Comparison of elements and state-variable transfer methods for quasi-incompressible material behaviour in the particle finite element method
The Particle Finite Element Method (PFEM) is attractive for the simulation of large deformation problems, e.g. in free-surface fluid flows, fluid–structure interaction and in solid mechanics for geotechnical engineering and production processes. During cutting, forming or melting of metal, quasi-inc...
Gespeichert in:
| Veröffentlicht in: | Computational mechanics Jg. 75; H. 2; S. 755 - 773 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-7675, 1432-0924, 1432-0924 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Particle Finite Element Method (PFEM) is attractive for the simulation of large deformation problems, e.g. in free-surface fluid flows, fluid–structure interaction and in solid mechanics for geotechnical engineering and production processes. During cutting, forming or melting of metal, quasi-incompressible material behaviour is often considered. To circumvent the associated volumetric locking in finite element simulations, different approaches have been proposed in the literature and a stabilised low-order mixed formulation (P1P1) is state-of-the-art. The present paper compares the established mixed formulation with a higher order pure displacement element (TRI6) under 2d plane strain conditions. The TRI6 element requires specialized handling, involving the deletion and re-addition of edge-mid-nodes during triangulation remeshing. The robustness of both element formulations is analysed along with different state-variable transfer schemes, which are not yet widely discussed in the literature. The influence of the stabilisation factor in the P1P1 element formulation is investigated, and an equation linking this factor to the Poisson ratio for hyperelastic materials is proposed. |
|---|---|
| AbstractList | The Particle Finite Element Method (PFEM) is attractive for the simulation of large deformation problems, e.g. in free-surface fluid flows, fluid–structure interaction and in solid mechanics for geotechnical engineering and production processes. During cutting, forming or melting of metal, quasi-incompressible material behaviour is often considered. To circumvent the associated volumetric locking in finite element simulations, different approaches have been proposed in the literature and a stabilised low-order mixed formulation (P1P1) is state-of-the-art. The present paper compares the established mixed formulation with a higher order pure displacement element (TRI6) under 2d plane strain conditions. The TRI6 element requires specialized handling, involving the deletion and re-addition of edge-mid-nodes during triangulation remeshing. The robustness of both element formulations is analysed along with different state-variable transfer schemes, which are not yet widely discussed in the literature. The influence of the stabilisation factor in the P1P1 element formulation is investigated, and an equation linking this factor to the Poisson ratio for hyperelastic materials is proposed. The Particle Finite Element Method (PFEM) is attractive for the simulation of large deformation problems, e.g. in free-surface fluid flows, fluid–structure interaction and in solid mechanics for geotechnical engineering and production processes. During cutting, forming or melting of metal, quasi-incompressible material behaviour is often considered. To circumvent the associated volumetric locking in finite element simulations, different approaches have been proposed in the literature and a stabilised low-order mixed formulation (P1P1) is state-of-the-art. The present paper compares the established mixed formulation with a higher order pure displacement element (TRI6) under 2d plane strain conditions. The TRI6 element requires specialized handling, involving the deletion and re-addition of edge-mid-nodes during triangulation remeshing. The robustness of both element formulations is analysed along with different state-variable transfer schemes, which are not yet widely discussed in the literature. The influence of the stabilisation factor in the P1P1 element formulation is investigated, and an equation linking this factor to the Poisson ratio for hyperelastic materials is proposed. The Particle Finite Element Method (PFEM) is attractive for the simulation of large deformation problems, e.g. in free-surface fluid flows, fluid–structure interaction and in solid mechanics for geotechnical engineering and production processes. During cutting, forming or melting of metal, quasi-incompressible material behaviour is often considered. To circumvent the associated volumetric locking in finite element simulations, different approaches have been proposed in the literature and a stabilised low-order mixed formulation (P1P1) is state-of-the-art. The present paper compares the established mixed formulation with a higher order pure displacement element (TRI6) under 2d plane strain conditions. The TRI6 element requires specialized handling, involving the deletion and re-addition of edge-mid-nodes during triangulation remeshing. The robustness of both element formulations is analysed along with different state-variable transfer schemes, which are not yet widely discussed in the literature. The influenceof the stabilisation factor in the P1P1 element formulation is investigated, and an equation linking this factor to the Poisson ratio for hyperelastic materials is proposed. |
| Author | Bartel, Thorsten Menzel, Andreas Schewe, Markus |
| Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0003-4180-0760 surname: Schewe fullname: Schewe, Markus email: markus.schewe@tu-dortmund.de organization: Institute of Mechanics, TU Dortmund – sequence: 2 givenname: Thorsten orcidid: 0000-0002-7953-8342 surname: Bartel fullname: Bartel, Thorsten organization: Institute of Mechanics, TU Dortmund – sequence: 3 givenname: Andreas orcidid: 0000-0002-7819-9254 surname: Menzel fullname: Menzel, Andreas organization: Institute of Mechanics, TU Dortmund, Division of Solid Mechanics, Lund University |
| BookMark | eNp9kc1uFDEQhC0UJDaBF-BkifOA_-bviFZAkCJxgXOrx9NmHc3YE9sbtO_AQ-OwC9w4WD74q6pu1zW7CjEQY6-leCuF6N9lIUzXNUKZelotm9MztpNGq0aMylyxnZD90PRd375g1znfCyHbQbc79nMf1w2TzzHw6DgttFIomWOYeS5YqHmsrzgtxEvCkB0lvlI5xDlzFxN_OGL2jQ-22iTK2T-Ra9VV0cInOuCjj8fEfeDlQLxGFW8r4nzwhf7kXSxfsucOl0yvLvcN-_bxw9f9bXP35dPn_fu7xhphSqN7oXtH2qneunac7ajmacbOSYfGDGjEJKlvnXHdbFqrpR1Fp4lUVSANk75hePbNP2g7TrAlv2I6QUQPW0wFF6i7ECZ7gOUImaBSi7dYfAwZZjXOaponUJMRUEcygMIQaKqBrZB6MFgz3pwzthQfjpQL3Nd_CHUt0LLT46iU1pVSZ8qmmHMi93cWKeCpWTg3C7VZ-N0snKpIX8avcPhO6Z_1f1S_AIfhrns |
| Cites_doi | 10.1016/j.jrmge.2021.12.006 10.1016/j.compstruc.2011.07.004 10.1115/1.4034434 10.1137/S0036142905444482 10.1007/s40571-016-0145-0 10.1016/j.compgeo.2020.103994 10.1007/s00466-014-1088-z 10.1002/nme.5962 10.1007/s00466-008-0250-x 10.1002/(SICI)1096-9853 10.1016/j.cma.2013.08.010 10.1016/S0045-7825(96)01134-6 10.1007/s00466-021-02119-w 10.1061/(ASCE)GM.1943-5622.0001079 10.1016/j.ijsolstr.2017.04.030 10.1016/j.cma.2018.10.030 10.1002/nme.1620210210 10.1016/j.compgeo.2021.104061 10.1007/978-1-4020-6577-4_6 10.1017/CBO9780511755446 10.1145/174462.156635 10.1007/978-3-540-75103-8_1 10.3390/app112411893 10.1007/s00466-013-0835-x 10.1002/nag.3016 10.1007/s00466-020-01867-5 10.1016/j.cma.2017.07.028 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Feb 2025 |
| CorporateAuthor | Institutioner vid LTH Department of Construction Sciences Hållfasthetslära Departments at LTH Solid Mechanics Lunds universitet Faculty of Engineering, LTH Lunds Tekniska Högskola Institutionen för byggvetenskaper Lund University |
| CorporateAuthor_xml | – name: Faculty of Engineering, LTH – name: Lund University – name: Institutionen för byggvetenskaper – name: Department of Construction Sciences – name: Solid Mechanics – name: Institutioner vid LTH – name: Lunds Tekniska Högskola – name: Departments at LTH – name: Lunds universitet – name: Hållfasthetslära |
| DBID | C6C AAYXX CITATION ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| DOI | 10.1007/s00466-024-02531-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1432-0924 |
| EndPage | 773 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_d29d2bdb_2b40_4044_a04e_3ef6d501384a 10_1007_s00466_024_02531_y |
| GrantInformation_xml | – fundername: Technische Universität Dortmund (1006) |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XH6 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-c404t-37037fe3f27cf59dc92dbda6f1fa448a40b1e75f4f6d45c31c9063ee23f2ae8b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294387400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-7675 1432-0924 |
| IngestDate | Mon Dec 01 03:11:25 EST 2025 Wed Nov 26 14:54:47 EST 2025 Sat Nov 29 06:01:24 EST 2025 Fri Feb 21 02:37:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Mapping of variables Remeshing Element technology Numerical stability Particle finite element method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-37037fe3f27cf59dc92dbda6f1fa448a40b1e75f4f6d45c31c9063ee23f2ae8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7953-8342 0000-0002-7819-9254 0000-0003-4180-0760 |
| OpenAccessLink | https://link.springer.com/10.1007/s00466-024-02531-y |
| PQID | 3163992233 |
| PQPubID | 2043755 |
| PageCount | 19 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_d29d2bdb_2b40_4044_a04e_3ef6d501384a proquest_journals_3163992233 crossref_primary_10_1007_s00466_024_02531_y springer_journals_10_1007_s00466_024_02531_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing |
| PublicationTitle | Computational mechanics |
| PublicationTitleAbbrev | Comput Mech |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | JM Carbonell (2531_CR7) 2013; 52 2531_CR26 2531_CR28 2531_CR27 2531_CR29 EFI Boerner (2531_CR3) 2008; 42 GA Holzapfel (2531_CR16) 2000 2531_CR4 L Hauser (2531_CR15) 2021; 133 S Meduri (2531_CR22) 2019; 117 X Zhang (2531_CR30) 2015; 55 Y Hu (2531_CR17) 1998; 22 A Franci (2531_CR14) 2017; 325 2531_CR24 A Masud (2531_CR21) 2013; 267 JM Carbonell (2531_CR6) 2022; 14 S Kumar (2531_CR20) 2019; 344 H Edelsbrunner (2531_CR12) 1994; 13 BJ Bobach (2531_CR1) 2021; 11 Y Jin (2531_CR18) 2020; 44 2531_CR19 G Camacho (2531_CR5) 1997; 142 I Caylak (2531_CR10) 2011; 89 L Monforte (2531_CR23) 2017; 4 JC Cavendish (2531_CR9) 1985; 21 JM Carbonell (2531_CR8) 2020; 66 PB Bochev (2531_CR2) 2006; 44 2531_CR31 J Reinold (2531_CR25) 2022; 69 2531_CR11 2531_CR13 |
| References_xml | – volume: 14 start-page: 967 issue: 3 year: 2022 ident: 2531_CR6 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.12.006 – volume: 89 start-page: 1844 issue: 21–22 year: 2011 ident: 2531_CR10 publication-title: Comput Struct doi: 10.1016/j.compstruc.2011.07.004 – ident: 2531_CR27 doi: 10.1115/1.4034434 – ident: 2531_CR31 – volume: 44 start-page: 82 issue: 1 year: 2006 ident: 2531_CR2 publication-title: SIAM J Numer Anal doi: 10.1137/S0036142905444482 – volume: 4 start-page: 269 issue: 3 year: 2017 ident: 2531_CR23 publication-title: Comput Part Mech doi: 10.1007/s40571-016-0145-0 – ident: 2531_CR28 doi: 10.1016/j.compgeo.2020.103994 – volume: 55 start-page: 167 issue: 1 year: 2015 ident: 2531_CR30 publication-title: Comput Mech doi: 10.1007/s00466-014-1088-z – volume-title: Nonlinear solid mechanics: a continuum approach for engineering year: 2000 ident: 2531_CR16 – volume: 117 start-page: 430 issue: 4 year: 2019 ident: 2531_CR22 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5962 – volume: 42 start-page: 407 issue: 3 year: 2008 ident: 2531_CR3 publication-title: Comput Mech doi: 10.1007/s00466-008-0250-x – volume: 22 start-page: 327 issue: 5 year: 1998 ident: 2531_CR17 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/(SICI)1096-9853 – volume: 267 start-page: 359 year: 2013 ident: 2531_CR21 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2013.08.010 – volume: 142 start-page: 269 issue: 3–4 year: 1997 ident: 2531_CR5 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01134-6 – volume: 69 start-page: 891 issue: 4 year: 2022 ident: 2531_CR25 publication-title: Comput Mech doi: 10.1007/s00466-021-02119-w – ident: 2531_CR29 doi: 10.1061/(ASCE)GM.1943-5622.0001079 – ident: 2531_CR26 doi: 10.1016/j.ijsolstr.2017.04.030 – volume: 344 start-page: 858 year: 2019 ident: 2531_CR20 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.10.030 – volume: 21 start-page: 329 issue: 2 year: 1985 ident: 2531_CR9 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620210210 – volume: 133 year: 2021 ident: 2531_CR15 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2021.104061 – ident: 2531_CR24 doi: 10.1007/978-1-4020-6577-4_6 – ident: 2531_CR4 doi: 10.1017/CBO9780511755446 – volume: 13 start-page: 43 issue: 1 year: 1994 ident: 2531_CR12 publication-title: ACM Trans Graphics (TOG) doi: 10.1145/174462.156635 – ident: 2531_CR19 doi: 10.1007/978-3-540-75103-8_1 – volume: 11 start-page: 11893 issue: 24 year: 2021 ident: 2531_CR1 publication-title: Appl Sci doi: 10.3390/app112411893 – volume: 52 start-page: 607 issue: 3 year: 2013 ident: 2531_CR7 publication-title: Comput Mech doi: 10.1007/s00466-013-0835-x – ident: 2531_CR13 – ident: 2531_CR11 – volume: 44 start-page: 923 issue: 7 year: 2020 ident: 2531_CR18 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.3016 – volume: 66 start-page: 603 issue: 3 year: 2020 ident: 2531_CR8 publication-title: Comput Mech doi: 10.1007/s00466-020-01867-5 – volume: 325 start-page: 711 year: 2017 ident: 2531_CR14 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.07.028 |
| SSID | ssj0015835 |
| Score | 2.4265432 |
| Snippet | The Particle Finite Element Method (PFEM) is attractive for the simulation of large deformation problems, e.g. in free-surface fluid flows, fluid–structure... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 755 |
| SubjectTerms | Applied Mechanics Classical and Continuum Physics Computational Science and Engineering Engineering Engineering and Technology Finite element analysis Finite element method Fluid flow Fluid-structure interaction Free surfaces Geotechnical engineering Incompressible flow Maskinteknik Mechanical Engineering Original Paper Plane strain Poisson's ratio Solid mechanics State variable Teknik Teknisk mekanik Theoretical and Applied Mechanics Triangulation |
| Title | Comparison of elements and state-variable transfer methods for quasi-incompressible material behaviour in the particle finite element method |
| URI | https://link.springer.com/article/10.1007/s00466-024-02531-y https://www.proquest.com/docview/3163992233 |
| Volume | 75 |
| WOSCitedRecordID | wos001294387400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 1432-0924 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R4NAeeLbqFop86A0sJY69SY4VAnFCFY8KcbH8VFcqYbvZReI_8KMZO06AqkKih5yc2NZ4bH-TmfkG4FswKfBWrajJSk85AgyquaupLzNhEJ770tpYbKI8Pa2uruofKSms7aPde5dkPKmHZLdgyoWAWY4Pag69fwcreN1VYTuenf8cfAei6spq5mgfBaqSlCrz7z5eXkdPGHNwi_5FIRqvneP1_5vwBqwlmEm-d3qxCUuu2YL1BDlJ2tDtFnx4xke4DQ-HQ1VCcuuJ60LLW6IaS2LmEb3D1pBsReYR8LoZ6UpQtwTBL_mzUO2EBr6Hmy6-NryJkDhqOUmMAIsZmTQEcSeZJrUlfhKQbz9e6vIjXB4fXRye0FSugRqe8TkeVVlReld4VhovamtqZrVVY597hUag4pnOXSk892PLhSlyUyM-co7hF8pVuvgEy81t4z4DYWPLKs2FYwr7rnydaaZNLZRQ3DuRj2C_XzU57Vg55MC_HMUuUewyil3ej2C3X1iZdmgri3wcOXmLYgQH_fo9Nb_W23WnEMPIgaG7M5ZkYmj6JX8vZOvk9NmvV2lZbZm2WjLNM4ki41Jl3MnCoUBE8Bhz9eVtc9mB9yzUI45R5LuwPJ8t3FdYNXfzSTvbi9viEQkLDWI |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEJ4omqgPoCjxALUPvmmT3W57u_tICAQjXIyiIb40_RkukeW8vSPhf-CPZtrtLmCMiTzsU3fbZjptv9mZ-QbgfTAp8FatqMlKTzkCDKq5q6kvM2EQnvvS2lhsopxMqpOT-ktKCmv7aPfeJRlP6iHZLZhyIWCW44OaQy8fwiOON1YI5Pv67cfgOxBVV1YzR_soUJWkVJm_93H3OrrBmINb9A8K0Xjt7K_db8LPYTXBTLLT6cULeOCadVhLkJOkDd2uw7NbfIQv4Wp3qEpIzj1xXWh5S1RjScw8ohfYGpKtyCICXjcnXQnqliD4Jb-Xqp3SwPdw1sXXhjcREkctJ4kRYDkn04Yg7iSzpLbETwPy7cdLXb6C7_t7x7sHNJVroIZnfIFHVVaU3hWelcaL2pqaWW3V2OdeoRGoeKZzVwrP_dhyYYrc1IiPnGP4hXKVLjZgpTlv3GsgbGxZpblwTGHfla8zzbSphRKKeyfyEXzoV03OOlYOOfAvR7FLFLuMYpeXI9juF1amHdrKIh9HTt6iGMHHfv1umv_V289OIYaRA0N3ZyzJxNB0Kn8tZevk7NavV2lZbZm2WjLNM4ki41Jl3MnCoUBE8Bhztfl_c3kHTw6Ojw7l4afJ5y14ykJt4hhRvg0ri_nSvYHH5mIxbedv4xa5Bq7-EEY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagcWihULBTwgRtYTRx7kxxR2xUItKrEQxUXy45tsRKkyyZbqf-BH834kXSLEBLikJOTcTQex99kZr4BeOFdCjxVK9pkpaMcAQbV3NbUlZloEJ670pjQbKKcz6uzs_p0o4o_ZLsPIclY0-BZmtr-cGnc4Vj45t06nzzL8UIropc34Rb3TYO8v_7h8xhHEFVssZmjr-RpS1LZzJ9lXD-arvDmGCL9jU40HEGz3f9_-Xuwk-AneR3t5T7csO0e7CYoStJG7_bg7gZP4QP4eTR2KyTnjtiYct4R1RoSKpLoBY76IizSByBsVyS2pu4IgmLyY626BfU8EN9j3q2_E6FysH6SmALWK7JoCeJRskzmTNzCI-JhviTyIXyanXw8ekNTGwfa8Iz3-AnLitLZwrGycaI2Tc2MNmrqcqfQOVQ807ktheNuarhoirypETdZy_AJZStd7MNWe97aR0DY1LBKc2GZQtmVqzPNdFMLJRR3VuQTeDmsoFxGtg458jIHtUtUuwxql5cTOBgWWaad28kinwau3qKYwKthLa-G_ybtSzSOcWbP3B2dKJmYm77Kb2vZWbnc-CUrDasN00ZLpnkmUWVcqoxbWVhUiPCRZK4e_9u7PIc7p8cz-f7t_N0T2Ga-ZXFIND-ArX61tk_hdnPRL7rVs7BbfgFUVhkq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+elements+and+state-variable+transfer+methods+for+quasi-incompressible+material+behaviour+in+the+particle+finite+element+method&rft.jtitle=Computational+mechanics&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=75&rft.issue=2&rft.spage=755&rft.epage=773&rft_id=info:doi/10.1007%2Fs00466-024-02531-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon |