Environmental benefit assessment of steel slag utilization and carbonation: A systematic review

The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large porti...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 806; no. Pt 1; p. 150280
Main Authors: Li, Lufan, Ling, Tung-Chai, Pan, Shu-Yuan
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.02.2022
Subjects:
ISSN:0048-9697, 1879-1026, 1879-1026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized. [Display omitted] •System expansion and allocation choices may lead to opposite interpretations.•Environmental benefit caused by replacement of steel slag aggregate is limited.•Mitigation of climate change is easy to be achieved by reducing cement addition.•Carbonation method should be optimized to maximize the carbon capture benefit.
AbstractList The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized.
The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized.The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized.
The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized. [Display omitted] •System expansion and allocation choices may lead to opposite interpretations.•Environmental benefit caused by replacement of steel slag aggregate is limited.•Mitigation of climate change is easy to be achieved by reducing cement addition.•Carbonation method should be optimized to maximize the carbon capture benefit.
ArticleNumber 150280
Author Ling, Tung-Chai
Li, Lufan
Pan, Shu-Yuan
Author_xml – sequence: 1
  givenname: Lufan
  surname: Li
  fullname: Li, Lufan
  organization: College of Civil Engineering, Hunan University, 410082 Changsha, China
– sequence: 2
  givenname: Tung-Chai
  surname: Ling
  fullname: Ling, Tung-Chai
  email: tcling@hnu.edu.cn
  organization: College of Civil Engineering, Hunan University, 410082 Changsha, China
– sequence: 3
  givenname: Shu-Yuan
  surname: Pan
  fullname: Pan, Shu-Yuan
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10673, Taiwan, ROC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34560457$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtPHDEQhC0EguXxFxIfc5mNPfb4ESmHFQISCYkLnC2Ppwd5NWMT27sR-fXxssAhF9KXVre-qkPVKToMMQBCnylZUkLF1_UyO19igbBdtqSlS9qRVpEDtKBK6oaSVhyiBSFcNVpoeYJOc16TOlLRY3TCeCcI7-QCmauw9SmGGUKxE-4hwOgLtjlDzrsnjiPOBWDCebKPeFP85P_Y4mPANgzY2dTH8HJ_wyucnys719PhBFsPv8_R0WinDBev-ww9XF_dX_5obu9ufl6ubhvHCS8N7bnUUoMDqoFxqwbVA4fBCUGIGqyWEijVWvSWqVa1kkk2cCHbkfWjlSM7Q1_2vk8p_tpALmb22cE02QBxk00rmOCMStJ9jHZSiI53VFf00yu66WcYzFPys03P5i2_Csg94FLMOcH4jlBidk2ZtXlvyuyaMvumqvL7P8qKveRYkvXTf-hXez3UVGvSacdBcDD4BK6YIfoPPf4C80O10Q
CitedBy_id crossref_primary_10_1007_s11595_022_2554_7
crossref_primary_10_1007_s11837_023_05757_y
crossref_primary_10_1515_rams_2025_0086
crossref_primary_10_3390_jmse11051054
crossref_primary_10_3390_pr11030783
crossref_primary_10_3390_pr11092590
crossref_primary_10_3390_su14148615
crossref_primary_10_1021_acs_energyfuels_5c00935
crossref_primary_10_1080_21650373_2023_2288620
crossref_primary_10_3390_cryst11121498
crossref_primary_10_3390_ma15031242
crossref_primary_10_1007_s11356_023_27898_y
crossref_primary_10_1007_s41062_024_01592_5
crossref_primary_10_1080_15567036_2022_2120933
crossref_primary_10_1088_2631_8695_adf944
crossref_primary_10_1007_s11440_023_01925_1
crossref_primary_10_3390_app15158516
crossref_primary_10_1007_s44290_025_00276_y
crossref_primary_10_3390_buildings13112823
crossref_primary_10_3390_su14127288
crossref_primary_10_1080_21650373_2025_2485260
crossref_primary_10_3390_w15040657
crossref_primary_10_1016_j_cej_2024_155379
crossref_primary_10_1016_j_mineng_2023_108374
crossref_primary_10_1016_j_cemconcomp_2021_104385
crossref_primary_10_1002_cnl2_129
crossref_primary_10_1016_j_cej_2022_140552
crossref_primary_10_1007_s42243_025_01534_0
crossref_primary_10_1016_j_conbuildmat_2021_125799
crossref_primary_10_1002_adsu_202300559
crossref_primary_10_1016_j_microc_2025_114482
crossref_primary_10_3390_su151310419
crossref_primary_10_4491_eer_2024_032
crossref_primary_10_1080_19648189_2025_2477059
crossref_primary_10_3390_min12121520
crossref_primary_10_1016_j_ijmst_2022_01_001
crossref_primary_10_3390_ma16114055
crossref_primary_10_1007_s40430_023_04346_z
crossref_primary_10_1061_JMCEE7_MTENG_13979
crossref_primary_10_1007_s10098_024_03006_7
crossref_primary_10_1007_s11356_023_26884_8
crossref_primary_10_3390_jmse11071418
crossref_primary_10_1039_D2EW00649A
crossref_primary_10_1021_acssuschemeng_4c03193
crossref_primary_10_3390_ma16072930
crossref_primary_10_3390_su142315502
crossref_primary_10_3390_su15107991
crossref_primary_10_3390_su17156979
Cites_doi 10.1016/j.jcou.2019.06.001
10.1016/j.jclepro.2018.08.163
10.1139/cjce-2017-0603
10.1016/j.envint.2009.07.009
10.1016/j.apgeochem.2008.02.001
10.1016/j.rser.2020.109799
10.1016/j.ijggc.2013.04.004
10.4209/aaqr.2012.06.0149
10.1016/j.conbuildmat.2007.11.001
10.1016/j.jclepro.2020.120678
10.1016/j.matchar.2009.10.004
10.1016/j.proenv.2012.10.108
10.3389/fchem.2020.571504
10.1016/j.conbuildmat.2020.121581
10.1016/j.jcou.2019.12.005
10.1016/j.cemconres.2010.11.018
10.1007/s10163-019-00889-3
10.1016/j.rser.2021.110935
10.1016/j.jcou.2019.11.009
10.1155/2011/463638
10.1021/es050795f
10.1016/j.rser.2015.05.026
10.1016/j.egypro.2009.02.314
10.1016/j.egypro.2011.02.145
10.1016/j.ijggc.2012.01.014
10.1016/j.rser.2020.110553
10.1007/BF02978849
10.1016/j.resconrec.2015.05.009
10.1065/lca2006.02.002
10.1002/cssc.201300436
10.1080/19648189.2014.922505
10.1016/j.conbuildmat.2019.03.078
10.1016/j.wasman.2012.07.008
10.1016/j.resconrec.2011.03.010
10.1016/j.resconrec.2018.04.023
10.1016/j.mineng.2014.01.011
10.1016/j.jclepro.2014.05.064
10.1016/j.heliyon.2020.e03697
10.1016/j.measurement.2016.10.057
10.1016/j.cemconcomp.2009.05.006
10.1007/BF02986351
10.1007/s11367-018-1440-1
10.1021/es304975y
10.1016/j.conbuildmat.2013.06.044
10.1016/j.jclepro.2016.11.110
10.1016/j.jclepro.2021.127867
10.1016/j.proenv.2017.03.138
10.1016/j.cemconcomp.2015.10.002
10.1016/j.cemconres.2016.05.013
10.1016/j.jhazmat.2014.12.046
10.1016/j.conbuildmat.2009.12.028
10.1016/j.cemconcomp.2012.01.004
10.1016/j.conbuildmat.2021.122783
10.1016/j.resconrec.2021.105740
10.1016/j.envpol.2009.06.007
10.1016/j.rser.2014.07.093
10.1016/j.cej.2014.02.051
10.1016/j.conbuildmat.2015.09.028
10.1016/j.cej.2021.128756
10.1016/j.jclepro.2018.10.058
10.1016/j.jclepro.2018.01.007
10.1617/s11527-021-01768-w
10.1038/s41893-020-0486-9
10.1016/j.watres.2006.02.001
10.1016/j.jhazmat.2014.12.059
10.1016/j.jhazmat.2004.04.019
10.1179/1743281211Y.0000000054
10.1016/j.jcou.2017.01.009
10.1016/j.wasman.2020.12.031
10.1016/j.ecolecon.2009.07.006
10.1016/j.cemconcomp.2017.07.018
10.3390/met10101347
10.1038/s41467-018-06886-8
10.1016/j.cemconres.2012.02.016
10.1016/j.powtec.2013.04.016
10.1016/j.conbuildmat.2021.124158
10.1016/j.conbuildmat.2021.123876
10.1007/BF02978472
10.1016/j.jclepro.2014.08.004
10.1016/j.resconrec.2011.03.005
10.1061/(ASCE)0899-1561(2004)16:3(230)
10.1016/j.matdes.2014.06.002
10.1016/j.conbuildmat.2008.10.003
10.1016/j.egypro.2017.03.1675
10.1016/j.jhazmat.2011.02.015
10.1016/j.jclepro.2015.06.006
10.1007/s12649-010-9047-1
10.1016/j.enbuild.2015.04.036
10.1016/j.jcou.2014.12.001
10.1155/2013/198240
10.1016/j.jclepro.2014.10.013
10.1016/S1006-706X(11)60087-3
10.1016/j.cemconcomp.2019.103489
10.4209/aaqr.2013.04.0121
10.1016/j.resconrec.2010.04.001
10.1016/j.tca.2015.02.018
10.1179/174328106X94816
10.1065/lca2005.02.201
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.150280
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 34560457
10_1016_j_scitotenv_2021_150280
S0048969721053572
Genre Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c404t-1b47979ece19e34a8d8be4edc66008da977e11996ba382827373d4672f3bfa7f3
ISICitedReferencesCount 155
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702844300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Mon Sep 29 04:39:21 EDT 2025
Thu Oct 02 11:07:11 EDT 2025
Mon Jul 21 06:06:22 EDT 2025
Sat Nov 29 07:21:25 EST 2025
Tue Nov 18 22:42:12 EST 2025
Sun Apr 06 06:53:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Life cycle assessment
Environmental assessment
Mineral carbonation
Global warming potential
Steel slag
Construction material
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-1b47979ece19e34a8d8be4edc66008da977e11996ba382827373d4672f3bfa7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
PMID 34560457
PQID 2576654519
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636431705
proquest_miscellaneous_2576654519
pubmed_primary_34560457
crossref_primary_10_1016_j_scitotenv_2021_150280
crossref_citationtrail_10_1016_j_scitotenv_2021_150280
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_150280
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
2022-Feb-01
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Setién, Hernández, González (bb0465) 2009; 23
Zhou, Zhong, Dang, Li (bb0625) 2011
Wang, Peiyu, Jianwei, Bo (bb0530) 2015; 47
Eloneva (bb0140) 2009
Li (bb0340) 2011; 41
Yi, Xu, Cheng, Wang, Wan, Chen (bb0575) 2012; 16
Zhang, Luo, Wang, Wang, Xu, Xiao (bb0605) 2019; 209
Ren (bb0435) 2020; 19
Ukwattage, Ranjith, Li (bb0505) 2017; 97
Jiang, Ling, Shi, Pan (bb0290) 2018; 136
Kim, Chae (bb0300) 2016
Mo, Zhang, Deng, Jin, Al-Tabbaa, Wang (bb0385) 2017; 83
Hischier, Reichart (bb0235) 2003; 8
Baciocchi, Costa, Polettini, Pomi (bb0040) 2015; 286
Pan, Chang, Chiang (bb0395) 2012; 12
Yazoghli-Marzouk, Dauvergne, Chebbi, Jullien (bb0570) 2017
Arribas, Vegas, San-José, Manso (bb0025) 2014; 63
Di Maria, Snellings, Alaerts, Quaghebeur, Van Acker (bb0125) 2019
Birat (bb0045) 2012; 39
Cristina Fernandes Deus, Marques de Almeida Bertani, Constantino Meirelles, Lorena Queiroz Moreira, Theodoro Büll, Maximino Fernandes, de Aquino Vidal Lacerda Soares (bb0110) 2019
Kriskova, Pontikes, Cizer, Mertens, Veulemans, Geysen, Jones, Vandewalle, Van Balen, Blanpain (bb0315) 2012; 42
Goedkoop, Spriensma (bb0200) 2001
Mattila, Hudd, Zevenhoven (bb0365) 2014; 84
Chen, Habert, Bouzidi, Jullien, Ventura (bb0075) 2010; 54
Mahoutian, Chaallal, Shao (bb0355) 2018; 45
Ghouleh, Guthrie, Shao (bb0195) 2017; 18
Anastasiou, Liapis, Papayianni (bb0010) 2015; 101
Khoo, Bu, Wong, Kuan, Sharratt (bb0295) 2011; 4
Leung, Caramanna, Maroto-Valer (bb0335) 2014; 39
Mladenovič, Turk, Kovač, Mauko, Cotič (bb0375) 2015; 87
Chebbi, Yazoghli-Marzouk, Dauvergne, Lumiere, Jullien (bb0065) 2015
Kim, Dale (bb0305) 2006; 11
(bb0560) 2020
Pan, Chen, Fan, Kim, Gao, Ling, Chiang, Pei, Gu (bb0405) 2020; 3
Alcarde, Rodella (bb0005) 2003
Bodor, Santos, Cristea, Salman, Cizer, Iacobescu, Chiang, van Balen, Vlad, van Gerven (bb0060) 2016; 65
Di Maria, Salman, Dubois, Van Acker (bb0120) 2018; 23
Humbert, Castro-Gomes (bb0250) 2019; 208
Herrmann, Moltesen (bb0230) 2015; 86
Wang, Chang, Ansari (bb0535) 2019; 34
(bb0270) 2006
(bb0215) 2002
Santero, Masanet, Horvath (bb0455) 2011; 55
Wang, Chen, Provis, Tsang, Poon (bb0540) 2020; 106
(bb0265) 2006
Polettini (bb0420) 2016; 11
Wang, Yan (bb0520) 2010; 24
Xiao, Wang, Chiang, Pan, Guo, Chang (bb0565) 2014; 14
Wang, Yang, Yan (bb0525) 2013; 245
Gu, Wang, Wu, Wang, Jin (bb0210) 2021; 414
Ghouleh, Guthrie, Shao (bb0190) 2015; 99
Tian, Jiang, Chen, Yan, Li (bb0495) 2013; 6
Zhao, Chu, Mei, Meng, Li, Liu, Saxén, Zevenhoven (bb0615) 2020; 8
Klöpffer (bb0310) 1997; 4
Rađenović, Malina, Sofilić (bb0430) 2013; 2013
Minunno, O’Grady, Morrison, Gruner (bb0370) 2021; 143
Pang (bb0410) 2015; 14
Evangelista, Rosado, Penteado (bb0150) 2018; 178
Jiang, Ling (bb0275) 2020; 36
Zapp, Schreiber, Marx, Haines, Hake, Gale (bb0585) 2012; 8
Fernandezbertos, Simons, Hills, Carey (bb0165) 2004; 112
Han, Zhang, Wang, Yan (bb0220) 2015; 605
Gencel, Karadag, Oren, Bilir (bb0180) 2021; 283
Zhong, Li, Jiang, Ling (bb0620) 2021; 302
Björklund (bb0050) 2002; 7
Salman, Cizer, Pontikes, Santos, Snellings, Vandewalle, Blanpain, Van Balen (bb0445) 2014; 246
Teo, Zakaria, Salleh, Taib, Mohd Sharif, Abu Seman, Mohamed, Yusoff, Yusoff, Mohamad, Masri, Mamat (bb0490) 2020; 10
Kronenberg, Winkler (bb0320) 2009; 68
Quader, Ahmed, Ghazilla, Ahmed, Dahari (bb0425) 2015; 50
Chen, Chen, Dai, Chiang (bb0085) 2021; 121
Baciocchi, Costa, Di Bartolomeo, Polettini, Pomi (bb0035) 2010; 1
Fang, Xuan, Shen, Poon (bb0160) 2021; 313
(bb0145) 2008
Galán-Arboledas, Álvarez de Diego, Dondi, Bueno (bb0175) 2017; 142
Zha, Li, Wang (bb0590) 2021
Cuéllar-Franca, Azapagic (bb0115) 2015; 9
Santos, Van Bouwel, Vandevelde, Mertens, Elsen, Van Gerven (bb0460) 2013; 17
Shen, Forssberg, Nordström (bb0470) 2004; 27
Clavreul, Guyonnet, Christensen (bb0095) 2012; 32
Waligora, Bulteel, Degrugilliers, Damidot, Potdevin, Measson (bb0515) 2010; 61
Harvey (bb0225) 2021; 138
(bb0555) 2020
Li, Jiang, Pan, Ling (bb0345) 2021; 298
Mo, Zhang, Deng (bb0380) 2016; 88
Shen, Wu, Du (bb0475) 2009; 23
Humphreys, Mahasenan (bb0255) 2002
Huijgen, Witkamp, Comans (bb0245) 2005; 39
Song, Guo, Wang, Ling (bb0485) 2021; 173
Lee, Ryu, Ha, Jung, Lee (bb0330) 2020; 37
Chebbi, Dauvergne, Jullien, Yazoghli-Marzouk (bb0070) 2016; 3
Wang, Chen, Tsang, Guo, Yang, Shen, Hou, Ok, Poon (bb0545) 2020; 258
Zhang, Hong (bb0595) 2011; 55
Zhang, Pan, Li, Cai, Olabi, Anthony, Manovic (bb0610) 2020; 125
Cleary (bb0100) 2009; 35
Ma, Garbers-Craig (bb0350) 2006; 33
Palod, Deo, Ramtekkar (bb0390) 2019; 21
Mäkelä, Watkins, Pöykiö, Nurmesniemi, Dahl (bb0360) 2012; 207–208
Shi (bb0480) 2004; 16
Yildirim, Prezzi (bb0580) 2011; 2011
Hou, Yan, Sun, Naguib, Lu, Zhang (bb0240) 2021; 271
Pan, Chiang, Chen, Tan, Chang (bb0400) 2013; 47
Baciocchi, Costa, Polettini, Pomi (bb0030) 2009; 1
Anastasiou, Liapis, Papachristoforou (bb0015) 2017; 38
Faleschini, De Marzi, Pellegrino (bb0155) 2014; 18
Iacobescu, Angelopoulos, Jones, Blanpain, Pontikes (bb0260) 2016; 112
Apithanyasai, Supakata, Papong (bb0020) 2020; 6
Tian, Jiang, Zhang, Manovic (bb0500) 2018; 9
(bb0550) 2018
Jiang, Du, Chen, Zhang (bb0285) 2009; 157
Van den Heede, De Belie (bb0510) 2012; 34
Chiang (bb0090) 2013
Gomes, Mayes, Baxter, Jarvis, Burke, Stewart, Rogerson (bb0205) 2018; 202
Roslan (bb0440) 2016; 9
Salman, Cizer, Pontikes, Snellings, Vandewalle, Blanpain, Balen (bb0450) 2015; 286
Jiang, Ling (bb0280) 2021; 54
Dincer, Abu-Rayash (bb0130) 2020
Bodénan, Bourgeois, Petiot, Augé, Bonfils, Julcour-Lebigue, Guyot, Boukary, Tremosa, Lassin, Gaucher, Chiquet (bb0055) 2014; 59
Kua (bb0325) 2015; 101
Cornelis, Johnson, Gerven, Vandecasteele (bb0105) 2008; 23
Ghasemi, Costa, Zingaretti, Bäbler, Baciocchi (bb0185) 2017; 114
Zhang, Zhang, Zhang, Liu, Sun, Zhang, Marhaba (bb0600) 2018; 2018
Finkbeiner, Inaba, Tan, Christiansen, Klüppel (bb0170) 2006; 11
Chen, Yang, Ouyang (bb0080) 2011; 18
Drizo, Forget, Chapuis, Comeau (bb0135) 2006; 40
Pellegrino, Gaddo (bb0415) 2009; 31
Björklund (10.1016/j.scitotenv.2021.150280_bb0050) 2002; 7
Li (10.1016/j.scitotenv.2021.150280_bb0345) 2021; 298
Baciocchi (10.1016/j.scitotenv.2021.150280_bb0030) 2009; 1
(10.1016/j.scitotenv.2021.150280_bb0265) 2006
Salman (10.1016/j.scitotenv.2021.150280_bb0450) 2015; 286
Anastasiou (10.1016/j.scitotenv.2021.150280_bb0010) 2015; 101
Salman (10.1016/j.scitotenv.2021.150280_bb0445) 2014; 246
Pellegrino (10.1016/j.scitotenv.2021.150280_bb0415) 2009; 31
Evangelista (10.1016/j.scitotenv.2021.150280_bb0150) 2018; 178
Khoo (10.1016/j.scitotenv.2021.150280_bb0295) 2011; 4
Jiang (10.1016/j.scitotenv.2021.150280_bb0275) 2020; 36
Kua (10.1016/j.scitotenv.2021.150280_bb0325) 2015; 101
Alcarde (10.1016/j.scitotenv.2021.150280_bb0005) 2003
Chebbi (10.1016/j.scitotenv.2021.150280_bb0065) 2015
Pan (10.1016/j.scitotenv.2021.150280_bb0405) 2020; 3
Shen (10.1016/j.scitotenv.2021.150280_bb0475) 2009; 23
Li (10.1016/j.scitotenv.2021.150280_bb0340) 2011; 41
Humbert (10.1016/j.scitotenv.2021.150280_bb0250) 2019; 208
Klöpffer (10.1016/j.scitotenv.2021.150280_bb0310) 1997; 4
Santos (10.1016/j.scitotenv.2021.150280_bb0460) 2013; 17
Wang (10.1016/j.scitotenv.2021.150280_bb0540) 2020; 106
(10.1016/j.scitotenv.2021.150280_bb0215) 2002
Setién (10.1016/j.scitotenv.2021.150280_bb0465) 2009; 23
Mattila (10.1016/j.scitotenv.2021.150280_bb0365) 2014; 84
Teo (10.1016/j.scitotenv.2021.150280_bb0490) 2020; 10
Xiao (10.1016/j.scitotenv.2021.150280_bb0565) 2014; 14
Kim (10.1016/j.scitotenv.2021.150280_bb0300) 2016
Yi (10.1016/j.scitotenv.2021.150280_bb0575) 2012; 16
Bodénan (10.1016/j.scitotenv.2021.150280_bb0055) 2014; 59
Chen (10.1016/j.scitotenv.2021.150280_bb0085) 2021; 121
Wang (10.1016/j.scitotenv.2021.150280_bb0525) 2013; 245
Zhao (10.1016/j.scitotenv.2021.150280_bb0615) 2020; 8
Zha (10.1016/j.scitotenv.2021.150280_bb0590) 2021
Pan (10.1016/j.scitotenv.2021.150280_bb0400) 2013; 47
Birat (10.1016/j.scitotenv.2021.150280_bb0045) 2012; 39
Kim (10.1016/j.scitotenv.2021.150280_bb0305) 2006; 11
Lee (10.1016/j.scitotenv.2021.150280_bb0330) 2020; 37
Mo (10.1016/j.scitotenv.2021.150280_bb0380) 2016; 88
Roslan (10.1016/j.scitotenv.2021.150280_bb0440) 2016; 9
Iacobescu (10.1016/j.scitotenv.2021.150280_bb0260) 2016; 112
Chiang (10.1016/j.scitotenv.2021.150280_bb0090) 2013
Huijgen (10.1016/j.scitotenv.2021.150280_bb0245) 2005; 39
Song (10.1016/j.scitotenv.2021.150280_bb0485) 2021; 173
Wang (10.1016/j.scitotenv.2021.150280_bb0535) 2019; 34
Baciocchi (10.1016/j.scitotenv.2021.150280_bb0035) 2010; 1
Gencel (10.1016/j.scitotenv.2021.150280_bb0180) 2021; 283
Arribas (10.1016/j.scitotenv.2021.150280_bb0025) 2014; 63
Chen (10.1016/j.scitotenv.2021.150280_bb0075) 2010; 54
Waligora (10.1016/j.scitotenv.2021.150280_bb0515) 2010; 61
Goedkoop (10.1016/j.scitotenv.2021.150280_bb0200) 2001
Gu (10.1016/j.scitotenv.2021.150280_bb0210) 2021; 414
Zapp (10.1016/j.scitotenv.2021.150280_bb0585) 2012; 8
Chebbi (10.1016/j.scitotenv.2021.150280_bb0070) 2016; 3
Zhang (10.1016/j.scitotenv.2021.150280_bb0610) 2020; 125
Clavreul (10.1016/j.scitotenv.2021.150280_bb0095) 2012; 32
Fang (10.1016/j.scitotenv.2021.150280_bb0160) 2021; 313
Jiang (10.1016/j.scitotenv.2021.150280_bb0290) 2018; 136
Zhang (10.1016/j.scitotenv.2021.150280_bb0600) 2018; 2018
Ghouleh (10.1016/j.scitotenv.2021.150280_bb0195) 2017; 18
Ukwattage (10.1016/j.scitotenv.2021.150280_bb0505) 2017; 97
Finkbeiner (10.1016/j.scitotenv.2021.150280_bb0170) 2006; 11
Mladenovič (10.1016/j.scitotenv.2021.150280_bb0375) 2015; 87
Hou (10.1016/j.scitotenv.2021.150280_bb0240) 2021; 271
Santero (10.1016/j.scitotenv.2021.150280_bb0455) 2011; 55
Zhou (10.1016/j.scitotenv.2021.150280_bb0625) 2011
Leung (10.1016/j.scitotenv.2021.150280_bb0335) 2014; 39
Baciocchi (10.1016/j.scitotenv.2021.150280_bb0040) 2015; 286
Chen (10.1016/j.scitotenv.2021.150280_bb0080) 2011; 18
Galán-Arboledas (10.1016/j.scitotenv.2021.150280_bb0175) 2017; 142
Jiang (10.1016/j.scitotenv.2021.150280_bb0285) 2009; 157
Cornelis (10.1016/j.scitotenv.2021.150280_bb0105) 2008; 23
(10.1016/j.scitotenv.2021.150280_bb0555) 2020
Cristina Fernandes Deus (10.1016/j.scitotenv.2021.150280_bb0110) 2019
Di Maria (10.1016/j.scitotenv.2021.150280_bb0125) 2019
Pang (10.1016/j.scitotenv.2021.150280_bb0410) 2015; 14
Minunno (10.1016/j.scitotenv.2021.150280_bb0370) 2021; 143
Palod (10.1016/j.scitotenv.2021.150280_bb0390) 2019; 21
Zhang (10.1016/j.scitotenv.2021.150280_bb0595) 2011; 55
Faleschini (10.1016/j.scitotenv.2021.150280_bb0155) 2014; 18
Shen (10.1016/j.scitotenv.2021.150280_bb0470) 2004; 27
Han (10.1016/j.scitotenv.2021.150280_bb0220) 2015; 605
Humphreys (10.1016/j.scitotenv.2021.150280_bb0255) 2002
Harvey (10.1016/j.scitotenv.2021.150280_bb0225) 2021; 138
Ren (10.1016/j.scitotenv.2021.150280_bb0435) 2020; 19
Cleary (10.1016/j.scitotenv.2021.150280_bb0100) 2009; 35
Quader (10.1016/j.scitotenv.2021.150280_bb0425) 2015; 50
Van den Heede (10.1016/j.scitotenv.2021.150280_bb0510) 2012; 34
Di Maria (10.1016/j.scitotenv.2021.150280_bb0120) 2018; 23
Apithanyasai (10.1016/j.scitotenv.2021.150280_bb0020) 2020; 6
Mahoutian (10.1016/j.scitotenv.2021.150280_bb0355) 2018; 45
Tian (10.1016/j.scitotenv.2021.150280_bb0495) 2013; 6
(10.1016/j.scitotenv.2021.150280_bb0550) 2018
Polettini (10.1016/j.scitotenv.2021.150280_bb0420) 2016; 11
Anastasiou (10.1016/j.scitotenv.2021.150280_bb0015) 2017; 38
Bodor (10.1016/j.scitotenv.2021.150280_bb0060) 2016; 65
Dincer (10.1016/j.scitotenv.2021.150280_bb0130) 2020
Kronenberg (10.1016/j.scitotenv.2021.150280_bb0320) 2009; 68
Zhong (10.1016/j.scitotenv.2021.150280_bb0620) 2021; 302
Eloneva (10.1016/j.scitotenv.2021.150280_bb0140) 2009
Drizo (10.1016/j.scitotenv.2021.150280_bb0135) 2006; 40
Pan (10.1016/j.scitotenv.2021.150280_bb0395) 2012; 12
Zhang (10.1016/j.scitotenv.2021.150280_bb0605) 2019; 209
Gomes (10.1016/j.scitotenv.2021.150280_bb0205) 2018; 202
Mäkelä (10.1016/j.scitotenv.2021.150280_bb0360) 2012; 207–208
Wang (10.1016/j.scitotenv.2021.150280_bb0530) 2015; 47
(10.1016/j.scitotenv.2021.150280_bb0145) 2008
(10.1016/j.scitotenv.2021.150280_bb0560) 2020
Tian (10.1016/j.scitotenv.2021.150280_bb0500) 2018; 9
Cuéllar-Franca (10.1016/j.scitotenv.2021.150280_bb0115) 2015; 9
Shi (10.1016/j.scitotenv.2021.150280_bb0480) 2004; 16
Ghouleh (10.1016/j.scitotenv.2021.150280_bb0190) 2015; 99
(10.1016/j.scitotenv.2021.150280_bb0270) 2006
Fernandezbertos (10.1016/j.scitotenv.2021.150280_bb0165) 2004; 112
Hischier (10.1016/j.scitotenv.2021.150280_bb0235) 2003; 8
Wang (10.1016/j.scitotenv.2021.150280_bb0520) 2010; 24
Herrmann (10.1016/j.scitotenv.2021.150280_bb0230) 2015; 86
Kriskova (10.1016/j.scitotenv.2021.150280_bb0315) 2012; 42
Ghasemi (10.1016/j.scitotenv.2021.150280_bb0185) 2017; 114
Ma (10.1016/j.scitotenv.2021.150280_bb0350) 2006; 33
Wang (10.1016/j.scitotenv.2021.150280_bb0545) 2020; 258
Yildirim (10.1016/j.scitotenv.2021.150280_bb0580) 2011; 2011
Jiang (10.1016/j.scitotenv.2021.150280_bb0280) 2021; 54
Rađenović (10.1016/j.scitotenv.2021.150280_bb0430) 2013; 2013
Mo (10.1016/j.scitotenv.2021.150280_bb0385) 2017; 83
Yazoghli-Marzouk (10.1016/j.scitotenv.2021.150280_bb0570) 2017
References_xml – volume: 23
  start-page: 453
  year: 2009
  end-page: 461
  ident: bb0475
  article-title: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture
  publication-title: Constr. Build. Mater.
– volume: 8
  start-page: 12
  year: 2012
  end-page: 21
  ident: bb0585
  article-title: Overall environmental impacts of CCS technologies—a life cycle approach
  publication-title: Int. J. Greenh. Gas Control
– volume: 106
  year: 2020
  ident: bb0540
  article-title: Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas
  publication-title: Cem. Concr. Compos.
– volume: 50
  start-page: 594
  year: 2015
  end-page: 614
  ident: bb0425
  article-title: A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing
  publication-title: Renew. Sust. Energ. Rev.
– volume: 114
  start-page: 5393
  year: 2017
  end-page: 5403
  ident: bb0185
  article-title: Comparative life-cycle assessment of slurry and wet accelerated carbonation of BOF slag
  publication-title: Energy Procedia
– volume: 33
  start-page: 229
  year: 2006
  end-page: 237
  ident: bb0350
  article-title: Cr(VI) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant: part 1 – characteristics and microstructure
  publication-title: Ironmak. Steelmak.
– volume: 9
  year: 2016
  ident: bb0440
  article-title: Performance of steel slag and steel sludge in concrete
  publication-title: Constr. Build. Mater.
– volume: 286
  start-page: 369
  year: 2015
  end-page: 378
  ident: bb0040
  article-title: Effects of thin-film accelerated carbonation on steel slag leaching
  publication-title: J. Hazard. Mater.
– volume: 59
  start-page: 52
  year: 2014
  end-page: 63
  ident: bb0055
  article-title: Ex situ mineral carbonation for CO2 mitigation: evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project)
  publication-title: Miner. Eng.
– year: 2013
  ident: bb0090
  article-title: Consequential Life Cycle Assessment of Steel Slag as Building Material in Singapore
– year: 2009
  ident: bb0140
  article-title: Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate
  publication-title: Steel Res. Int.
– volume: 208
  start-page: 448
  year: 2019
  end-page: 457
  ident: bb0250
  article-title: CO2 activated steel slag-based materials: a review
  publication-title: J. Clean. Prod.
– volume: 42
  start-page: 778
  year: 2012
  end-page: 788
  ident: bb0315
  article-title: Effect of mechanical activation on the hydraulic properties of stainless steel slags
  publication-title: Cem. Concr. Res.
– volume: 83
  start-page: 138
  year: 2017
  end-page: 145
  ident: bb0385
  article-title: Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates
  publication-title: Cem. Concr. Compos.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 13
  ident: bb0580
  article-title: Chemical, mineralogical, and morphological properties of steel slag
  publication-title: Adv. Civ. Eng.
– volume: 27
  year: 2004
  ident: bb0470
  article-title: Physicochemical and Mineralogical Properties of Stainless Steel Slags Oriented to Metal Recovery
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 6
  ident: bb0430
  article-title: Characterization of ladle furnace slag from carbon steel production as a potential adsorbent
  publication-title: Adv. Mater. Sci. Eng.
– start-page: 167
  year: 2017
  end-page: 174
  ident: bb0570
  article-title: Calculation method of stockpiling and use phase in road LCA: case study of steel slag recycling
  publication-title: Pavement Life-cycle Assessment
– volume: 101
  start-page: 1
  year: 2015
  end-page: 8
  ident: bb0010
  article-title: Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials
  publication-title: Resour. Conserv. Recycl.
– volume: 86
  start-page: 163
  year: 2015
  end-page: 169
  ident: bb0230
  article-title: Does it matter which life cycle assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi
  publication-title: J. Clean. Prod.
– volume: 112
  start-page: 193
  year: 2004
  end-page: 205
  ident: bb0165
  article-title: A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 223
  year: 1997
  end-page: 228
  ident: bb0310
  article-title: Life cycle assessment: from the beginning to the current state
  publication-title: Environ. Sci. Pollut. Res. Int.
– year: 2019
  ident: bb0110
  article-title: The comprehensive utilization of steel slag in agricultural soils
  publication-title: Recovery and Utilization of Metallurgical Solid Waste
– year: 2002
  ident: bb0255
  article-title: Towards a Sustainable Cement Industry. Substudy 8: Climate Change
– volume: 45
  start-page: 537
  year: 2018
  end-page: 546
  ident: bb0355
  article-title: Pilot production of steel slag masonry blocks
  publication-title: Can. J. Civ. Eng.
– year: 2016
  ident: bb0300
  article-title: Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions From the Production of Concrete 20
– volume: 11
  year: 2016
  ident: bb0420
  article-title: CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects
  publication-title: J. Environ. Manag.
– start-page: 2547
  year: 2011
  end-page: 2550
  ident: bb0625
  article-title: Experimental investigation of sintering flue gas desulfurization with steel slag using dry CFB method
  publication-title: Frontiers of Green Building, Materials and Civil Engineering, Applied Mechanics and Materials
– volume: 138
  year: 2021
  ident: bb0225
  article-title: Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications
  publication-title: Renew. Sust. Energ. Rev.
– volume: 142
  start-page: 1778
  year: 2017
  end-page: 1788
  ident: bb0175
  article-title: Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials
  publication-title: J. Clean. Prod.
– volume: 283
  year: 2021
  ident: bb0180
  article-title: Steel slag and its applications in cement and concrete technology: a review
  publication-title: Constr. Build. Mater.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0600
  article-title: pH effect on heavy metal release from a polluted sediment
  publication-title: J. Chem.
– volume: 18
  start-page: 1009
  year: 2014
  end-page: 1024
  ident: bb0155
  article-title: Recycled concrete containing EAF slag: environmental assessment through LCA
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 54
  start-page: 176
  year: 2021
  ident: bb0280
  article-title: Interdependent factors contributing towards carbonation of steel slag compact: consideration of casting pressure, water dosage and carbonation duration
  publication-title: Mater. Struct.
– volume: 7
  start-page: 64
  year: 2002
  end-page: 72
  ident: bb0050
  article-title: Survey of approaches to improve reliability in LCA.pdf
  publication-title: Int. J. Life Cycle Assess.
– volume: 10
  start-page: 1347
  year: 2020
  ident: bb0490
  article-title: Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: a review
  publication-title: Metals
– volume: 61
  start-page: 39
  year: 2010
  end-page: 48
  ident: bb0515
  article-title: Chemical and mineralogical characterizations of LD converter steel slags: a multi-analytical techniques approach
  publication-title: Mater. Charact.
– volume: 32
  start-page: 2482
  year: 2012
  end-page: 2495
  ident: bb0095
  article-title: Quantifying uncertainty in LCA-modelling of waste management systems
  publication-title: Waste Manag.
– volume: 6
  start-page: 2348
  year: 2013
  end-page: 2355
  ident: bb0495
  article-title: Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants
  publication-title: ChemSusChem
– volume: 40
  start-page: 1547
  year: 2006
  end-page: 1554
  ident: bb0135
  article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite
  publication-title: Water Res.
– volume: 3
  year: 2016
  ident: bb0070
  article-title: Efficiency assessment of EAF-S processing for recycling purpose by LCA method
  publication-title: Int. J. Res. Chem. Metall. Civ. Eng.
– start-page: 6
  year: 2015
  ident: bb0065
  article-title: Environmental assessment of EAF slag in different “end of 2nd life”
  publication-title: Proceedings of 2nd Research World International Conference
– volume: 1
  start-page: 467
  year: 2010
  end-page: 477
  ident: bb0035
  article-title: Carbonation of stainless steel slag as a process for CO2 storage and slag valorization
  publication-title: Waste Biomass Valoriz.
– volume: 11
  start-page: 80
  year: 2006
  end-page: 85
  ident: bb0170
  article-title: The new international standards for life cycle assessment: ISO 14040 and ISO 14044
  publication-title: Int. J. Life Cycle Assess.
– volume: 47
  start-page: 1414
  year: 2015
  end-page: 1420
  ident: bb0530
  article-title: Influence of steel slag on mechanical properties and durability of concrete
  publication-title: Constr. Build. Mater.
– volume: 63
  start-page: 168
  year: 2014
  end-page: 176
  ident: bb0025
  article-title: Durability studies on steelmaking slag concretes
  publication-title: Mater. Des.
– volume: 99
  start-page: 175
  year: 2015
  end-page: 183
  ident: bb0190
  article-title: High-strength KOBM steel slag binder activated by carbonation
  publication-title: Constr. Build. Mater.
– volume: 39
  start-page: 270
  year: 2012
  end-page: 277
  ident: bb0045
  article-title: Sustainability footprint of steelmaking byproducts
  publication-title: Ironmak. Steelmak.
– volume: 207–208
  start-page: 21
  year: 2012
  end-page: 27
  ident: bb0360
  article-title: Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability
  publication-title: J. Hazard. Mater.
– year: 2003
  ident: bb0005
  article-title: Qualidade e legislação de fertilizantes e corretivos
  publication-title: Tópicos Em Ciência Do Solo
– volume: 18
  start-page: 33
  year: 2011
  end-page: 40
  ident: bb0080
  article-title: Life cycle assessment of internal recycling options of steel slag in Chinese iron and steel industry
  publication-title: J. Iron Steel Res. Int.
– volume: 16
  start-page: 461
  year: 2004
  end-page: 468
  ident: bb0480
  article-title: Steel Slag—Its production, processing, characteristics, and cementitious properties
  publication-title: J. Mater. Civ. Eng.
– volume: 178
  start-page: 176
  year: 2018
  end-page: 185
  ident: bb0150
  article-title: Life cycle assessment of concrete paving blocks using electric arc furnace slag as natural coarse aggregate substitute
  publication-title: J. Clean. Prod.
– volume: 68
  start-page: 3026
  year: 2009
  end-page: 3033
  ident: bb0320
  article-title: Wasted waste: an evolutionary perspective on industrial by-products
  publication-title: Ecol. Econ.
– year: 2006
  ident: bb0270
  article-title: ISO14044 LCA Requirement and Guidelines
– volume: 143
  year: 2021
  ident: bb0370
  article-title: Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments
  publication-title: Renew. Sust. Energ. Rev.
– volume: 18
  start-page: 125
  year: 2017
  end-page: 138
  ident: bb0195
  article-title: Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete
  publication-title: J. CO2 Util.
– volume: 35
  start-page: 1256
  year: 2009
  end-page: 1266
  ident: bb0100
  article-title: Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature
  publication-title: Environ. Int.
– year: 2019
  ident: bb0125
  article-title: CO2 Mineralisation for Sustainable Construction Materials
– year: 2006
  ident: bb0265
  article-title: ISO14040 LCA Principles and Framework
– volume: 271
  year: 2021
  ident: bb0240
  article-title: Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale
  publication-title: Constr. Build. Mater.
– volume: 14
  year: 2015
  ident: bb0410
  article-title: Utilization of carbonated and granulated steel slag aggregate in concrete
  publication-title: Constr. Build. Mater.
– volume: 38
  start-page: 469
  year: 2017
  end-page: 476
  ident: bb0015
  article-title: Life cycle assessment of concrete products for special applications containing EAF slag
  publication-title: Procedia Environ. Sci.
– volume: 41
  start-page: 324
  year: 2011
  end-page: 329
  ident: bb0340
  article-title: Structural characteristics and hydration kinetics of modified steel slag
  publication-title: Cem. Concr. Res.
– year: 2020
  ident: bb0560
  article-title: PRESS RELEASE – September 2020 Crude Steel Production. Belgium, Brussel
– volume: 9
  start-page: 82
  year: 2015
  end-page: 102
  ident: bb0115
  article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts
  publication-title: J. CO2 Util.
– volume: 112
  start-page: 872
  year: 2016
  end-page: 881
  ident: bb0260
  article-title: Ladle metallurgy stainless steel slag as a raw material in ordinary Portland cement production: a possibility for industrial symbiosis
  publication-title: J. Clean. Prod.
– volume: 1
  start-page: 4859
  year: 2009
  end-page: 4866
  ident: bb0030
  article-title: Influence of particle size on the carbonation of stainless steel slag for CO2 storage
  publication-title: Energy Procedia
– volume: 39
  start-page: 9676
  year: 2005
  end-page: 9682
  ident: bb0245
  article-title: Mineral CO2 sequestration by steel slag carbonation
  publication-title: Environ. Sci. Technol.
– volume: 313
  year: 2021
  ident: bb0160
  article-title: Fast enhancement of recycled fine aggregates properties by wet carbonation
  publication-title: J. Clean. Prod.
– volume: 6
  year: 2020
  ident: bb0020
  article-title: The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production
  publication-title: Heliyon
– volume: 12
  start-page: 770
  year: 2012
  end-page: 791
  ident: bb0395
  article-title: CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications
  publication-title: Aerosol Air Qual. Res.
– volume: 36
  start-page: 135
  year: 2020
  end-page: 144
  ident: bb0275
  article-title: Production of artificial aggregates from steel-making slag: influences of accelerated carbonation during granulation and/or post-curing
  publication-title: J. CO2 Util.
– volume: 24
  start-page: 1134
  year: 2010
  end-page: 1140
  ident: bb0520
  article-title: Hydration properties of basic oxygen furnace steel slag
  publication-title: Constr. Build. Mater.
– volume: 136
  start-page: 187
  year: 2018
  end-page: 197
  ident: bb0290
  article-title: Characteristics of steel slags and their use in cement and concrete—a review
  publication-title: Resour. Conserv. Recycl.
– volume: 125
  year: 2020
  ident: bb0610
  article-title: Recent advances in carbon dioxide utilization
  publication-title: Renew. Sust. Energ. Rev.
– volume: 121
  start-page: 412
  year: 2021
  end-page: 421
  ident: bb0085
  article-title: Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed
  publication-title: Waste Manag.
– volume: 23
  start-page: 1788
  year: 2009
  end-page: 1794
  ident: bb0465
  article-title: Characterization of ladle furnace basic slag for use as a construction material
  publication-title: Constr. Build. Mater.
– volume: 47
  start-page: 3308
  year: 2013
  end-page: 3315
  ident: bb0400
  article-title: Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed
  publication-title: Environ. Sci. Technol.
– year: 2002
  ident: bb0215
  publication-title: Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards, Eco-efficiency in Industry and Science
– volume: 17
  start-page: 32
  year: 2013
  end-page: 45
  ident: bb0460
  article-title: Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties
  publication-title: Int. J. Greenh. Gas Control
– volume: 245
  start-page: 35
  year: 2013
  end-page: 39
  ident: bb0525
  article-title: Cementitious properties of super-fine steel slag
  publication-title: Powder Technol.
– volume: 55
  start-page: 745
  year: 2011
  end-page: 754
  ident: bb0595
  article-title: An overview for the utilization of wastes from stainless steel industries
  publication-title: Resour. Conserv. Recycl.
– volume: 88
  start-page: 217
  year: 2016
  end-page: 226
  ident: bb0380
  article-title: Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing
  publication-title: Cem. Concr. Res.
– volume: 11
  start-page: 117
  year: 2006
  end-page: 121
  ident: bb0305
  article-title: Ethanol fuels: E10 or E85 – life cycle perspectives (5 pp)
  publication-title: Int. J. Life Cycle Assess.
– volume: 4
  start-page: 2494
  year: 2011
  end-page: 2501
  ident: bb0295
  article-title: Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation
  publication-title: Energy Procedia
– volume: 84
  start-page: 611
  year: 2014
  end-page: 618
  ident: bb0365
  article-title: Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag
  publication-title: J. Clean. Prod.
– volume: 21
  start-page: 1361
  year: 2019
  end-page: 1375
  ident: bb0390
  article-title: Utilization of waste from steel and iron industry as replacement of cement in mortars
  publication-title: J. Mater. Cycles Waste Manag.
– volume: 3
  start-page: 399
  year: 2020
  end-page: 405
  ident: bb0405
  article-title: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction
  publication-title: Nat. Sustain.
– volume: 34
  start-page: 431
  year: 2012
  end-page: 442
  ident: bb0510
  article-title: Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations
  publication-title: Cem. Concr. Compos.
– volume: 298
  year: 2021
  ident: bb0345
  article-title: Comparative life cycle assessment to maximize CO2 sequestration of steel slag products
  publication-title: Constr. Build. Mater.
– volume: 37
  start-page: 113
  year: 2020
  end-page: 121
  ident: bb0330
  article-title: Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag
  publication-title: J. CO2 Util.
– volume: 414
  year: 2021
  ident: bb0210
  article-title: Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 1231
  year: 2010
  end-page: 1240
  ident: bb0075
  article-title: LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete
  publication-title: Resour. Conserv. Recycl.
– volume: 65
  start-page: 55
  year: 2016
  end-page: 66
  ident: bb0060
  article-title: Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars
  publication-title: Cem. Concr. Compos.
– year: 2018
  ident: bb0550
  article-title: A Collection of Amazing Facts About Steel. Belgium, Brussel
– year: 2008
  ident: bb0145
  article-title: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text With EEA Relevance)
– volume: 286
  start-page: 211
  year: 2015
  end-page: 219
  ident: bb0450
  article-title: Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions
  publication-title: J. Hazard. Mater.
– volume: 209
  start-page: 115
  year: 2019
  end-page: 125
  ident: bb0605
  article-title: A review of life cycle assessment of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
– start-page: 165
  year: 2021
  end-page: 175
  ident: bb0590
  article-title: Research progress on application of steel slag in agriculture
  publication-title: Characterization of Minerals, Metals, and Materials 2021
– year: 2001
  ident: bb0200
  article-title: The Eco-indicator 99: A Damage Oriented Method for Life Cycle Assessment, Methodology Report 87
– volume: 19
  year: 2020
  ident: bb0435
  article-title: Recent advances in artificial aggregate production
  publication-title: J. Clean. Prod.
– volume: 173
  year: 2021
  ident: bb0485
  article-title: Use of steel slag as sustainable construction materials: a review of accelerated carbonation treatment
  publication-title: Resour. Conserv. Recycl.
– start-page: 119
  year: 2020
  end-page: 164
  ident: bb0130
  article-title: Sustainability modeling
  publication-title: Energy Sustainability
– volume: 258
  year: 2020
  ident: bb0545
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
– volume: 8
  year: 2020
  ident: bb0615
  article-title: Co-treatment of waste from steelmaking processes: steel slag-based carbon capture and storage by mineralization
  publication-title: Front. Chem.
– volume: 23
  start-page: 2091
  year: 2018
  end-page: 2109
  ident: bb0120
  article-title: Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag
  publication-title: Int. J. Life Cycle Assess.
– volume: 31
  start-page: 663
  year: 2009
  end-page: 671
  ident: bb0415
  article-title: Mechanical and durability characteristics of concrete containing EAF slag as aggregate
  publication-title: Cem. Concr. Compos.
– volume: 9
  start-page: 4422
  year: 2018
  ident: bb0500
  article-title: Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage
  publication-title: Nat. Commun.
– volume: 97
  start-page: 15
  year: 2017
  end-page: 22
  ident: bb0505
  article-title: Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation
  publication-title: Measurement
– volume: 16
  start-page: 791
  year: 2012
  end-page: 801
  ident: bb0575
  article-title: An overview of utilization of steel slag
  publication-title: Procedia Environ. Sci.
– year: 2020
  ident: bb0555
  article-title: 2020 World Steel in Figures. Belgium, Brussel
– volume: 605
  start-page: 43
  year: 2015
  end-page: 51
  ident: bb0220
  article-title: Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures
  publication-title: Thermochim. Acta
– volume: 39
  start-page: 426
  year: 2014
  end-page: 443
  ident: bb0335
  article-title: An overview of current status of carbon dioxide capture and storage technologies
  publication-title: Renew. Sust. Energ. Rev.
– volume: 101
  start-page: 133
  year: 2015
  end-page: 143
  ident: bb0325
  article-title: Integrated policies to promote sustainable use of steel slag for construction—A consequential life cycle embodied energy and greenhouse gas emission perspective
  publication-title: Energy Build.
– volume: 202
  start-page: 401
  year: 2018
  end-page: 412
  ident: bb0205
  article-title: Options for managing alkaline steel slag leachate: a life cycle assessment
  publication-title: J. Clean. Prod.
– volume: 23
  start-page: 955
  year: 2008
  end-page: 976
  ident: bb0105
  article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review
  publication-title: Appl. Geochem.
– volume: 34
  start-page: 87
  year: 2019
  end-page: 98
  ident: bb0535
  article-title: The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products
  publication-title: J. CO2 Util.
– volume: 302
  year: 2021
  ident: bb0620
  article-title: Elucidating the dominant and interaction effects of temperature, CO2 pressure and carbonation time in carbonating steel slag blocks
  publication-title: Constr. Build. Mater.
– volume: 14
  start-page: 892
  year: 2014
  end-page: 904
  ident: bb0565
  article-title: Comparative life cycle assessment (LCA) of accelerated carbonation processes using steelmaking slag for CO2 fixation
  publication-title: Aerosol Air Qual. Res.
– volume: 87
  start-page: 683
  year: 2015
  end-page: 691
  ident: bb0375
  article-title: Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses
  publication-title: J. Clean. Prod.
– volume: 8
  start-page: 201
  year: 2003
  end-page: 208
  ident: bb0235
  article-title: Multifunctional electronic media-traditional media: the problem of an adequate functional unit a case study of a printed newspaper, an internet newspaper and a TV broadcast
  publication-title: Int. J. Life Cycle Assess.
– volume: 157
  start-page: 2933
  year: 2009
  end-page: 2938
  ident: bb0285
  article-title: Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment
  publication-title: Environ. Pollut.
– volume: 55
  start-page: 801
  year: 2011
  end-page: 809
  ident: bb0455
  article-title: Life-cycle assessment of pavements. Part I: critical review
  publication-title: Resour. Conserv. Recycl.
– volume: 246
  start-page: 39
  year: 2014
  end-page: 52
  ident: bb0445
  article-title: Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material
  publication-title: Chem. Eng. J.
– year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0550
– volume: 34
  start-page: 87
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150280_bb0535
  article-title: The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.06.001
– year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0555
– year: 2006
  ident: 10.1016/j.scitotenv.2021.150280_bb0265
– volume: 202
  start-page: 401
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0205
  article-title: Options for managing alkaline steel slag leachate: a life cycle assessment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.163
– volume: 45
  start-page: 537
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0355
  article-title: Pilot production of steel slag masonry blocks
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/cjce-2017-0603
– volume: 35
  start-page: 1256
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0100
  article-title: Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2009.07.009
– volume: 23
  start-page: 955
  year: 2008
  ident: 10.1016/j.scitotenv.2021.150280_bb0105
  article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2008.02.001
– volume: 125
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0610
  article-title: Recent advances in carbon dioxide utilization
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2020.109799
– volume: 17
  start-page: 32
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150280_bb0460
  article-title: Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2013.04.004
– volume: 12
  start-page: 770
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0395
  article-title: CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2012.06.0149
– volume: 23
  start-page: 453
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0475
  article-title: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.11.001
– volume: 258
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0545
  article-title: Biochar as green additives in cement-based composites with carbon dioxide curing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120678
– volume: 61
  start-page: 39
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150280_bb0515
  article-title: Chemical and mineralogical characterizations of LD converter steel slags: a multi-analytical techniques approach
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2009.10.004
– volume: 16
  start-page: 791
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0575
  article-title: An overview of utilization of steel slag
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2012.10.108
– volume: 8
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0615
  article-title: Co-treatment of waste from steelmaking processes: steel slag-based carbon capture and storage by mineralization
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.571504
– volume: 14
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0410
  article-title: Utilization of carbonated and granulated steel slag aggregate in concrete
  publication-title: Constr. Build. Mater.
– volume: 271
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0240
  article-title: Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121581
– volume: 37
  start-page: 113
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0330
  article-title: Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.12.005
– year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0560
– volume: 41
  start-page: 324
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0340
  article-title: Structural characteristics and hydration kinetics of modified steel slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.11.018
– volume: 21
  start-page: 1361
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150280_bb0390
  article-title: Utilization of waste from steel and iron industry as replacement of cement in mortars
  publication-title: J. Mater. Cycles Waste Manag.
  doi: 10.1007/s10163-019-00889-3
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0600
  article-title: pH effect on heavy metal release from a polluted sediment
  publication-title: J. Chem.
– volume: 143
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0370
  article-title: Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2021.110935
– volume: 36
  start-page: 135
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0275
  article-title: Production of artificial aggregates from steel-making slag: influences of accelerated carbonation during granulation and/or post-curing
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.11.009
– year: 2019
  ident: 10.1016/j.scitotenv.2021.150280_bb0110
  article-title: The comprehensive utilization of steel slag in agricultural soils
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0580
  article-title: Chemical, mineralogical, and morphological properties of steel slag
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2011/463638
– volume: 39
  start-page: 9676
  year: 2005
  ident: 10.1016/j.scitotenv.2021.150280_bb0245
  article-title: Mineral CO2 sequestration by steel slag carbonation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050795f
– volume: 50
  start-page: 594
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0425
  article-title: A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.05.026
– volume: 1
  start-page: 4859
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0030
  article-title: Influence of particle size on the carbonation of stainless steel slag for CO2 storage
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2009.02.314
– volume: 4
  start-page: 2494
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0295
  article-title: Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.02.145
– volume: 8
  start-page: 12
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0585
  article-title: Overall environmental impacts of CCS technologies—a life cycle approach
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2012.01.014
– volume: 138
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0225
  article-title: Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2020.110553
– volume: 7
  start-page: 64
  year: 2002
  ident: 10.1016/j.scitotenv.2021.150280_bb0050
  article-title: Survey of approaches to improve reliability in LCA.pdf
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/BF02978849
– volume: 101
  start-page: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0010
  article-title: Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2015.05.009
– volume: 11
  start-page: 80
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150280_bb0170
  article-title: The new international standards for life cycle assessment: ISO 14040 and ISO 14044
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1065/lca2006.02.002
– volume: 6
  start-page: 2348
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150280_bb0495
  article-title: Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300436
– volume: 18
  start-page: 1009
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0155
  article-title: Recycled concrete containing EAF slag: environmental assessment through LCA
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2014.922505
– volume: 209
  start-page: 115
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150280_bb0605
  article-title: A review of life cycle assessment of recycled aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.078
– volume: 32
  start-page: 2482
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0095
  article-title: Quantifying uncertainty in LCA-modelling of waste management systems
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2012.07.008
– volume: 55
  start-page: 801
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0455
  article-title: Life-cycle assessment of pavements. Part I: critical review
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.03.010
– volume: 136
  start-page: 187
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0290
  article-title: Characteristics of steel slags and their use in cement and concrete—a review
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.04.023
– year: 2006
  ident: 10.1016/j.scitotenv.2021.150280_bb0270
– volume: 59
  start-page: 52
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0055
  article-title: Ex situ mineral carbonation for CO2 mitigation: evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project)
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.01.011
– year: 2001
  ident: 10.1016/j.scitotenv.2021.150280_bb0200
– volume: 84
  start-page: 611
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0365
  article-title: Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.05.064
– volume: 6
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0020
  article-title: The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e03697
– year: 2013
  ident: 10.1016/j.scitotenv.2021.150280_bb0090
– volume: 97
  start-page: 15
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0505
  article-title: Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.10.057
– volume: 31
  start-page: 663
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0415
  article-title: Mechanical and durability characteristics of concrete containing EAF slag as aggregate
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.05.006
– volume: 3
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0070
  article-title: Efficiency assessment of EAF-S processing for recycling purpose by LCA method
  publication-title: Int. J. Res. Chem. Metall. Civ. Eng.
– volume: 4
  start-page: 223
  year: 1997
  ident: 10.1016/j.scitotenv.2021.150280_bb0310
  article-title: Life cycle assessment: from the beginning to the current state
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/BF02986351
– volume: 23
  start-page: 2091
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0120
  article-title: Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-018-1440-1
– volume: 47
  start-page: 3308
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150280_bb0400
  article-title: Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304975y
– volume: 47
  start-page: 1414
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0530
  article-title: Influence of steel slag on mechanical properties and durability of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.06.044
– volume: 142
  start-page: 1778
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0175
  article-title: Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.110
– volume: 313
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0160
  article-title: Fast enhancement of recycled fine aggregates properties by wet carbonation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127867
– volume: 38
  start-page: 469
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0015
  article-title: Life cycle assessment of concrete products for special applications containing EAF slag
  publication-title: Procedia Environ. Sci.
  doi: 10.1016/j.proenv.2017.03.138
– volume: 65
  start-page: 55
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0060
  article-title: Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.10.002
– volume: 88
  start-page: 217
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0380
  article-title: Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2016.05.013
– volume: 286
  start-page: 211
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0450
  article-title: Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.12.046
– volume: 24
  start-page: 1134
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150280_bb0520
  article-title: Hydration properties of basic oxygen furnace steel slag
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.12.028
– volume: 34
  start-page: 431
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0510
  article-title: Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2012.01.004
– volume: 283
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0180
  article-title: Steel slag and its applications in cement and concrete technology: a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122783
– volume: 173
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0485
  article-title: Use of steel slag as sustainable construction materials: a review of accelerated carbonation treatment
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.105740
– volume: 19
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0435
  article-title: Recent advances in artificial aggregate production
  publication-title: J. Clean. Prod.
– volume: 157
  start-page: 2933
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0285
  article-title: Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.06.007
– volume: 39
  start-page: 426
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0335
  article-title: An overview of current status of carbon dioxide capture and storage technologies
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2014.07.093
– volume: 246
  start-page: 39
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0445
  article-title: Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.02.051
– volume: 99
  start-page: 175
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0190
  article-title: High-strength KOBM steel slag binder activated by carbonation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.09.028
– year: 2008
  ident: 10.1016/j.scitotenv.2021.150280_bb0145
– volume: 414
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0210
  article-title: Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128756
– start-page: 167
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0570
  article-title: Calculation method of stockpiling and use phase in road LCA: case study of steel slag recycling
– volume: 208
  start-page: 448
  year: 2019
  ident: 10.1016/j.scitotenv.2021.150280_bb0250
  article-title: CO2 activated steel slag-based materials: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.058
– volume: 178
  start-page: 176
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0150
  article-title: Life cycle assessment of concrete paving blocks using electric arc furnace slag as natural coarse aggregate substitute
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.007
– volume: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0420
  article-title: CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects
  publication-title: J. Environ. Manag.
– volume: 54
  start-page: 176
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0280
  article-title: Interdependent factors contributing towards carbonation of steel slag compact: consideration of casting pressure, water dosage and carbonation duration
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-021-01768-w
– volume: 3
  start-page: 399
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0405
  article-title: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0486-9
– volume: 40
  start-page: 1547
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150280_bb0135
  article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.02.001
– volume: 286
  start-page: 369
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0040
  article-title: Effects of thin-film accelerated carbonation on steel slag leaching
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.12.059
– volume: 112
  start-page: 193
  year: 2004
  ident: 10.1016/j.scitotenv.2021.150280_bb0165
  article-title: A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.04.019
– volume: 39
  start-page: 270
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0045
  article-title: Sustainability footprint of steelmaking byproducts
  publication-title: Ironmak. Steelmak.
  doi: 10.1179/1743281211Y.0000000054
– volume: 9
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0440
  article-title: Performance of steel slag and steel sludge in concrete
  publication-title: Constr. Build. Mater.
– volume: 18
  start-page: 125
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0195
  article-title: Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.01.009
– year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0300
– volume: 121
  start-page: 412
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0085
  article-title: Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2020.12.031
– volume: 68
  start-page: 3026
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0320
  article-title: Wasted waste: an evolutionary perspective on industrial by-products
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2009.07.006
– start-page: 6
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0065
  article-title: Environmental assessment of EAF slag in different “end of 2nd life”
– volume: 83
  start-page: 138
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0385
  article-title: Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.07.018
– volume: 10
  start-page: 1347
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0490
  article-title: Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: a review
  publication-title: Metals
  doi: 10.3390/met10101347
– volume: 9
  start-page: 4422
  year: 2018
  ident: 10.1016/j.scitotenv.2021.150280_bb0500
  article-title: Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06886-8
– volume: 42
  start-page: 778
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0315
  article-title: Effect of mechanical activation on the hydraulic properties of stainless steel slags
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2012.02.016
– volume: 245
  start-page: 35
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150280_bb0525
  article-title: Cementitious properties of super-fine steel slag
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.04.016
– volume: 302
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0620
  article-title: Elucidating the dominant and interaction effects of temperature, CO2 pressure and carbonation time in carbonating steel slag blocks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124158
– year: 2019
  ident: 10.1016/j.scitotenv.2021.150280_bb0125
– volume: 298
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0345
  article-title: Comparative life cycle assessment to maximize CO2 sequestration of steel slag products
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123876
– year: 2002
  ident: 10.1016/j.scitotenv.2021.150280_bb0255
– year: 2003
  ident: 10.1016/j.scitotenv.2021.150280_bb0005
  article-title: Qualidade e legislação de fertilizantes e corretivos
– volume: 8
  start-page: 201
  year: 2003
  ident: 10.1016/j.scitotenv.2021.150280_bb0235
  article-title: Multifunctional electronic media-traditional media: the problem of an adequate functional unit a case study of a printed newspaper, an internet newspaper and a TV broadcast
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/BF02978472
– volume: 86
  start-page: 163
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0230
  article-title: Does it matter which life cycle assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.08.004
– volume: 55
  start-page: 745
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0595
  article-title: An overview for the utilization of wastes from stainless steel industries
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.03.005
– volume: 16
  start-page: 461
  year: 2004
  ident: 10.1016/j.scitotenv.2021.150280_bb0480
  article-title: Steel Slag—Its production, processing, characteristics, and cementitious properties
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2004)16:3(230)
– year: 2002
  ident: 10.1016/j.scitotenv.2021.150280_bb0215
– volume: 63
  start-page: 168
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0025
  article-title: Durability studies on steelmaking slag concretes
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.06.002
– volume: 23
  start-page: 1788
  year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0465
  article-title: Characterization of ladle furnace basic slag for use as a construction material
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.10.003
– start-page: 119
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0130
  article-title: Sustainability modeling
– volume: 114
  start-page: 5393
  year: 2017
  ident: 10.1016/j.scitotenv.2021.150280_bb0185
  article-title: Comparative life-cycle assessment of slurry and wet accelerated carbonation of BOF slag
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1675
– volume: 207–208
  start-page: 21
  year: 2012
  ident: 10.1016/j.scitotenv.2021.150280_bb0360
  article-title: Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.02.015
– volume: 112
  start-page: 872
  year: 2016
  ident: 10.1016/j.scitotenv.2021.150280_bb0260
  article-title: Ladle metallurgy stainless steel slag as a raw material in ordinary Portland cement production: a possibility for industrial symbiosis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.06.006
– volume: 1
  start-page: 467
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150280_bb0035
  article-title: Carbonation of stainless steel slag as a process for CO2 storage and slag valorization
  publication-title: Waste Biomass Valoriz.
  doi: 10.1007/s12649-010-9047-1
– volume: 27
  year: 2004
  ident: 10.1016/j.scitotenv.2021.150280_bb0470
– start-page: 165
  year: 2021
  ident: 10.1016/j.scitotenv.2021.150280_bb0590
  article-title: Research progress on application of steel slag in agriculture
– volume: 101
  start-page: 133
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0325
  article-title: Integrated policies to promote sustainable use of steel slag for construction—A consequential life cycle embodied energy and greenhouse gas emission perspective
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.04.036
– volume: 9
  start-page: 82
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0115
  article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2014.12.001
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2021.150280_bb0430
  article-title: Characterization of ladle furnace slag from carbon steel production as a potential adsorbent
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2013/198240
– start-page: 2547
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0625
  article-title: Experimental investigation of sintering flue gas desulfurization with steel slag using dry CFB method
– volume: 87
  start-page: 683
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0375
  article-title: Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.10.013
– volume: 18
  start-page: 33
  year: 2011
  ident: 10.1016/j.scitotenv.2021.150280_bb0080
  article-title: Life cycle assessment of internal recycling options of steel slag in Chinese iron and steel industry
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(11)60087-3
– volume: 106
  year: 2020
  ident: 10.1016/j.scitotenv.2021.150280_bb0540
  article-title: Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.103489
– volume: 14
  start-page: 892
  year: 2014
  ident: 10.1016/j.scitotenv.2021.150280_bb0565
  article-title: Comparative life cycle assessment (LCA) of accelerated carbonation processes using steelmaking slag for CO2 fixation
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2013.04.0121
– volume: 54
  start-page: 1231
  year: 2010
  ident: 10.1016/j.scitotenv.2021.150280_bb0075
  article-title: LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2010.04.001
– volume: 605
  start-page: 43
  year: 2015
  ident: 10.1016/j.scitotenv.2021.150280_bb0220
  article-title: Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.02.018
– year: 2009
  ident: 10.1016/j.scitotenv.2021.150280_bb0140
  article-title: Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate
  publication-title: Steel Res. Int.
– volume: 33
  start-page: 229
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150280_bb0350
  article-title: Cr(VI) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant: part 1 – characteristics and microstructure
  publication-title: Ironmak. Steelmak.
  doi: 10.1179/174328106X94816
– volume: 11
  start-page: 117
  year: 2006
  ident: 10.1016/j.scitotenv.2021.150280_bb0305
  article-title: Ethanol fuels: E10 or E85 – life cycle perspectives (5 pp)
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1065/lca2005.02.201
SSID ssj0000781
Score 2.6851635
SecondaryResourceType review_article
Snippet The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150280
SubjectTerms Carbon
Carbon Dioxide
carbonation
cement
concrete
Construction material
environment
Environmental assessment
environmental health
environmental performance
Global warming potential
Humans
Industrial Waste - analysis
landfills
Life cycle assessment
Metals, Heavy
Mineral carbonation
mineral content
pavements
quantitative analysis
silicates
slags
Steel
Steel slag
systematic review
Title Environmental benefit assessment of steel slag utilization and carbonation: A systematic review
URI https://dx.doi.org/10.1016/j.scitotenv.2021.150280
https://www.ncbi.nlm.nih.gov/pubmed/34560457
https://www.proquest.com/docview/2576654519
https://www.proquest.com/docview/2636431705
Volume 806
WOSCitedRecordID wos000702844300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7oVkEooqvV9VJG8K1EsplJZtK3payoSBFcZX0acplptyxJ2d3U9t97JjNJdl1rFfElhJDLkO_Lme9MzgXgNWeKo9VjHk1F5KGVjD2RBNpDMaBpHGkd1sV0vn7kx8diOo0_uSD2Zd1OgBeFuLyMz_8r1HgMwTaps38Bd3tTPID7CDpuEXbc_hHw4y51DV9_irZMz0w7maYCp5GHCK2aHyAbTg5wJHOXi2lz3JJFWhZtzMdoq9bz93U9a1jWmAcXbbAqzXPXEujamB-biF3ptTAg11FlgibHOzpNZt0fLbsue1p53yp3vlubQLfW34jz2E6asUaYoY2NbFhuY4RFXXdg26DbtYUzdPXRwKEXcYEufTB8gzI2sB2gfqqW_dnc3dwcXdmQhhxn552Ah7Howc7o_Xj6oZumubDtFN1oNoL_fvm466TLda5JLVEmD-C-8y3IyHLiIdxSRR_u2m6jV33Y22AGcbAt-7Br126JTUl7BHLzREch0lGIlJrUFCKGQmSNQgQpRNYodEhGpCMQsQR6DF_ejidH7zzXiMPLmM9W3jBlPOaxytQwVpQlIhepYirPIpTLIk_Qh1BDE86eJhQ9eFTEnOY4Aweapjrhmu5BrygL9RRIGAqhOct0HgZMaV_EOGH4eY5o1Hp_AFHzjmXmqtSbZilz2YQjnskWHGnAkRacAfjthee2UMvNlxw2IEqnN62OlMi-my9-1cAu0SKb32xJocpqKY0LH4WmbNNvzoloZKS7Hw7gieVMO2qKPg06WvzZvwzvOdzrPsgX0FstKvUS7mQXq9lysQ-3-VTsuy_iBxS5zN8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+benefit+assessment+of+steel+slag+utilization+and+carbonation%3A+A+systematic+review&rft.jtitle=The+Science+of+the+total+environment&rft.au=Li%2C+Lufan&rft.au=Ling%2C+Tung-Chai&rft.au=Pan%2C+Shu-Yuan&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=806&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.150280&rft.externalDocID=S0048969721053572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon