpwX5tECf9uHZ2o-F8Wrn1HRjfon1k8562ap8XGL3CEOiMyFp7qPhu4KOYZ0MJa6Vz8M-DDYipjOPVCBCkcg-HKzj48JFdMFx_99fP4BdOh3aDxklB7CN3nEP4ao5X83qswHsDN-MJm_x89VonB8PKCE-NGNOozzBMU9OfwO18BJ1 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB21BQQIUQggAqWsEBUHtOCPtdd7QCgCqlRNA4JW6gmz2V2LQLBDHbXqn-I3MuMvGqFy64GrPbHs7Nt5b-3ZNwBPVZRJXPkorkOVcIGKA6dUorm2UlmUz0FgRdVsQo7HyeGh-rACv9q9MFRW2ebEKlHbwtA78pdUJhmhFhbR6_lPTl2j6Otq20KjhsWuOz3BJVv5auctju9WEGy_238z5E1XAW6EJxY8NGRqRfspY-0CaSpStr6NbWKlmUSJSZDCkAkj6WIdKCdcmOHxzFNJaGwW4nVX4ZJAJiSv_r3g_Z-vFp6SrTs56hivKbQni-pvGW1798WLKF6ycViiw9WvVIx5Y65LHJ-sbqzxF0dUxLe9_r_9ZbfgZiOx2aCeE7dhxeU9WG_kNmuSWdmD62e8GHtwpaqFNeUd-DxgVDfLcVkx_TGtawVZ3WmbocRnH91pXsxsyTWmAUzHlo01qQv-aVF8dyW3R8Qg-Auds2xWnLDqpUNn1HsXDi7k6e_BWl7k7j4wD4djYoRJnEyE0BOthIwzlFgTpQ1erg_POmSkTTIp07oQT6aIoZQwlCKG-vC8xU1qGjd3aioyOyd6q4ue1y4m58Q9QQh2IWQ9PhyMUjqGPOBLT4ljvw-bSwjtwgPlCV9Esg8bLR7PPEQHxgf_Pv0Yrg7390bpaGe8-xCu0a3R3s8g2oA1HCn3CC6b48W0PNqsJh-DLxcN3d_QZ2fZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-assimilation+method+for+Reynolds-averaged+Navier%E2%80%93Stokes-driven+mean+flow+reconstruction&rft.jtitle=Journal+of+non-Newtonian+fluid+mechanics&rft.au=Foures%2C+Dimitry+P.+G.&rft.au=Dovetta%2C+Nicolas&rft.au=Sipp%2C+Denis&rft.au=Schmid%2C+Peter+J.&rft.date=2014-11-25&rft.pub=Elsevier&rft.issn=0377-0257&rft.volume=759&rft.issue=november&rft.spage=404&rft.epage=431&rft_id=info:doi/10.1017%2Fjfm.2014.566&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01117094v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |