The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis

Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 176; pp. 582 - 588
Main Authors: Ding, Yanming, Zhang, Wenlong, Yu, Lei, Lu, Kaihua
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.06.2019
Elsevier BV
Subjects:
ISSN:0360-5442, 1873-6785
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-component parallel reaction mechanism based on the thermogravimetric experiment in wide heating rates. The accuracy and efficiency of GA and PSO algorithms are compared with each other under the identical optimization conditions. The results indicate the better optimization abilities of PSO with the closer convergence solution to the global optimum and quicker convergence to the solution than GA based on the three-component parallel reaction mechanism of biomass pyrolysis. Especially, the improvement of best fitting value of PSO reaches up to 30% compared with that of GA. Furthermore, 14 estimated kinetic parameters of best fitting value are obtained and the mass loss rate predicted results including three separate components (hemicellulose, cellulose and lignin) are compared with experimental data. •PSO and GA are compared in the application of biomass pyrolysis.•PSO represents better optimization abilities with the improvement of 30% than GA.•The estimated kinetic parameters of best fitting value are obtained.•Predicted mass loss rates of GA fail in the accuracy of shoulder region.
AbstractList Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-component parallel reaction mechanism based on the thermogravimetric experiment in wide heating rates. The accuracy and efficiency of GA and PSO algorithms are compared with each other under the identical optimization conditions. The results indicate the better optimization abilities of PSO with the closer convergence solution to the global optimum and quicker convergence to the solution than GA based on the three-component parallel reaction mechanism of biomass pyrolysis. Especially, the improvement of best fitting value of PSO reaches up to 30% compared with that of GA. Furthermore, 14 estimated kinetic parameters of best fitting value are obtained and the mass loss rate predicted results including three separate components (hemicellulose, cellulose and lignin) are compared with experimental data.
Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-component parallel reaction mechanism based on the thermogravimetric experiment in wide heating rates. The accuracy and efficiency of GA and PSO algorithms are compared with each other under the identical optimization conditions. The results indicate the better optimization abilities of PSO with the closer convergence solution to the global optimum and quicker convergence to the solution than GA based on the three-component parallel reaction mechanism of biomass pyrolysis. Especially, the improvement of best fitting value of PSO reaches up to 30% compared with that of GA. Furthermore, 14 estimated kinetic parameters of best fitting value are obtained and the mass loss rate predicted results including three separate components (hemicellulose, cellulose and lignin) are compared with experimental data. •PSO and GA are compared in the application of biomass pyrolysis.•PSO represents better optimization abilities with the improvement of 30% than GA.•The estimated kinetic parameters of best fitting value are obtained.•Predicted mass loss rates of GA fail in the accuracy of shoulder region.
Author Zhang, Wenlong
Yu, Lei
Lu, Kaihua
Ding, Yanming
Author_xml – sequence: 1
  givenname: Yanming
  surname: Ding
  fullname: Ding, Yanming
  email: dingym@cug.edu.cn
  organization: Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Wenlong
  surname: Zhang
  fullname: Zhang, Wenlong
  organization: Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
– sequence: 3
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  email: yulei2018@zzu.edu.cn
  organization: School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou 450001, China
– sequence: 4
  givenname: Kaihua
  surname: Lu
  fullname: Lu, Kaihua
  organization: Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
BookMark eNqFkc1q3DAUhUVJoJOkb9CFoJtu7ErWn91FIYQ2LQQSSLoWsnyVaGpLruQJuNB3r2amqyzalaSr7xwu55yhkxADIPSWkpoSKj9sawiQHte6IbSrCa8JI6_QhraKVVK14gRtCJOkEpw3r9FZzltCiGi7boN-PzwBNtbukrErNmHA4Jy3HkJ5RoevLw_Du_tbHOfFT_6XWXwMONsnmCDjcoVc5mUaHnECYw_fP3yAxVs8m2QmWCDlvVnv42RyxvOa4rhmny_QqTNjhjd_z3P0_cvnh6uv1c3t9bery5vKcsKXig6GOgpGWOrAMtZZ5lTHrWzlwBnpheulEv0gCiUVlx1IYQau6NCbhkpg5-j90XdO8eeuLKwnny2MowkQd1k3jSphScbagr57gW7jLoWyXaF4o5Tkghbq45GyKeacwGnrl0MySzJ-1JTofTN6q4_N6H0zmnBdmili_kI8p5JgWv8n-3SUQUnq2UPS-dATDD6BXfQQ_b8N_gA4fK5O
CitedBy_id crossref_primary_10_1016_j_jaap_2025_106988
crossref_primary_10_3390_polym11122080
crossref_primary_10_1016_j_polymdegradstab_2021_109739
crossref_primary_10_1016_j_renene_2020_11_122
crossref_primary_10_1016_j_psep_2020_01_012
crossref_primary_10_1016_j_tca_2020_178686
crossref_primary_10_1016_j_jclepro_2020_125042
crossref_primary_10_1109_ACCESS_2023_3290316
crossref_primary_10_1177_0734904120982887
crossref_primary_10_3390_polym12020421
crossref_primary_10_1016_j_psep_2019_12_041
crossref_primary_10_1016_j_indcrop_2020_112085
crossref_primary_10_1016_j_energy_2019_116015
crossref_primary_10_1109_ACCESS_2021_3072993
crossref_primary_10_4103_ijehe_ijehe_52_20
crossref_primary_10_1061__ASCE_AS_1943_5525_0001398
crossref_primary_10_1016_j_joei_2025_102180
crossref_primary_10_1080_15567036_2023_2247359
crossref_primary_10_1007_s00034_021_01842_2
crossref_primary_10_1016_j_jaap_2022_105802
crossref_primary_10_1016_j_jenvman_2024_120055
crossref_primary_10_1016_j_tca_2024_179802
crossref_primary_10_1016_j_envres_2023_116978
crossref_primary_10_1016_j_energy_2022_125936
crossref_primary_10_1007_s11227_024_06099_5
crossref_primary_10_1016_j_jaap_2024_106875
crossref_primary_10_1016_j_energy_2025_135238
crossref_primary_10_1016_j_icheatmasstransfer_2022_105896
crossref_primary_10_1016_j_jpowsour_2021_229512
crossref_primary_10_1007_s10570_020_03183_w
crossref_primary_10_1016_j_enganabound_2024_106001
crossref_primary_10_3390_math11143095
crossref_primary_10_1007_s13399_024_06187_9
crossref_primary_10_1016_j_energy_2019_05_021
crossref_primary_10_1109_ACCESS_2021_3107802
crossref_primary_10_1016_j_bej_2020_107685
crossref_primary_10_1016_j_biortech_2020_123020
crossref_primary_10_1016_j_energy_2019_05_148
crossref_primary_10_1016_j_jocs_2021_101390
crossref_primary_10_1016_j_energy_2020_117010
crossref_primary_10_1007_s10694_022_01339_7
crossref_primary_10_1016_j_fuel_2022_123717
crossref_primary_10_1016_j_firesaf_2023_103917
crossref_primary_10_1016_j_powtec_2019_08_048
crossref_primary_10_1016_j_fuel_2024_133474
crossref_primary_10_1016_j_tca_2020_178708
crossref_primary_10_1155_2019_1480392
crossref_primary_10_1063_5_0268372
crossref_primary_10_3390_su13041929
crossref_primary_10_1016_j_chaos_2022_112660
crossref_primary_10_1016_j_ces_2024_121047
crossref_primary_10_3390_w15101931
crossref_primary_10_1007_s00289_022_04352_6
crossref_primary_10_1016_j_chemosphere_2019_124486
crossref_primary_10_1016_j_energy_2021_123012
crossref_primary_10_1016_j_energy_2022_124863
crossref_primary_10_3390_w13121670
crossref_primary_10_1016_j_energy_2019_116636
crossref_primary_10_1016_j_jmsy_2021_03_023
crossref_primary_10_1109_TSTE_2022_3175662
crossref_primary_10_3390_ma16072683
crossref_primary_10_1016_j_combustflame_2019_10_016
crossref_primary_10_3390_ma13245595
crossref_primary_10_1016_j_biortech_2019_122079
crossref_primary_10_1016_j_solener_2022_01_043
crossref_primary_10_1016_j_eswa_2023_119580
crossref_primary_10_1016_j_energy_2020_117624
crossref_primary_10_1016_j_techfore_2022_121858
crossref_primary_10_1177_0954406219897089
crossref_primary_10_3390_en16145302
crossref_primary_10_1016_j_seppur_2021_120130
crossref_primary_10_3390_pr10081431
crossref_primary_10_1016_j_jclepro_2020_121997
crossref_primary_10_1016_j_jenvman_2024_122752
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123072
crossref_primary_10_1177_0020294019878872
crossref_primary_10_1016_j_ijheatfluidflow_2025_110065
crossref_primary_10_1007_s11144_024_02727_6
crossref_primary_10_1016_j_jece_2024_113435
crossref_primary_10_1016_j_undsp_2023_01_004
crossref_primary_10_1016_j_fuel_2022_124344
crossref_primary_10_1016_j_indcrop_2022_115501
crossref_primary_10_3390_polym13244359
crossref_primary_10_1080_17445302_2024_2397281
crossref_primary_10_1080_00102202_2024_2329303
crossref_primary_10_3390_su17083677
crossref_primary_10_33889_IJMEMS_2024_9_1_002
crossref_primary_10_1007_s10694_021_01169_z
crossref_primary_10_1016_j_energy_2020_117831
crossref_primary_10_1016_j_biortech_2022_128481
crossref_primary_10_1016_j_jclepro_2023_139133
crossref_primary_10_1155_2020_1365195
crossref_primary_10_1016_j_applthermaleng_2021_116651
crossref_primary_10_1016_j_energy_2020_118404
crossref_primary_10_1007_s11705_022_2230_7
crossref_primary_10_1016_j_matpr_2022_05_313
crossref_primary_10_1016_j_proci_2022_08_057
crossref_primary_10_1061__ASCE_IS_1943_555X_0000647
crossref_primary_10_1080_00102202_2025_2540313
crossref_primary_10_1016_j_enconman_2019_111923
crossref_primary_10_1016_j_ins_2023_119606
crossref_primary_10_1016_j_renene_2025_123158
crossref_primary_10_1016_j_camwa_2024_05_026
crossref_primary_10_3390_polym12081744
crossref_primary_10_1016_j_wasman_2020_05_039
crossref_primary_10_1002_bbb_2589
crossref_primary_10_1016_j_energy_2021_120568
crossref_primary_10_1002_er_6742
crossref_primary_10_1016_j_measurement_2019_107028
crossref_primary_10_1088_1402_4896_acd305
crossref_primary_10_36306_konjes_1083352
crossref_primary_10_1007_s12010_019_03089_9
crossref_primary_10_1016_j_combustflame_2025_114148
crossref_primary_10_1016_j_fuel_2021_121724
crossref_primary_10_1016_j_fuel_2024_132469
crossref_primary_10_1002_celc_202200229
crossref_primary_10_1002_fam_2769
crossref_primary_10_1109_ACCESS_2020_2972826
crossref_primary_10_1007_s12010_020_03300_2
crossref_primary_10_1016_j_fuel_2022_126622
crossref_primary_10_1016_j_jenvman_2023_119080
crossref_primary_10_1007_s00024_025_03815_x
crossref_primary_10_1016_j_energy_2021_120791
crossref_primary_10_1016_j_fuel_2023_129836
crossref_primary_10_1016_j_fuproc_2020_106509
crossref_primary_10_1002_vnl_21841
crossref_primary_10_1016_j_indcrop_2020_112337
crossref_primary_10_1007_s00466_022_02188_5
crossref_primary_10_3390_su12052086
crossref_primary_10_1038_s41598_021_84729_1
crossref_primary_10_1016_j_jaap_2024_106669
crossref_primary_10_1007_s00500_020_04830_x
crossref_primary_10_3390_act12030097
crossref_primary_10_1016_j_firesaf_2023_103762
crossref_primary_10_3390_biomimetics7030084
crossref_primary_10_3390_en15186571
crossref_primary_10_1002_smtd_202500372
crossref_primary_10_1155_2022_4952215
crossref_primary_10_1007_s40430_021_02928_3
crossref_primary_10_1016_j_fuel_2022_127123
crossref_primary_10_1155_2022_3741370
crossref_primary_10_3390_electronics10040466
crossref_primary_10_1007_s11270_023_06795_7
crossref_primary_10_5004_dwt_2022_28817
crossref_primary_10_1016_j_fuel_2023_130338
crossref_primary_10_1017_jmo_2022_62
crossref_primary_10_1177_10775463221105698
crossref_primary_10_1016_j_jqsrt_2019_106600
crossref_primary_10_1016_j_enganabound_2022_04_001
crossref_primary_10_1080_10106049_2025_2480306
crossref_primary_10_1016_j_fuel_2021_121308
crossref_primary_10_1016_j_firesaf_2021_103333
crossref_primary_10_1016_j_jaap_2023_106279
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_1016_j_jaap_2023_106030
crossref_primary_10_1186_s13068_022_02203_0
crossref_primary_10_3390_ma13010158
crossref_primary_10_1016_j_fuel_2021_120696
crossref_primary_10_1080_21681015_2023_2184426
crossref_primary_10_1016_j_chemosphere_2020_126673
crossref_primary_10_1016_j_eqs_2024_04_004
crossref_primary_10_1093_ce_zkad081
crossref_primary_10_1016_j_energy_2022_123622
crossref_primary_10_1016_j_fuel_2019_116251
crossref_primary_10_1016_j_tsep_2024_103026
crossref_primary_10_1016_j_energy_2021_122112
crossref_primary_10_1016_j_aei_2024_102381
crossref_primary_10_1016_j_pnucene_2021_104108
crossref_primary_10_1016_j_renene_2020_08_024
crossref_primary_10_1016_j_energy_2019_116144
crossref_primary_10_3390_app13095584
Cites_doi 10.1016/j.applthermaleng.2018.03.045
10.1016/j.buildenv.2018.08.061
10.1016/j.energy.2018.03.075
10.1016/j.fuel.2018.02.143
10.1016/j.pecs.2006.12.001
10.1016/j.energy.2018.12.174
10.1016/j.fuel.2018.11.030
10.1021/ie0201157
10.1016/j.jclepro.2018.10.006
10.1016/j.enconman.2016.04.104
10.1016/j.firesaf.2005.12.004
10.1016/j.energy.2018.09.133
10.2478/s11696-009-0109-4
10.1016/j.enconman.2016.11.016
10.1007/s10973-017-6212-9
10.1016/j.knosys.2015.12.020
10.1016/j.pecs.2017.05.004
10.1021/ef501380c
10.1016/j.fuel.2017.11.113
10.1016/j.jclepro.2017.10.216
10.1016/j.cej.2007.05.024
10.3801/IAFSS.FSS.10-751
10.1016/j.fuel.2018.05.140
10.1016/j.enconman.2017.05.020
10.1016/j.biortech.2016.05.091
10.1016/j.biortech.2015.10.082
10.1016/j.tca.2011.03.034
10.1016/j.biortech.2018.07.134
10.1016/j.ces.2009.05.028
10.1016/j.fuproc.2015.05.001
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2019.04.030
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
EndPage 588
ExternalDocumentID 10_1016_j_energy_2019_04_030
S036054421930653X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c404t-1da1f1ea5c1fec339c3f794c686d430b5fb675bd51f167469e65ad471dba216e3
ISICitedReferencesCount 191
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470939500047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 10:16:02 EDT 2025
Wed Aug 13 08:36:35 EDT 2025
Sat Nov 29 01:40:49 EST 2025
Tue Nov 18 22:18:58 EST 2025
Fri Feb 23 02:23:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GA
Kinetic parameters
PSO
Optimization scheme
Biomass pyrolysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-1da1f1ea5c1fec339c3f794c686d430b5fb675bd51f167469e65ad471dba216e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2242776451
PQPubID 2045484
PageCount 7
ParticipantIDs proquest_miscellaneous_2271876338
proquest_journals_2242776451
crossref_citationtrail_10_1016_j_energy_2019_04_030
crossref_primary_10_1016_j_energy_2019_04_030
elsevier_sciencedirect_doi_10_1016_j_energy_2019_04_030
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Di Blasi (bib27) 2008; 34
Nzihou, Stanmore, Lyczko, Minh (bib7) 2019; 170
Prata, Schwaab, Lima, Pinto (bib16) 2009; 64
Grønli, Várhegyi, Di Blasi (bib30) 2002; 41
Song (bib9) 2011
Ding, Ezekoye, Zhang, Wang, Lu (bib11) 2018; 232
Navarro, López, Veses, Callén, García (bib6) 2018; 165
Kennedy, Eberhart (bib23) 1995
Ding, Zhou, Wang, Lu, Lu (bib12) 2018; 268
Guo, Zhao, Sun, Li, Lu (bib4) 2018; 215
Lautenberger, Rein, Fernandez-Pello (bib21) 2006; 41
Lautenberger, Fernandez-Pello (bib26) 2011; 10
Jiang, Xiao, He, Sun, Gong, Sun (bib29) 2015; 138
Abdelouahed, Leveneur, Vernieres-Hassimi, Balland, Bechara (bib17) 2017; 128
Yu, Wang, Wang (bib10) 2016; 96
Liu, Nie, Hua, Peng, Liu, Wei (bib14) 2019; 147
Li, Huang, Fleischmann, Rein, Ji (bib18) 2014; 28
Xu, Jiang, Wang (bib19) 2017; 146
Vyazovkin, Burnham, Criado, Pérez-Maqueda, Popescu, Sbirrazzuoli (bib15) 2011; 520
Gašparovič, Koreňová, Jelemenský (bib31) 2010; 64
Yu, Li (bib2) 2019; 207
Ding, Ezekoye, Lu, Wang, Zhou (bib32) 2017; 132
Cai, Nie, Chen, Yang, Liu (bib13) 2019; 239
Chen, Xu, Zhang, Lo, Lu (bib20) 2018; 136
Sharma, Sheth (bib1) 2018; 151
Wu, Huang, Xin, Chen (bib3) 2018; 172
Ding, Wang, Chaos, Chen, Lu (bib25) 2016; 200
Saha, Reddy, Ghoshal (bib22) 2008; 138
Ferreiro, Rabaçal, Costa (bib5) 2016; 125
Jiang, Zhang, Li, He, Gao, Zhou (bib8) 2018; 222
Buyukada (bib24) 2016; 216
Wang, Dai, Yang, Luo (bib28) 2017; 62
Liu (10.1016/j.energy.2019.04.030_bib14) 2019; 147
Ding (10.1016/j.energy.2019.04.030_bib11) 2018; 232
Prata (10.1016/j.energy.2019.04.030_bib16) 2009; 64
Chen (10.1016/j.energy.2019.04.030_bib20) 2018; 136
Ding (10.1016/j.energy.2019.04.030_bib25) 2016; 200
Ding (10.1016/j.energy.2019.04.030_bib32) 2017; 132
Di Blasi (10.1016/j.energy.2019.04.030_bib27) 2008; 34
Jiang (10.1016/j.energy.2019.04.030_bib8) 2018; 222
Lautenberger (10.1016/j.energy.2019.04.030_bib21) 2006; 41
Grønli (10.1016/j.energy.2019.04.030_bib30) 2002; 41
Gašparovič (10.1016/j.energy.2019.04.030_bib31) 2010; 64
Yu (10.1016/j.energy.2019.04.030_bib2) 2019; 207
Sharma (10.1016/j.energy.2019.04.030_bib1) 2018; 151
Abdelouahed (10.1016/j.energy.2019.04.030_bib17) 2017; 128
Cai (10.1016/j.energy.2019.04.030_bib13) 2019; 239
Wu (10.1016/j.energy.2019.04.030_bib3) 2018; 172
Li (10.1016/j.energy.2019.04.030_bib18) 2014; 28
Buyukada (10.1016/j.energy.2019.04.030_bib24) 2016; 216
Wang (10.1016/j.energy.2019.04.030_bib28) 2017; 62
Jiang (10.1016/j.energy.2019.04.030_bib29) 2015; 138
Yu (10.1016/j.energy.2019.04.030_bib10) 2016; 96
Guo (10.1016/j.energy.2019.04.030_bib4) 2018; 215
Navarro (10.1016/j.energy.2019.04.030_bib6) 2018; 165
Nzihou (10.1016/j.energy.2019.04.030_bib7) 2019; 170
Ding (10.1016/j.energy.2019.04.030_bib12) 2018; 268
Lautenberger (10.1016/j.energy.2019.04.030_bib26) 2011; 10
Xu (10.1016/j.energy.2019.04.030_bib19) 2017; 146
Kennedy (10.1016/j.energy.2019.04.030_bib23) 1995
Ferreiro (10.1016/j.energy.2019.04.030_bib5) 2016; 125
Vyazovkin (10.1016/j.energy.2019.04.030_bib15) 2011; 520
Song (10.1016/j.energy.2019.04.030_bib9) 2011
Saha (10.1016/j.energy.2019.04.030_bib22) 2008; 138
References_xml – volume: 216
  start-page: 280
  year: 2016
  end-page: 286
  ident: bib24
  article-title: Co-combustion of peanut hull and coal blends: artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation
  publication-title: Bioresour Technol
– volume: 136
  start-page: 484
  year: 2018
  end-page: 491
  ident: bib20
  article-title: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic
  publication-title: Appl Therm Eng
– volume: 34
  start-page: 47
  year: 2008
  end-page: 90
  ident: bib27
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog Energy Combust Sci
– volume: 520
  start-page: 1
  year: 2011
  end-page: 19
  ident: bib15
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim Acta
– volume: 146
  start-page: 124
  year: 2017
  end-page: 133
  ident: bib19
  article-title: Thermal decomposition of rape straw: pyrolysis modeling and kinetic study via particle swarm optimization
  publication-title: Energy Convers Manag
– volume: 215
  start-page: 735
  year: 2018
  end-page: 743
  ident: bib4
  article-title: Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment
  publication-title: Fuel
– volume: 132
  start-page: 102
  year: 2017
  end-page: 109
  ident: bib32
  article-title: Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood
  publication-title: Energy Convers Manag
– volume: 147
  start-page: 444
  year: 2019
  end-page: 460
  ident: bib14
  article-title: Research on tunnel ventilation systems: dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement
  publication-title: Build Environ
– volume: 172
  start-page: 466
  year: 2018
  end-page: 474
  ident: bib3
  article-title: Scenario analysis of carbon emissions’ anti-driving effect on Qingdao’s energy structure adjustment with an optimization model, Part Ⅰ: carbon emissions peak value prediction
  publication-title: J Clean Prod
– volume: 232
  start-page: 147
  year: 2018
  end-page: 153
  ident: bib11
  article-title: The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass
  publication-title: Fuel
– volume: 268
  start-page: 77
  year: 2018
  end-page: 80
  ident: bib12
  article-title: Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness
  publication-title: Bioresour Technol
– volume: 138
  start-page: 20
  year: 2008
  end-page: 29
  ident: bib22
  article-title: Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics
  publication-title: Chem Eng J
– volume: 200
  start-page: 658
  year: 2016
  end-page: 665
  ident: bib25
  article-title: Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution
  publication-title: Bioresour Technol
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib23
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE international conference on neural networks
– volume: 170
  start-page: 326
  year: 2019
  end-page: 337
  ident: bib7
  article-title: The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review
  publication-title: Energy
– volume: 207
  start-page: 772
  year: 2019
  end-page: 787
  ident: bib2
  article-title: A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles
  publication-title: J Clean Prod
– volume: 128
  start-page: 1201
  year: 2017
  end-page: 1213
  ident: bib17
  article-title: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis
  publication-title: J Therm Anal Calorim
– volume: 28
  start-page: 6130
  year: 2014
  end-page: 6139
  ident: bib18
  article-title: Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method
  publication-title: Energy Fuel
– volume: 41
  start-page: 204
  year: 2006
  end-page: 214
  ident: bib21
  article-title: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data
  publication-title: Fire Saf J
– volume: 96
  start-page: 156
  year: 2016
  end-page: 170
  ident: bib10
  article-title: Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization
  publication-title: Knowl Base Syst
– volume: 165
  start-page: 731
  year: 2018
  end-page: 742
  ident: bib6
  article-title: Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model
  publication-title: Energy
– volume: 62
  start-page: 33
  year: 2017
  end-page: 86
  ident: bib28
  article-title: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review
  publication-title: Prog Energy Combust Sci
– volume: 64
  start-page: 174
  year: 2010
  end-page: 181
  ident: bib31
  article-title: Kinetic study of wood chips decomposition by TGA
  publication-title: Chem Pap
– start-page: 2354
  year: 2011
  end-page: 2357
  ident: bib9
  article-title: Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm
  publication-title: Conference parameter estimation of the pyrolysis model for fir based on particle swarm algorithm. 2011 second international conference on mechanic automation and control engineering
– volume: 10
  start-page: 751
  year: 2011
  end-page: 764
  ident: bib26
  article-title: Optimization algorithms for material pyrolysis property estimation
  publication-title: Fire Saf Sci
– volume: 239
  start-page: 623
  year: 2019
  end-page: 635
  ident: bib13
  article-title: Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation
  publication-title: Fuel
– volume: 138
  start-page: 48
  year: 2015
  end-page: 55
  ident: bib29
  article-title: Application of genetic algorithm to pyrolysis of typical polymers
  publication-title: Fuel Process Technol
– volume: 151
  start-page: 1007
  year: 2018
  end-page: 1017
  ident: bib1
  article-title: Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA
  publication-title: Energy
– volume: 64
  start-page: 3953
  year: 2009
  end-page: 3967
  ident: bib16
  article-title: Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: application for an industrial polypropylene reactor
  publication-title: Chem Eng Sci
– volume: 41
  start-page: 4201
  year: 2002
  end-page: 4208
  ident: bib30
  article-title: Thermogravimetric analysis and devolatilization kinetics of wood
  publication-title: Ind Eng Chem Res
– volume: 222
  start-page: 11
  year: 2018
  end-page: 20
  ident: bib8
  article-title: Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS
  publication-title: Fuel
– volume: 125
  start-page: 290
  year: 2016
  end-page: 300
  ident: bib5
  article-title: A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues
  publication-title: Energy Convers Manag
– volume: 136
  start-page: 484
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib20
  article-title: Kinetic study on pyrolysis of waste phenolic fibre-reinforced plastic
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.03.045
– volume: 147
  start-page: 444
  year: 2019
  ident: 10.1016/j.energy.2019.04.030_bib14
  article-title: Research on tunnel ventilation systems: dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2018.08.061
– volume: 151
  start-page: 1007
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib1
  article-title: Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.075
– volume: 222
  start-page: 11
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib8
  article-title: Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.02.143
– volume: 34
  start-page: 47
  issue: 1
  year: 2008
  ident: 10.1016/j.energy.2019.04.030_bib27
  article-title: Modeling chemical and physical processes of wood and biomass pyrolysis
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2006.12.001
– volume: 170
  start-page: 326
  year: 2019
  ident: 10.1016/j.energy.2019.04.030_bib7
  article-title: The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.174
– volume: 239
  start-page: 623
  year: 2019
  ident: 10.1016/j.energy.2019.04.030_bib13
  article-title: Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.030
– volume: 41
  start-page: 4201
  issue: 17
  year: 2002
  ident: 10.1016/j.energy.2019.04.030_bib30
  article-title: Thermogravimetric analysis and devolatilization kinetics of wood
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0201157
– volume: 207
  start-page: 772
  year: 2019
  ident: 10.1016/j.energy.2019.04.030_bib2
  article-title: A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.10.006
– volume: 125
  start-page: 290
  year: 2016
  ident: 10.1016/j.energy.2019.04.030_bib5
  article-title: A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.04.104
– volume: 41
  start-page: 204
  issue: 3
  year: 2006
  ident: 10.1016/j.energy.2019.04.030_bib21
  article-title: The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data
  publication-title: Fire Saf J
  doi: 10.1016/j.firesaf.2005.12.004
– volume: 165
  start-page: 731
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib6
  article-title: Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.133
– volume: 64
  start-page: 174
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2019.04.030_bib31
  article-title: Kinetic study of wood chips decomposition by TGA
  publication-title: Chem Pap
  doi: 10.2478/s11696-009-0109-4
– volume: 132
  start-page: 102
  year: 2017
  ident: 10.1016/j.energy.2019.04.030_bib32
  article-title: Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.11.016
– volume: 128
  start-page: 1201
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2019.04.030_bib17
  article-title: Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-017-6212-9
– volume: 96
  start-page: 156
  year: 2016
  ident: 10.1016/j.energy.2019.04.030_bib10
  article-title: Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2015.12.020
– volume: 62
  start-page: 33
  year: 2017
  ident: 10.1016/j.energy.2019.04.030_bib28
  article-title: Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2017.05.004
– volume: 28
  start-page: 6130
  issue: 9
  year: 2014
  ident: 10.1016/j.energy.2019.04.030_bib18
  article-title: Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method
  publication-title: Energy Fuel
  doi: 10.1021/ef501380c
– volume: 215
  start-page: 735
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib4
  article-title: Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.11.113
– volume: 172
  start-page: 466
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib3
  article-title: Scenario analysis of carbon emissions’ anti-driving effect on Qingdao’s energy structure adjustment with an optimization model, Part Ⅰ: carbon emissions peak value prediction
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.10.216
– volume: 138
  start-page: 20
  issue: 1–3
  year: 2008
  ident: 10.1016/j.energy.2019.04.030_bib22
  article-title: Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2007.05.024
– volume: 10
  start-page: 751
  year: 2011
  ident: 10.1016/j.energy.2019.04.030_bib26
  article-title: Optimization algorithms for material pyrolysis property estimation
  publication-title: Fire Saf Sci
  doi: 10.3801/IAFSS.FSS.10-751
– volume: 232
  start-page: 147
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib11
  article-title: The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.05.140
– volume: 146
  start-page: 124
  year: 2017
  ident: 10.1016/j.energy.2019.04.030_bib19
  article-title: Thermal decomposition of rape straw: pyrolysis modeling and kinetic study via particle swarm optimization
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.05.020
– start-page: 1942
  year: 1995
  ident: 10.1016/j.energy.2019.04.030_bib23
  article-title: Particle swarm optimization
– volume: 216
  start-page: 280
  year: 2016
  ident: 10.1016/j.energy.2019.04.030_bib24
  article-title: Co-combustion of peanut hull and coal blends: artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.05.091
– volume: 200
  start-page: 658
  year: 2016
  ident: 10.1016/j.energy.2019.04.030_bib25
  article-title: Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.10.082
– volume: 520
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 10.1016/j.energy.2019.04.030_bib15
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2011.03.034
– volume: 268
  start-page: 77
  year: 2018
  ident: 10.1016/j.energy.2019.04.030_bib12
  article-title: Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.07.134
– volume: 64
  start-page: 3953
  issue: 18
  year: 2009
  ident: 10.1016/j.energy.2019.04.030_bib16
  article-title: Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: application for an industrial polypropylene reactor
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.05.028
– start-page: 2354
  year: 2011
  ident: 10.1016/j.energy.2019.04.030_bib9
  article-title: Parameter estimation of the pyrolysis model for fir based on particle swarm algorithm
– volume: 138
  start-page: 48
  year: 2015
  ident: 10.1016/j.energy.2019.04.030_bib29
  article-title: Application of genetic algorithm to pyrolysis of typical polymers
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2015.05.001
SSID ssj0005899
Score 2.6329365
Snippet Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 582
SubjectTerms Algorithms
Biomass
Biomass pyrolysis
Cellulose
Convergence
Genetic algorithms
Hemicellulose
Kinetic parameters
Lignin
Optimization scheme
Parameter estimation
Particle swarm optimization
PSO
Pyrolysis
Reaction mechanisms
system optimization
thermogravimetry
Title The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis
URI https://dx.doi.org/10.1016/j.energy.2019.04.030
https://www.proquest.com/docview/2242776451
https://www.proquest.com/docview/2271876338
Volume 176
WOSCitedRecordID wos000470939500047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKhwQXBIOJjoGMhLhUmZrEsZNjBd0AVR0SnehOlpM4oqNNuraZyoH_gT-ZZ8dOWia0ceASWY6dtH1f_T4_vx8IvQl8oNFZ6jvCp5FDvLTnhC6jjkhkDPqBebHUVUuGbDQKJ5Poc6v1y8bCXM9YnoebTbT4r6KGPhC2Cp39B3HXD4UOaIPQ4Qpih-udBS-SpFyqQu7KLC51lggdYgnM8LRfBQh8OesWsFzMTRxmF3a5UiVugqZKvKGIrKpCJE0t8e_ARlVuV5UqfK5caLQLiAreB_bdXfxYFjq3yY6hvworVPlMN5ULfW10eG8qqVyIfG5157b1-qvMZ0XTf1Fq84Gc2o5hWXmCTL-VYttuoUKlrH9VHa_VcwJCdtdiRruL4wBYf1BV-zPralBVKDIq2ty7sfpXhojLY6m_n_Lbi3QeW3Pys5Nse3TGT86HQz4eTMZvF1eOqkOmzutNUZZ7aM9jQRS20V7_42DyqXEbCnVN0vrT23BM7TN488V_ozt_KH7NZsaP0SOzDcH9Cj5PUEvm--iBjVJf7aODQRMBCQONClg9RT8BX9jiCwOUcIMvXGT4tK87AV94G1_Y4AtDs8EXtvjCBl-4wZd6mMEXrvH1DJ2fDMbvPjimhoeTkB5ZO24q3MyVIkjcTCa-HyV-BiogoSFNid-LgyyGLWucBjCKMkIjSQORAmNKY-G5VPoHqJ0XuXyOMGUyTIkHszNBaBgK5mbMz1x1VJxlxOsg3_7UPDEJ7lWdlRm3noyXvBIQVwLiPcJBQB3k1LMWVYKXW8YzK0VuSGpFPjmg8JaZR1bo3KwXKw4M2mOMksDtoNf1bVji1bmdyGVRqjFAIIEH-OHhHca8QA-bv9sRaq-XpXyJ7ifX6-lq-crA-TcNNcvR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+accuracy+and+efficiency+of+GA+and+PSO+optimization+schemes+on+estimating+reaction+kinetic+parameters+of+biomass+pyrolysis&rft.jtitle=Energy+%28Oxford%29&rft.au=Ding%2C+Yanming&rft.au=Zhang%2C+Wenlong&rft.au=Yu%2C+Lei&rft.au=Lu%2C+Kaihua&rft.date=2019-06-01&rft.issn=0360-5442&rft.volume=176+p.582-588&rft.spage=582&rft.epage=588&rft_id=info:doi/10.1016%2Fj.energy.2019.04.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon