Improved Gath–Geva clustering for fuzzy segmentation of hydrometeorological time series

In this paper, an improved Gath–Geva clustering algorithm is proposed for automatic fuzzy segmentation of univariate and multivariate hydrometeorological time series. The algorithm considers time series segmentation problem as Gath–Geva clustering with the minimum message length criterion as segment...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stochastic environmental research and risk assessment Ročník 26; číslo 1; s. 139 - 155
Hlavní autoři: Wang, Nini, Liu, Xiaodong, Yin, Jianchuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer-Verlag 01.01.2012
Springer Nature B.V
Témata:
ISSN:1436-3240, 1436-3259
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, an improved Gath–Geva clustering algorithm is proposed for automatic fuzzy segmentation of univariate and multivariate hydrometeorological time series. The algorithm considers time series segmentation problem as Gath–Geva clustering with the minimum message length criterion as segmentation order selection criterion. One characteristic of the improved Gath–Geva clustering algorithm is its unsupervised nature which can automatically determine the optimal segmentation order. Another characteristic is the application of the modified component-wise expectation maximization algorithm in Gath–Geva clustering which can avoid the drawbacks of the classical expectation maximization algorithm: the sensitivity to initialization and the need to avoid the boundary of the parameter space. The other characteristic is the improvement of numerical stability by integrating segmentation order selection into model parameter estimation procedure. The proposed algorithm has been experimentally tested on artificial and hydrometeorological time series. The obtained experimental results show the effectiveness of our proposed algorithm.
AbstractList In this paper, an improved Gath–Geva clustering algorithm is proposed for automatic fuzzy segmentation of univariate and multivariate hydrometeorological time series. The algorithm considers time series segmentation problem as Gath–Geva clustering with the minimum message length criterion as segmentation order selection criterion. One characteristic of the improved Gath–Geva clustering algorithm is its unsupervised nature which can automatically determine the optimal segmentation order. Another characteristic is the application of the modified component-wise expectation maximization algorithm in Gath–Geva clustering which can avoid the drawbacks of the classical expectation maximization algorithm: the sensitivity to initialization and the need to avoid the boundary of the parameter space. The other characteristic is the improvement of numerical stability by integrating segmentation order selection into model parameter estimation procedure. The proposed algorithm has been experimentally tested on artificial and hydrometeorological time series. The obtained experimental results show the effectiveness of our proposed algorithm.
In this paper, an improved Gath-Geva clustering algorithm is proposed for automatic fuzzy segmentation of univariate and multivariate hydrometeorological time series. The algorithm considers time series segmentation problem as Gath-Geva clustering with the minimum message length criterion as segmentation order selection criterion. One characteristic of the improved Gath-Geva clustering algorithm is its unsupervised nature which can automatically determine the optimal segmentation order. Another characteristic is the application of the modified component-wise expectation maximization algorithm in Gath-Geva clustering which can avoid the drawbacks of the classical expectation maximization algorithm: the sensitivity to initialization and the need to avoid the boundary of the parameter space. The other characteristic is the improvement of numerical stability by integrating segmentation order selection into model parameter estimation procedure. The proposed algorithm has been experimentally tested on artificial and hydrometeorological time series. The obtained experimental results show the effectiveness of our proposed algorithm.[PUBLICATION ABSTRACT]
Author Yin, Jianchuan
Wang, Nini
Liu, Xiaodong
Author_xml – sequence: 1
  givenname: Nini
  surname: Wang
  fullname: Wang, Nini
  email: wangnini2008@gmail.com
  organization: Research Center of Information and Control, Dalian University of Technology, Department of Mathematics, Dalian Maritime University
– sequence: 2
  givenname: Xiaodong
  surname: Liu
  fullname: Liu, Xiaodong
  organization: Research Center of Information and Control, Dalian University of Technology, Department of Mathematics, Dalian Maritime University
– sequence: 3
  givenname: Jianchuan
  surname: Yin
  fullname: Yin, Jianchuan
  organization: Navigation College, Dalian Maritime University, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University
BookMark eNp9kMFKxDAQhoMo6KoP4K148VSdSdOmPcqi64LgZS-eQradrpG2WZNU2D35Dr6hT2KXioKgp5nD_w3_fBO239mOGDtDuEQAeeUBhJQxIMaQCh7DHjtCkWRxwtNi_3sXcMgm3j8DoJSpOGKP83bt7CtV0UyHp4-39xm96qhseh_ImW4V1dZFdb_dbiJPq5a6oIOxXWTr6GlTOdtSIOtsY1em1E0UTEtD0BnyJ-yg1o2n0695zBa3N4vpXXz_MJtPr-_jUoAIMVZQ6UonVcUJl8uMkiXmtKyHdlrzHDOuyxQ5akCRg4CCY4allhKlKKBIjtnFeHZ446UnH1RrfElNozuyvVcFz_I8l5gMyfNfyWfbu27opgrIU0hzIYaQHEOls947qlVpxpeD06ZRCGrnW42-1eBb7XwrGEj8Ra6dabXb_MvwkfHrnWxyP5X-hj4BCXGVjA
CitedBy_id crossref_primary_10_1007_s00477_020_01817_w
crossref_primary_10_1016_j_eswa_2013_10_046
crossref_primary_10_1155_2020_8885625
crossref_primary_10_1016_j_physa_2024_129563
crossref_primary_10_1007_s00477_014_0897_0
crossref_primary_10_1016_j_ymssp_2019_106279
crossref_primary_10_1007_s00477_016_1323_6
crossref_primary_10_1002_sam_11448
crossref_primary_10_1108_IMDS_07_2014_0199
crossref_primary_10_1016_j_knosys_2022_108362
crossref_primary_10_1016_j_eswa_2013_04_026
crossref_primary_10_1016_j_neucom_2015_02_094
crossref_primary_10_1109_TSMC_2017_2735995
crossref_primary_10_3233_JIFS_169041
crossref_primary_10_1007_s00477_015_1192_4
crossref_primary_10_1016_j_asoc_2019_03_059
Cites_doi 10.1023/A:1024988512476
10.1109/TKDE.2004.17
10.1002/hyp.7064
10.1109/34.990138
10.1007/s00477-005-0013-6
10.1109/TPAMI.2010.44
10.1016/j.fss.2006.04.007
10.1109/TKDE.2010.161
10.1023/A:1007506220214
10.1109/34.192473
10.1111/j.1751-5823.2001.tb00456.x
10.1016/j.patrec.2008.06.013
10.1016/j.fss.2004.07.008
10.1109/TITB.2008.907984
10.1007/978-3-540-45231-7_26
10.1109/TNN.2010.2080319
10.1007/PL00013450
10.1016/j.patcog.2009.05.004
10.1007/s00477-009-0335-x
10.1109/TIP.2009.2039664
10.1002/hyp.7077
10.1007/s00477-007-0115-4
10.5194/npg-13-339-2006
10.1109/TNN.2006.882813
10.1007/s00477-006-0092-z
10.1016/j.patcog.2005.01.025
10.1007/s00477-006-0091-0
10.1007/s00477-003-0145-5
10.1109/TKDE.2008.29
ContentType Journal Article
Copyright Springer-Verlag 2011
Copyright_xml – notice: Springer-Verlag 2011
DBID AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
SOI
7SU
7TA
JG9
DOI 10.1007/s00477-011-0542-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
Environmental Engineering Abstracts
Materials Business File
Materials Research Database
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
Materials Research Database
Environmental Engineering Abstracts
Materials Business File
DatabaseTitleList
Materials Research Database
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
Computer Science
Environmental Sciences
EISSN 1436-3259
EndPage 155
ExternalDocumentID 2527463951
10_1007_s00477_011_0542_0
Genre Feature
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8S
Z8T
Z8U
Z8W
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7ST
7XB
8FD
8FK
C1K
FR3
KR7
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7SU
7TA
JG9
ID FETCH-LOGICAL-c404t-1d0dada3dd2e1bb6e3b18ebf754aa28162ac5121a014804092161ca771749093
IEDL.DBID M7S
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297839400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1436-3240
IngestDate Tue Oct 07 09:24:54 EDT 2025
Tue Nov 04 19:50:30 EST 2025
Sat Nov 29 02:24:47 EST 2025
Tue Nov 18 21:52:30 EST 2025
Fri Feb 21 02:25:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gath–Geva (GG) clustering
Minimum message length (MML) criterion
Time series segmentation
Segmentation order
Expectation maximization (EM) algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-1d0dada3dd2e1bb6e3b18ebf754aa28162ac5121a014804092161ca771749093
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 908505844
PQPubID 31669
PageCount 17
ParticipantIDs proquest_miscellaneous_926888713
proquest_journals_908505844
crossref_citationtrail_10_1007_s00477_011_0542_0
crossref_primary_10_1007_s00477_011_0542_0
springer_journals_10_1007_s00477_011_0542_0
PublicationCentury 2000
PublicationDate 20120100
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 1
  year: 2012
  text: 20120100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationTitleAbbrev Stoch Environ Res Risk Assess
PublicationYear 2012
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References AksoyHUnalNEGedikliALetter to the editorStoch Env Res Risk Assess20072144744910.1007/s00477-006-0091-0
FischDGruberTSickBSwiftrule: Mining comprehensible classification rules for time series analysisIEEE Trans Knowl Data Eng201123577478710.1109/TKDE.2010.161
KehagiasAFortinVTime series segmentation with shifting means hidden markov modelsNonlinear Process Geophys20061333935210.5194/npg-13-339-2006
GedikliAAksoyHUnalNESegmentation algorithm for long time series analysisStoch Env Res Risk Assess200822329130210.1007/s00477-007-0115-4
HubertPThe segmentation procedure as a tool for discrete modeling of hydrometeorological regimesStoch Env Res Risk Assess20001429730410.1007/PL00013450
LantermanADSchwarz, Wallace, and Rissanen intertwining themes in theories of model order estimationInt Stat Rev200169218521210.1111/j.1751-5823.2001.tb00456.x
VernieuweHDe BaetsBVerhoestNECComparison of clustering algorithms in the identification of Takagi-Sugeno models: A hydrological case studyFuzzy Sets Syst20061572876289610.1016/j.fss.2006.04.007
AthanasiadisEICavourasDASpyridonosPPGlotsosDTKalatzisIKNikiforidisGCComplementary DNA microarray image processing based on the fuzzy gaussian mixture modelIEEE Trans Inf Technol Biomed200913441942510.1109/TITB.2008.907984
KehagiasAA hidden markov model segmentation procedure for hydrological and environmental time seriesStoch Env Res Risk Assess20041811713010.1007/s00477-003-0145-5
KehagiasANidelkouEPetridisVA dynamic programming segmentation procedure for hydrological and environmental time seriesStoch Env Res Risk Assess200520779410.1007/s00477-005-0013-6
Abonyi J, Feil B, Nemeth S, Arva P (2003) Fuzzy clustering based segmentation of time-series. In: Lecture notes in computer science, pp 275–286
PovinelliRJohnsonMLindgrenAYeJTime series classification using Gaussian mixture models of reconstructed phase spacesIEEE Trans Knowl Data Eng200416677978310.1109/TKDE.2004.17
FuchsEGruberTNitschkeJSickBOn-line motif detection in time series with swiftmotifPattern Recognit2009423015303110.1016/j.patcog.2009.05.004
AbonyiJFeilBNemethSArvaPModified Gath–Geva clustering for fuzzy segmentation of multivariate time-seriesFuzzy Sets Syst2005149395610.1016/j.fss.2004.07.008
KeoghEKasettySOn the need for time series data mining benchmarks: a survey and empirical demonstrationData Mining Knowl Discov20037434937110.1023/A:1024988512476
GathIGevaABUnsupervised optimal fuzzy clusteringIEEE Trans Pattern Anal Mach Intell1989777378010.1109/34.192473
Celeux G, Chretien S, Forbes F, Mkhadri A (1999) A component-wise EM algorithm for mixtures. Technical report 3746, INRIA, France
AksoyHUnalNEPektasAOSmoothed minima baseflow separation tool for perennial and intermittent streamsHydrol Process2008224467447610.1002/hyp.7077
LiuXLinZWangHNovel online methods for time series segmentationIEEE Trans Knowl Data Eng2008201616162610.1109/TKDE.2008.29
NascimentoJCFigueiredoMMarquesJSTrajectory classification using switched dynamical hidden Markov modelsIEEE Trans Image Process20101951338134810.1109/TIP.2009.2039664
AksoyHGedikliAUnalNEKehagiasAFast segmentation algorithms for long hydrometeorological time seriesHydrol Process2008224600460810.1002/hyp.7064
FigueiredoMJainAKUnsupervised learning of finite mixture modelsIEEE Trans Pattern Anal Mach Intell200224338139610.1109/34.990138
FuchsEGruberTNitschkeJSickBOnline segmentation of time series based on polynomial least-squares approximationsIEEE Trans Pattern Anal Mach Intell201032122232224510.1109/TPAMI.2010.44
Seghouane A, Amari S (2007) The AIC criterion and symmetrizing the Kullback-Leibler divergence. IEEE Trans Neural Netw pp 97–106
FuZRobles-KellyAZhouJMixing linear SVMs for nonlinear classificationIEEE Trans Neural Netw2010211963197510.1109/TNN.2010.2080319
Hanlon B, Forbes C (2002) Model selection criteria for segmented time series from a bayesian approach to information compression. Working paper, Department of Econometrics and Statistics, Monash University, Melbourne, Australia
Warren LiaoTClustering of time series data-a surveyPattern Recognit2005381857187410.1016/j.patcog.2005.01.025
Bezdek JC, Dunn JC (1975) Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans Comput 835–838
ChatzisSVarvarigouTRobust fuzzy clustering using mixtures of student’s-t distributionsPattern Recognit Lett2008291901190510.1016/j.patrec.2008.06.013
BeefermanDBergerALaffertyJStatistical models for text segmentationMach Learn19993417721010.1023/A:1007506220214
KehagiasAPetridisVNidelkouEReply by the authors to the letter by Aksoy et alStoch Env Res Risk Assess20072145145510.1007/s00477-006-0092-z
GedikliAAksoyHUnalNEKehagiasAModified dynamic programming approach for offline segmentation of long hydrometeorological time seriesStoch Env Res Risk Assess20102454755710.1007/s00477-009-0335-x
A Kehagias (542_CR22) 2006; 13
H Vernieuwe (542_CR31) 2006; 157
542_CR1
A Kehagias (542_CR23) 2005; 20
S Chatzis (542_CR10) 2008; 29
A Gedikli (542_CR17) 2008; 22
A Kehagias (542_CR21) 2004; 18
A Kehagias (542_CR24) 2007; 21
EI Athanasiadis (542_CR6) 2009; 13
H Aksoy (542_CR5) 2008; 22
Z Fu (542_CR13) 2010; 21
542_CR9
542_CR8
JC Nascimento (542_CR28) 2010; 19
E Fuchs (542_CR15) 2010; 32
A Gedikli (542_CR18) 2010; 24
542_CR30
R Povinelli (542_CR29) 2004; 16
P Hubert (542_CR20) 2000; 14
D Fisch (542_CR12) 2011; 23
D Beeferman (542_CR7) 1999; 34
E Keogh (542_CR25) 2003; 7
J Abonyi (542_CR2) 2005; 149
H Aksoy (542_CR3) 2007; 21
542_CR19
X Liu (542_CR27) 2008; 20
I Gath (542_CR16) 1989; 7
H Aksoy (542_CR4) 2008; 22
AD Lanterman (542_CR26) 2001; 69
M Figueiredo (542_CR11) 2002; 24
T Warren Liao (542_CR32) 2005; 38
E Fuchs (542_CR14) 2009; 42
References_xml – reference: AthanasiadisEICavourasDASpyridonosPPGlotsosDTKalatzisIKNikiforidisGCComplementary DNA microarray image processing based on the fuzzy gaussian mixture modelIEEE Trans Inf Technol Biomed200913441942510.1109/TITB.2008.907984
– reference: Celeux G, Chretien S, Forbes F, Mkhadri A (1999) A component-wise EM algorithm for mixtures. Technical report 3746, INRIA, France
– reference: FischDGruberTSickBSwiftrule: Mining comprehensible classification rules for time series analysisIEEE Trans Knowl Data Eng201123577478710.1109/TKDE.2010.161
– reference: KehagiasAFortinVTime series segmentation with shifting means hidden markov modelsNonlinear Process Geophys20061333935210.5194/npg-13-339-2006
– reference: KehagiasAA hidden markov model segmentation procedure for hydrological and environmental time seriesStoch Env Res Risk Assess20041811713010.1007/s00477-003-0145-5
– reference: PovinelliRJohnsonMLindgrenAYeJTime series classification using Gaussian mixture models of reconstructed phase spacesIEEE Trans Knowl Data Eng200416677978310.1109/TKDE.2004.17
– reference: AksoyHUnalNEGedikliALetter to the editorStoch Env Res Risk Assess20072144744910.1007/s00477-006-0091-0
– reference: AksoyHUnalNEPektasAOSmoothed minima baseflow separation tool for perennial and intermittent streamsHydrol Process2008224467447610.1002/hyp.7077
– reference: GedikliAAksoyHUnalNEKehagiasAModified dynamic programming approach for offline segmentation of long hydrometeorological time seriesStoch Env Res Risk Assess20102454755710.1007/s00477-009-0335-x
– reference: Hanlon B, Forbes C (2002) Model selection criteria for segmented time series from a bayesian approach to information compression. Working paper, Department of Econometrics and Statistics, Monash University, Melbourne, Australia
– reference: BeefermanDBergerALaffertyJStatistical models for text segmentationMach Learn19993417721010.1023/A:1007506220214
– reference: Warren LiaoTClustering of time series data-a surveyPattern Recognit2005381857187410.1016/j.patcog.2005.01.025
– reference: KehagiasAPetridisVNidelkouEReply by the authors to the letter by Aksoy et alStoch Env Res Risk Assess20072145145510.1007/s00477-006-0092-z
– reference: LantermanADSchwarz, Wallace, and Rissanen intertwining themes in theories of model order estimationInt Stat Rev200169218521210.1111/j.1751-5823.2001.tb00456.x
– reference: NascimentoJCFigueiredoMMarquesJSTrajectory classification using switched dynamical hidden Markov modelsIEEE Trans Image Process20101951338134810.1109/TIP.2009.2039664
– reference: Abonyi J, Feil B, Nemeth S, Arva P (2003) Fuzzy clustering based segmentation of time-series. In: Lecture notes in computer science, pp 275–286
– reference: AksoyHGedikliAUnalNEKehagiasAFast segmentation algorithms for long hydrometeorological time seriesHydrol Process2008224600460810.1002/hyp.7064
– reference: FuchsEGruberTNitschkeJSickBOnline segmentation of time series based on polynomial least-squares approximationsIEEE Trans Pattern Anal Mach Intell201032122232224510.1109/TPAMI.2010.44
– reference: HubertPThe segmentation procedure as a tool for discrete modeling of hydrometeorological regimesStoch Env Res Risk Assess20001429730410.1007/PL00013450
– reference: Bezdek JC, Dunn JC (1975) Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans Comput 835–838
– reference: KeoghEKasettySOn the need for time series data mining benchmarks: a survey and empirical demonstrationData Mining Knowl Discov20037434937110.1023/A:1024988512476
– reference: LiuXLinZWangHNovel online methods for time series segmentationIEEE Trans Knowl Data Eng2008201616162610.1109/TKDE.2008.29
– reference: GathIGevaABUnsupervised optimal fuzzy clusteringIEEE Trans Pattern Anal Mach Intell1989777378010.1109/34.192473
– reference: GedikliAAksoyHUnalNESegmentation algorithm for long time series analysisStoch Env Res Risk Assess200822329130210.1007/s00477-007-0115-4
– reference: FuchsEGruberTNitschkeJSickBOn-line motif detection in time series with swiftmotifPattern Recognit2009423015303110.1016/j.patcog.2009.05.004
– reference: ChatzisSVarvarigouTRobust fuzzy clustering using mixtures of student’s-t distributionsPattern Recognit Lett2008291901190510.1016/j.patrec.2008.06.013
– reference: VernieuweHDe BaetsBVerhoestNECComparison of clustering algorithms in the identification of Takagi-Sugeno models: A hydrological case studyFuzzy Sets Syst20061572876289610.1016/j.fss.2006.04.007
– reference: Seghouane A, Amari S (2007) The AIC criterion and symmetrizing the Kullback-Leibler divergence. IEEE Trans Neural Netw pp 97–106
– reference: FuZRobles-KellyAZhouJMixing linear SVMs for nonlinear classificationIEEE Trans Neural Netw2010211963197510.1109/TNN.2010.2080319
– reference: KehagiasANidelkouEPetridisVA dynamic programming segmentation procedure for hydrological and environmental time seriesStoch Env Res Risk Assess200520779410.1007/s00477-005-0013-6
– reference: AbonyiJFeilBNemethSArvaPModified Gath–Geva clustering for fuzzy segmentation of multivariate time-seriesFuzzy Sets Syst2005149395610.1016/j.fss.2004.07.008
– reference: FigueiredoMJainAKUnsupervised learning of finite mixture modelsIEEE Trans Pattern Anal Mach Intell200224338139610.1109/34.990138
– volume: 7
  start-page: 349
  issue: 4
  year: 2003
  ident: 542_CR25
  publication-title: Data Mining Knowl Discov
  doi: 10.1023/A:1024988512476
– volume: 16
  start-page: 779
  issue: 6
  year: 2004
  ident: 542_CR29
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.17
– volume: 22
  start-page: 4600
  year: 2008
  ident: 542_CR4
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7064
– volume: 24
  start-page: 381
  issue: 3
  year: 2002
  ident: 542_CR11
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.990138
– volume: 20
  start-page: 77
  year: 2005
  ident: 542_CR23
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-005-0013-6
– ident: 542_CR9
– volume: 32
  start-page: 2232
  issue: 12
  year: 2010
  ident: 542_CR15
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.44
– volume: 157
  start-page: 2876
  year: 2006
  ident: 542_CR31
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2006.04.007
– volume: 23
  start-page: 774
  issue: 5
  year: 2011
  ident: 542_CR12
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2010.161
– volume: 34
  start-page: 177
  year: 1999
  ident: 542_CR7
  publication-title: Mach Learn
  doi: 10.1023/A:1007506220214
– volume: 7
  start-page: 773
  year: 1989
  ident: 542_CR16
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.192473
– volume: 69
  start-page: 185
  issue: 2
  year: 2001
  ident: 542_CR26
  publication-title: Int Stat Rev
  doi: 10.1111/j.1751-5823.2001.tb00456.x
– volume: 29
  start-page: 1901
  year: 2008
  ident: 542_CR10
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2008.06.013
– volume: 149
  start-page: 39
  year: 2005
  ident: 542_CR2
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2004.07.008
– ident: 542_CR19
– volume: 13
  start-page: 419
  issue: 4
  year: 2009
  ident: 542_CR6
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2008.907984
– ident: 542_CR1
  doi: 10.1007/978-3-540-45231-7_26
– volume: 21
  start-page: 1963
  year: 2010
  ident: 542_CR13
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2080319
– volume: 14
  start-page: 297
  year: 2000
  ident: 542_CR20
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/PL00013450
– ident: 542_CR8
– volume: 42
  start-page: 3015
  year: 2009
  ident: 542_CR14
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2009.05.004
– volume: 24
  start-page: 547
  year: 2010
  ident: 542_CR18
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-009-0335-x
– volume: 19
  start-page: 1338
  issue: 5
  year: 2010
  ident: 542_CR28
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2009.2039664
– volume: 22
  start-page: 4467
  year: 2008
  ident: 542_CR5
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7077
– volume: 22
  start-page: 291
  issue: 3
  year: 2008
  ident: 542_CR17
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-007-0115-4
– volume: 13
  start-page: 339
  year: 2006
  ident: 542_CR22
  publication-title: Nonlinear Process Geophys
  doi: 10.5194/npg-13-339-2006
– ident: 542_CR30
  doi: 10.1109/TNN.2006.882813
– volume: 21
  start-page: 451
  year: 2007
  ident: 542_CR24
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-006-0092-z
– volume: 38
  start-page: 1857
  year: 2005
  ident: 542_CR32
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.01.025
– volume: 21
  start-page: 447
  year: 2007
  ident: 542_CR3
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-006-0091-0
– volume: 18
  start-page: 117
  year: 2004
  ident: 542_CR21
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-003-0145-5
– volume: 20
  start-page: 1616
  year: 2008
  ident: 542_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.29
SSID ssj0017754
ssib007539910
ssib057179955
ssib001127189
Score 2.0369842
Snippet In this paper, an improved Gath–Geva clustering algorithm is proposed for automatic fuzzy segmentation of univariate and multivariate hydrometeorological time...
In this paper, an improved Gath-Geva clustering algorithm is proposed for automatic fuzzy segmentation of univariate and multivariate hydrometeorological time...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms Algorithms
Aquatic Pollution
Chemistry and Earth Sciences
Cluster analysis
Clustering
Computational Intelligence
Computer Science
Criteria
Earth and Environmental Science
Earth Sciences
Environment
Expectations
Fuzzy
Hydrology
Math. Appl. in Environmental Science
Mathematical models
Maximization
Original Paper
Physics
Probability Theory and Stochastic Processes
Segmentation
Statistics for Engineering
Time series
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7EB3qxWi3WquzBkxJIsnkeRdp6KoJF6ilsdjdWqIk0baE9-R_8h_4SZ9NNiqKC3kIy2YTZ3XnufANwTkMRu5IFhpugCHRM6hjoRqhInOOifvBRQCZFswm_1wsGg_BW13Hn5Wn3MiVZSOqq2E0BG6pjkjiQ69gG-ukbrgKbUS763X2VOlCQbkVJEfUMhTZXpjK_G-KzMlpZmF-SooWu6dT-9Zd7sKtNS3K1XAv7sCbTOtTKtg1E7-I6NNqr4jak1_fzOmzrjujDeR22iqOhPD-Ah2XcQQrSRWvx_fWtK2eM8NFUQSzgrxE0e0kyXSzmJJePz7qWKSVZQobzAg1hIrNxKWOJamZP1LqX-SH0O-3-9Y2hGzIY3DGdiWEJUzDBqBC2tOLYkzS2AhknyHHG7MDybMbRgLCYClOidAhttCc589FldEIzpA1YT7NUHgERVNAkCLjPbIkakQaJRfHa9YXw4lDyJpjlxERcg5WrnhmjqIJZLhgdIaMjxejIbMJF9crLEqnjN-JWOduR3rR5FCr4PjTInCaQ6inuNpVCYanMpkhiewGKZYs24bKc_9UAP37u-E_ULdhBs8xeBnpOYH0ynspT2OSzyVM-PitW-wfUbvkt
  priority: 102
  providerName: Springer Nature
Title Improved Gath–Geva clustering for fuzzy segmentation of hydrometeorological time series
URI https://link.springer.com/article/10.1007/s00477-011-0542-0
https://www.proquest.com/docview/908505844
https://www.proquest.com/docview/926888713
Volume 26
WOSCitedRecordID wos000297839400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: M7S
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: PATMY
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: M2P
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: RSV
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gV58i-tjycGTEmyTPk-isuppWVTUW0mTVAVtdbsrrL_eSZt2UdCLl1JI2oTMZGYyM_kG4IDHKvW1iKifoQj0HO5RPEYYT5zno34IUUBmVbGJsN-PHh7igc3NKW1aZSMTK0GtCml85MexwVZDbemdvL1TUzTKBFdtBY1ZmDcgCW6VuXfTBhEMuFt1uYgH1ODONUFNp8YQDU3OJc7K9xh1vqulqa35IzxaaZ2LlX_OdxWWrblJTmv-WIMZna_DVm96uw0b7fYu12HRlkR_mmzAfe1u0IpcopFIL_WHIPJlbHAVcKYEbV2SjT8_J6TUj6_2AlNOiow8TSoIhJEuho1gJaaCPTHMrstNuL3o3Z5fUVuFgUrP8UbUVY4SSnClmHbTNNA8dSOdZri4QrDIDZiQaDW4wvgmUSTEDI1IKUI8J3qxE_MtmMuLXG8DUVzxLIpkKJhGNcijzOX47odKBWmsZQechgaJtAjlplDGS9JiK1dkS5BsiSFb4nTgsP3krYbn-KvzbkOqxO7UMmnp1AHStuIWM3ETketijF1YEKEsdnkHjhp2mP7g1-F2_hxuF5bQ9mK1N2cP5kbDsd6HBfkxei6HXZg_6_UH111kaDboVmyNz-ubuy9QxPvy
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB6hBYle2kKL2NIWH9pLK6uJ7bwOFepjeQi6QtVK5WY5tlOQIKGbLNXym_iRHee1AgluHHqLZCdW7M8z4xnPNwDveGLSwKqYBhmKQOFxQfEY4TxxIkD9EKGAzOpiE9F4HJ-cJMdLcNPlwrhrlZ1MrAW1KbTzkX9KHLcaakuxc_mHuqJRLrjaVdBoUHFo53_xxFZ-PviOy_uesd3R5Ns-bYsKUC08UVHfeEYZxY1h1k_T0PLUj22aRYFQisV-yJRGJegr52pDhCcMbSKtIjz2iKSmXkKBvyy4CIMBLH8djY9_9lELxyZXZzPxkDqiuy6K6jWkpZG75InTEAhGvdt6cGHc3onH1mpu99n_NUHP4WlrTpMvDf7XYMnm67AxWmTvYWMrvsp1WG1Lvp_OX8Cvxp1iDdlDI5ju2StF9PnM8UbgxBC05Uk2u76ek9L-vmgTtHJSZOR0XlM8VLaYdoqDVGcXlrjNbMuXMHmM_92AQV7kdhOI4YZncawjxSyqeR5nPsfnIDImTBOrh-B1Sy51y8DuCoGcy547ukaJRJRIhxLpDeFD_8plQz_yUOetDhmylUSl7GExBNK3oghxcSGV22KGXVgYo67x-RA-duhbfODe4V49ONw2rO5PfhzJo4Px4RY8QTuTNZ6r1zCopjP7Blb0VXVWTt-2u4iAfGRY_gNJm1Pv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWwRceBQqlvLwAS4gq4ntvA4IAd0tVdFqhSrRm-XYDq3UJmWTLdr-Mn4e48TJCiR664FbJDuxYn-eGc94vgF4xTOTR1alNCpQBIqAC4rHCOeJExHqhwQFZNEWm0hms_T4OJtvwK8-F8Zdq-xlYiuoTaWdj3w3c9xqqC3FbuFvRcz3pu8vflBXQMoFWvtqGh1CDu3qJ57e6ncHe7jUrxmbTo4-faa-wADVIhANDU1glFHcGGbDPI8tz8PU5kUSCaVYGsZMaVSIoXJuN0R7xtA-0irBI5DIWhomFP6bCccjzwg2P05m869DBMMxy7WZTTymjvSuj6gGHYFp4i584pREgtHgT524NnT_is22Km96__-drAdwz5vZ5EO3Lx7Chi23YHuyzurDRi_W6i2440vBn6wewbfOzWIN2UfjmO7bS0X02dLxSeAkEbTxSbG8ulqR2n4_94lbJakKcrJqqR8aWy16hUKa03NL3Ca39WM4uon_3YZRWZX2CRDDDS_SVCeKWVT_PC1Cjs9RYkycZ1aPIeiXX2rPzO4KhJzJgVO6RYxExEiHGBmM4c3wykVHS3Jd550eJdJLqFoOEBkDGVpRtLh4kSpttcQuLE5RB4V8DG97JK4_8M_hnl473Eu4jViUXw5mhztwF81P1jm0nsGoWSztc7ilL5vTevHCbygC8oZR-RvbJ1yy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Gath%E2%80%93Geva+clustering+for+fuzzy+segmentation+of+hydrometeorological+time+series&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Wang%2C+Nini&rft.au=Liu%2C+Xiaodong&rft.au=Yin%2C+Jianchuan&rft.date=2012-01-01&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=26&rft.issue=1&rft.spage=139&rft.epage=155&rft_id=info:doi/10.1007%2Fs00477-011-0542-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00477_011_0542_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon