Offshore wind farm layout optimization using mathematical programming techniques

Offshore wind power is a renewable energy of growing relevance in current electric energy systems, presenting favorable wind conditions in comparison with the sites on land. However, the higher energy yield has to compensate the increment in installation and maintenance costs, thus the importance of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Renewable energy Ročník 53; s. 389 - 399
Hlavní autori: Pérez, Beatriz, Mínguez, Roberto, Guanche, Raúl
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.05.2013
Elsevier
Predmet:
ISSN:0960-1481, 1879-0682
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Offshore wind power is a renewable energy of growing relevance in current electric energy systems, presenting favorable wind conditions in comparison with the sites on land. However, the higher energy yield has to compensate the increment in installation and maintenance costs, thus the importance of optimizing resources. One relevant aspect to increase profitability is the wind farm layout. The aim of this paper is to propose a new method to maximize the expected power production of offshore wind farms by setting the appropriate layout, i.e. minimizing the wake effects. The method uses a sequential procedure for global optimization consisting of two steps: i) an heuristic method to set an initial random layout configuration, and ii) the use of nonlinear mathematical programming techniques for local optimization, which use the random layout as an initial solution. The method takes full advantage of the most up-to-date mathematical programming techniques while performing a global optimization approach, which can be easily parallelized. The performance of the proposed procedure is tested using the German offshore wind farm Alpha Ventus, located in the North Sea, yielding an increment of expected annual power production of 3.52% with respect to the actual configuration. According to current electricity prices in Germany, this constitutes an expected profit increment of almost 1 M€ per year.
AbstractList Offshore wind power is a renewable energy of growing relevance in current electric energy systems, presenting favorable wind conditions in comparison with the sites on land. However, the higher energy yield has to compensate the increment in installation and maintenance costs, thus the importance of optimizing resources. One relevant aspect to increase profitability is the wind farm layout. The aim of this paper is to propose a new method to maximize the expected power production of offshore wind farms by setting the appropriate layout, i.e. minimizing the wake effects. The method uses a sequential procedure for global optimization consisting of two steps: i) an heuristic method to set an initial random layout configuration, and ii) the use of nonlinear mathematical programming techniques for local optimization, which use the random layout as an initial solution. The method takes full advantage of the most up-to-date mathematical programming techniques while performing a global optimization approach, which can be easily parallelized. The performance of the proposed procedure is tested using the German offshore wind farm Alpha Ventus, located in the North Sea, yielding an increment of expected annual power production of 3.52% with respect to the actual configuration. According to current electricity prices in Germany, this constitutes an expected profit increment of almost 1 M€ per year.
Offshore wind power is a renewable energy of growing relevance in current electric energy systems, presenting favorable wind conditions in comparison with the sites on land. However, the higher energy yield has to compensate the increment in installation and maintenance costs, thus the importance of optimizing resources. One relevant aspect to increase profitability is the wind farm layout. The aim of this paper is to propose a new method to maximize the expected power production of offshore wind farms by setting the appropriate layout, i.e. minimizing the wake effects. The method uses a sequential procedure for global optimization consisting of two steps: i) an heuristic method to set an initial random layout configuration, and ii) the use of nonlinear mathematical programming techniques for local optimization, which use the random layout as an initial solution. The method takes full advantage of the most up-to-date mathematical programming techniques while performing a global optimization approach, which can be easily parallelized. The performance of the proposed procedure is tested using the German offshore wind farm Alpha Ventus, located in the North Sea, yielding an increment of expected annual power production of 3.52% with respect to the actual configuration. According to current electricity prices in Germany, this constitutes an expected profit increment of almost 1 M€ per year.
Offshore wind power is a renewable energy of growing relevance in current electric energy systems, presenting favorable wind conditions in comparison with the sites on land. However, the higher energy yield has to compensate the increment in installation and maintenance costs, thus the importance of optimizing resources. One relevant aspect to increase profitability is the wind farm layout. The aim of this paper is to propose a new method to maximize the expected power production of offshore wind farms by setting the appropriate layout, i.e. minimizing the wake effects. The method uses a sequential procedure for global optimization consisting of two steps: i) an heuristic method to set an initial random layout configuration, and ii) the use of nonlinear mathematical programming techniques for local optimization, which use the random layout as an initial solution. The method takes full advantage of the most up-to-date mathematical programming techniques while performing a global optimization approach, which can be easily parallelized. The performance of the proposed procedure is tested using the German offshore wind farm Alpha Ventus, located in the North Sea, yielding an increment of expected annual power production of 3.52% with respect to the actual configuration. According to current electricity prices in Germany, this constitutes an expected profit increment of almost 1 Man per year.
Author Guanche, Raúl
Mínguez, Roberto
Pérez, Beatriz
Author_xml – sequence: 1
  fullname: Pérez, Beatriz
– sequence: 2
  fullname: Mínguez, Roberto
– sequence: 3
  fullname: Guanche, Raúl
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26925801$$DView record in Pascal Francis
BookMark eNqNkV1LBCEUhiUK2j7-QdDcBN3Mpo7jR3cRfUFQUF2L4-quy4xu6hL163Pauumm8OABfd5zDu_ZA9s-eAPAEYJTBBE9W06j8eVMMUR4WgJCtgUmiDNRQ8rxNphAQWGNCEe7YC-lJYSo5YxMwOODtWkRoqnenJ9VVsWh6tV7WOcqrLIb3IfKLvhqnZyfV4PKC1Mup1VfrWKYRzUM40c2euHd69qkA7BjVZ_M4XfeBy_XV8-Xt_X9w83d5cV9rQkkucbadpQ3rGWtaWBDupkgCBvaWUGoxgxRLmxnKOOk5aZpaceoIIpiNcOsKS_74HRTt4wx9s1ycEmbvlfehHWSpQBlmAiM_4ESjAXCgv6NtsXawjFU0JNvVKVih43Ka5fkKrpBxXeJqcAthyN3vuF0DClFY6V2-cvUHJXrJYJyXKJcys0S5bhEWaJ0KmLyS_xT_w_Z8UZmVZBqHstcL08FKNMjBhnizSdzg62n
CitedBy_id crossref_primary_10_1016_j_engappai_2017_01_010
crossref_primary_10_1093_ijlct_ctz016
crossref_primary_10_3390_en7116930
crossref_primary_10_1016_j_enconman_2022_116077
crossref_primary_10_1016_j_energy_2019_07_019
crossref_primary_10_3390_jmse11081566
crossref_primary_10_1016_j_ifacol_2017_08_025
crossref_primary_10_1016_j_eswa_2013_05_054
crossref_primary_10_1155_2024_9406519
crossref_primary_10_1016_j_energy_2022_125376
crossref_primary_10_1016_j_energy_2018_11_073
crossref_primary_10_1016_j_renene_2021_12_057
crossref_primary_10_1002_we_2664
crossref_primary_10_1002_er_5336
crossref_primary_10_1016_j_asoc_2016_10_022
crossref_primary_10_1016_j_apenergy_2023_120925
crossref_primary_10_1007_s10668_024_05278_x
crossref_primary_10_1007_s40565_019_0550_5
crossref_primary_10_1088_1742_6596_2626_1_012054
crossref_primary_10_1016_j_renene_2021_10_032
crossref_primary_10_1016_j_enconman_2016_01_020
crossref_primary_10_1016_j_renene_2013_09_004
crossref_primary_10_1016_j_renene_2020_12_043
crossref_primary_10_1016_j_ijepes_2019_04_003
crossref_primary_10_1016_j_renene_2023_01_016
crossref_primary_10_1016_j_jweia_2014_03_012
crossref_primary_10_1016_j_renene_2017_02_036
crossref_primary_10_1002_we_1840
crossref_primary_10_1016_j_renene_2023_119240
crossref_primary_10_3390_en13040865
crossref_primary_10_1016_j_apenergy_2018_06_027
crossref_primary_10_1016_j_jweia_2015_07_009
crossref_primary_10_1049_iet_rpg_2015_0340
crossref_primary_10_1016_j_renene_2025_123730
crossref_primary_10_1016_j_enconman_2016_08_080
crossref_primary_10_1016_j_ifacol_2018_09_323
crossref_primary_10_3390_en16031471
crossref_primary_10_1016_j_energy_2024_132443
crossref_primary_10_1038_s41467_023_37536_3
crossref_primary_10_1080_09544828_2024_2347820
crossref_primary_10_1080_0305215X_2018_1509962
crossref_primary_10_1016_j_apenergy_2014_02_070
crossref_primary_10_1109_ACCESS_2020_3009046
crossref_primary_10_1109_TSTE_2015_2415037
crossref_primary_10_1016_j_energy_2016_07_062
crossref_primary_10_1016_j_rser_2014_07_120
crossref_primary_10_3390_app9040639
crossref_primary_10_1016_j_apenergy_2018_07_076
crossref_primary_10_1016_j_jweia_2021_104548
crossref_primary_10_1016_j_seta_2016_10_004
crossref_primary_10_1016_j_jweia_2015_01_018
crossref_primary_10_1063_5_0207111
crossref_primary_10_1109_TIA_2017_2737399
crossref_primary_10_1016_j_esr_2022_101016
crossref_primary_10_1016_j_apenergy_2017_05_071
crossref_primary_10_1007_s11831_019_09316_0
crossref_primary_10_1016_j_apenergy_2019_114426
crossref_primary_10_1016_j_apenergy_2016_06_085
crossref_primary_10_1002_we_2116
crossref_primary_10_1016_j_epsr_2022_107877
crossref_primary_10_1016_j_renene_2023_119785
crossref_primary_10_1002_we_2199
crossref_primary_10_1016_j_oceaneng_2022_112959
crossref_primary_10_1007_s40095_019_00332_1
crossref_primary_10_1016_j_energy_2024_132159
crossref_primary_10_1109_TII_2022_3217282
crossref_primary_10_3390_app14177916
crossref_primary_10_1007_s42452_019_1611_0
crossref_primary_10_1016_j_enconman_2014_11_005
crossref_primary_10_1109_TSTE_2014_2369432
crossref_primary_10_1016_j_renene_2025_123429
crossref_primary_10_1016_j_compchemeng_2025_109346
crossref_primary_10_1109_ACCESS_2019_2944888
crossref_primary_10_1016_j_apenergy_2017_08_126
crossref_primary_10_1049_iet_rpg_2015_0052
crossref_primary_10_3390_app8122660
crossref_primary_10_1007_s11356_023_27849_7
crossref_primary_10_1051_e3sconf_202233600013
crossref_primary_10_1016_j_apenergy_2017_09_064
crossref_primary_10_1016_j_rser_2015_03_066
crossref_primary_10_1016_j_renene_2017_07_057
crossref_primary_10_1109_TSTE_2016_2614266
crossref_primary_10_1016_j_apenergy_2024_125165
crossref_primary_10_1016_j_apor_2025_104537
crossref_primary_10_3390_ijgi13110409
crossref_primary_10_1016_j_seta_2020_100970
crossref_primary_10_1109_TSTE_2019_2932409
crossref_primary_10_1088_1742_6596_2767_3_032036
crossref_primary_10_3390_app142311331
crossref_primary_10_1016_j_energy_2014_02_060
crossref_primary_10_1016_j_apenergy_2016_06_101
crossref_primary_10_1088_1742_6596_753_9_092005
crossref_primary_10_1016_j_apenergy_2017_10_120
crossref_primary_10_1016_j_energy_2020_117899
crossref_primary_10_1109_ACCESS_2017_2657638
crossref_primary_10_1007_s11831_017_9222_7
crossref_primary_10_1016_j_renene_2025_123775
crossref_primary_10_1016_j_oceaneng_2022_112807
crossref_primary_10_1177_0309524X231165484
crossref_primary_10_1016_j_renene_2020_05_003
crossref_primary_10_1109_TSTE_2015_2429912
crossref_primary_10_1016_j_renene_2018_09_085
crossref_primary_10_1080_0305215X_2017_1316844
crossref_primary_10_1016_j_enconman_2016_07_017
crossref_primary_10_1515_cait_2017_0007
crossref_primary_10_1057_s41274_016_0021_6
crossref_primary_10_1016_j_oceaneng_2022_110859
crossref_primary_10_1016_j_apenergy_2016_11_083
Cites_doi 10.1016/j.renene.2011.06.033
10.1016/j.renene.2011.04.018
10.1016/j.epsr.2003.12.006
10.1016/j.renene.2004.05.007
10.1016/j.renene.2009.08.019
10.1007/BF01582221
10.1016/0167-6105(94)90080-9
10.1145/235815.235821
10.1260/030952408784305877
10.1016/j.renene.2010.01.010
10.1137/0806023
10.2172/947422
10.1016/j.renene.2011.12.013
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7ST
7TN
7U6
C1K
F1W
H96
L.G
SOI
7SU
7TB
8FD
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.renene.2012.12.007
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environment Abstracts
Oceanic Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-0682
EndPage 399
ExternalDocumentID 26925801
10_1016_j_renene_2012_12_007
US201500170718
GeographicLocations North Sea
Germany
ANE, North Sea
ANE, Germany
GeographicLocations_xml – name: North Sea
– name: Germany
– name: ANE, North Sea
– name: ANE, Germany
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABPIF
ABPTK
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FBQ
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
BNPGV
IQODW
SSH
7ST
7TN
7U6
C1K
F1W
H96
L.G
SOI
7SU
7TB
8FD
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c404t-2cfb6837575e3034bd9412e6bf946c271689fbe678458e356b7694a62ad2738e3
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315539000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Thu Oct 02 06:09:00 EDT 2025
Tue Oct 07 09:49:42 EDT 2025
Tue Oct 07 11:13:41 EDT 2025
Wed Apr 02 07:25:20 EDT 2025
Sat Nov 29 06:21:07 EST 2025
Tue Nov 18 21:49:54 EST 2025
Wed Dec 27 19:18:03 EST 2023
IsPeerReviewed true
IsScholarly true
Keywords Offshore
Windfarm
Renewable energy
Heuristic optimization
Layout optimization
Wake effect
Offshore wind farm
Wake
Optimization
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-2cfb6837575e3034bd9412e6bf946c271689fbe678458e356b7694a62ad2738e3
Notes http://dx.doi.org/10.1016/j.renene.2012.12.007
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500796371
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1686724922
proquest_miscellaneous_1642291296
proquest_miscellaneous_1500796371
pascalfrancis_primary_26925801
crossref_citationtrail_10_1016_j_renene_2012_12_007
crossref_primary_10_1016_j_renene_2012_12_007
fao_agris_US201500170718
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Renewable energy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (10.1016/j.renene.2012.12.007_bib37) 2011
Eroğlu (10.1016/j.renene.2012.12.007_bib14) 2012; 44
Saavedra-Moreno (10.1016/j.renene.2012.12.007_bib13) 2011; 36
Drud (10.1016/j.renene.2012.12.007_bib31) 1996
Mosetti (10.1016/j.renene.2012.12.007_bib2) 1994; 51
Mínguez (10.1016/j.renene.2012.12.007_bib7) 2011
Menéndez (10.1016/j.renene.2012.12.007_bib28) 2011
Espejo (10.1016/j.renene.2012.12.007_bib1) 2011
Elkinton (10.1016/j.renene.2012.12.007_bib5) 2006
Coleman (10.1016/j.renene.2012.12.007_bib33) 1994; 67
Ozturk (10.1016/j.renene.2012.12.007_bib3) 2004; 70
Murtagh (10.1016/j.renene.2012.12.007_bib30) 1998
Bazaraa (10.1016/j.renene.2012.12.007_bib16) 1993
Coleman (10.1016/j.renene.2012.12.007_bib34) 1996; 6
(10.1016/j.renene.2012.12.007_bib19) 2011
Donovan (10.1016/j.renene.2012.12.007_bib8) 2005
Elkinton (10.1016/j.renene.2012.12.007_bib11) 2008; 32
10.1016/j.renene.2012.12.007_bib18
10.1016/j.renene.2012.12.007_bib17
Vanderplaats (10.1016/j.renene.2012.12.007_bib15) 1984
10.1016/j.renene.2012.12.007_bib38
(10.1016/j.renene.2012.12.007_bib21) 2011
Kusiak (10.1016/j.renene.2012.12.007_bib9) 2010; 35
Castillo (10.1016/j.renene.2012.12.007_bib26) 2001
Conejo (10.1016/j.renene.2012.12.007_bib27) 2006
Serrano (10.1016/j.renene.2012.12.007_bib12) 2010; 35
Rademakers (10.1016/j.renene.2012.12.007_bib6) 2003
Barber (10.1016/j.renene.2012.12.007_bib36) 1996; 22
G. Hassan, P. Ltd., Gh (10.1016/j.renene.2012.12.007_bib25) 2004
10.1016/j.renene.2012.12.007_bib20
Katic (10.1016/j.renene.2012.12.007_bib24) 1986
Brooke (10.1016/j.renene.2012.12.007_bib32) 1998
10.1016/j.renene.2012.12.007_bib23
Grady (10.1016/j.renene.2012.12.007_bib4) 2005; 30
10.1016/j.renene.2012.12.007_bib22
Chowdhury (10.1016/j.renene.2012.12.007_bib10) 2012; 38
10.1016/j.renene.2012.12.007_bib29
Byrd (10.1016/j.renene.2012.12.007_bib35) 2006
References_xml – volume: 38
  start-page: 16
  year: 2012
  ident: 10.1016/j.renene.2012.12.007_bib10
  article-title: Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.06.033
– year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib37
– volume: 36
  start-page: 2338
  year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib13
  article-title: Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.04.018
– year: 2004
  ident: 10.1016/j.renene.2012.12.007_bib25
– volume: 70
  start-page: 179
  issue: 3
  year: 2004
  ident: 10.1016/j.renene.2012.12.007_bib3
  article-title: Heuristic methods for wind energy conversion system positioning
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2003.12.006
– volume: 30
  start-page: 259
  issue: 2
  year: 2005
  ident: 10.1016/j.renene.2012.12.007_bib4
  article-title: Placement of wind turbines using genetic algorithms
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2004.05.007
– year: 2006
  ident: 10.1016/j.renene.2012.12.007_bib5
– volume: 35
  start-page: 685
  issue: 3
  year: 2010
  ident: 10.1016/j.renene.2012.12.007_bib9
  article-title: Design of wind farm layout for maximum wind energy capture
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.08.019
– year: 1986
  ident: 10.1016/j.renene.2012.12.007_bib24
– ident: 10.1016/j.renene.2012.12.007_bib18
– year: 2005
  ident: 10.1016/j.renene.2012.12.007_bib8
– year: 1993
  ident: 10.1016/j.renene.2012.12.007_bib16
– year: 1996
  ident: 10.1016/j.renene.2012.12.007_bib31
– volume: 67
  start-page: 189
  issue: 2
  year: 1994
  ident: 10.1016/j.renene.2012.12.007_bib33
  article-title: On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds
  publication-title: Mathematical Programming
  doi: 10.1007/BF01582221
– year: 2006
  ident: 10.1016/j.renene.2012.12.007_bib27
– year: 2003
  ident: 10.1016/j.renene.2012.12.007_bib6
  article-title: Assessment and optimization of operation and maintenance of offshore wind turbines
– year: 1984
  ident: 10.1016/j.renene.2012.12.007_bib15
– volume: 51
  start-page: 105
  issue: 1
  year: 1994
  ident: 10.1016/j.renene.2012.12.007_bib2
  article-title: Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/0167-6105(94)90080-9
– ident: 10.1016/j.renene.2012.12.007_bib23
– ident: 10.1016/j.renene.2012.12.007_bib29
– volume: 22
  start-page: 469
  issue: 4
  year: 1996
  ident: 10.1016/j.renene.2012.12.007_bib36
  article-title: The quickhull algorithm for convex hulls
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/235815.235821
– volume: 32
  start-page: 67
  issue: 1
  year: 2008
  ident: 10.1016/j.renene.2012.12.007_bib11
  article-title: Algorithms for offshore wind farm layout optimization
  publication-title: Wind Engineering
  doi: 10.1260/030952408784305877
– volume: 35
  start-page: 1671
  year: 2010
  ident: 10.1016/j.renene.2012.12.007_bib12
  article-title: Optimization of wind farm turbines layout using an evolutive algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2010.01.010
– start-page: 1
  year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib28
  article-title: A methodology to evaluate regional-scale offshore wind energy resources
– year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib19
– ident: 10.1016/j.renene.2012.12.007_bib17
– volume: 6
  start-page: 418
  year: 1996
  ident: 10.1016/j.renene.2012.12.007_bib34
  article-title: An interior, trust region approach for nonlinear minimization subject to bounds
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/0806023
– year: 1998
  ident: 10.1016/j.renene.2012.12.007_bib30
– ident: 10.1016/j.renene.2012.12.007_bib38
  doi: 10.2172/947422
– volume: 44
  start-page: 53
  year: 2012
  ident: 10.1016/j.renene.2012.12.007_bib14
  article-title: Design of wind farm layout using ant colony algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.12.013
– start-page: 1
  year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib7
  article-title: Component failure simulation tool for optimal electrical configuration and repair strategy of off-shore wind farms
– year: 1998
  ident: 10.1016/j.renene.2012.12.007_bib32
– ident: 10.1016/j.renene.2012.12.007_bib20
– year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib21
– ident: 10.1016/j.renene.2012.12.007_bib22
– year: 2001
  ident: 10.1016/j.renene.2012.12.007_bib26
– start-page: 35
  year: 2006
  ident: 10.1016/j.renene.2012.12.007_bib35
  article-title: KNITRO: an integrated package for nonlinear optimization
– start-page: 1
  year: 2011
  ident: 10.1016/j.renene.2012.12.007_bib1
  article-title: Directional calibrated wind and wave reanalysis databases using instrumental data for optimal design of off-shore wind farms
SSID ssj0015874
Score 2.4764352
Snippet Offshore wind power is a renewable energy of growing relevance in current electric energy systems, presenting favorable wind conditions in comparison with the...
SourceID proquest
pascalfrancis
crossref
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 389
SubjectTerms Applied sciences
Electric power generation
electricity
Energy
Exact sciences and technology
Germany
Mathematical analysis
Mathematical programming
methodology
Natural energy
North Sea
Offshore
Offshore engineering
Offshore structures
Optimization
prices
profitability
wind
wind farms
Wind power
Title Offshore wind farm layout optimization using mathematical programming techniques
URI https://www.proquest.com/docview/1500796371
https://www.proquest.com/docview/1642291296
https://www.proquest.com/docview/1686724922
Volume 53
WOSCitedRecordID wos000315539000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYxgM8ID618jEZibcqKHUcfzx2MAQIjWlsUt8iJ7E3pjaZkoYN_nrOdpKmVAx4QKqiKnGcyHe5L9_9DqFXGRNKyYgFjKk0oJrmQaoZDUKeTrgyscw9iOsnfngoZjN51G4X1K6dAC8KcX0tL_8rqeEcENuWzv4DuftJ4QT8B6LDEcgOx78i_Gdj6vOy0uMrcLfHRlWL8Vx9t-nHJYiHRVt3OW5ckGDRo7baiiyfq7VwFVQdtms9NF-PQTJeuWIr7WoGe8Hq99srH47e1xb3_0dPS3fxbXHW-Ms-mbvsM38aYLxzF1c9Vnbo_nQ-jEVMBpl_PkDWFcmsMpJcpJGFAXhdfpz2clZwC34g1gRxHA0kaeQ7C7VKOfJdlDbkvQ89XLy28J-FRT2dEBfd9Z10f0HSPv1CbHzHIgaBRt5CO4THEoT5zvTDwexjv_cUC4_d3b12V3DpsgI3H7Rm0GwZVdr0WlUD2YxvjbKh5Z3pcnIf3Wt9Djz1vPIA3dLFQ3R3gET5CB11XIMt12DLNdhzDR5yDXZcg4dcgwdcg1dc8xidvjs4efM-aJttBBkN6TIgmUmZiDiY7xrMGprmkk6IZqmRlGUE3GohDXzGXNBY6ChmKWeSKkZUbqu7dPQEbRdloXcRZjTLQ7hbhxk4DErAQmYpKFXKeaSJNiMUdSuWZC0SvW2IMk-6lMOLxK9zYtc5gR-s8wgF_V2XHonlD-N3gRiJOgNlmayTfoT21ijUz0eYJDHYbCP0siNZAuLW7qGpQpdNndhJOCgtftMY8OmJBEOa3TRGMG7ROsnT37_nM3Rn9ZU9R9vLqtEv0O3s2_JrXe21fPsTe3GyFg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offshore+wind+farm+layout+optimization+using+mathematical+programming+techniques&rft.jtitle=Renewable+energy&rft.au=P%C3%A9rez%2C+Beatriz&rft.au=M%C3%ADnguez%2C+Roberto&rft.au=Guanche%2C+Ra%C3%BAl&rft.date=2013-05-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=53&rft.spage=389&rft.epage=399&rft_id=info:doi/10.1016%2Fj.renene.2012.12.007&rft.externalDocID=US201500170718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon