Environmental benefit assessment of steel slag utilization and carbonation: A systematic review
The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large porti...
Saved in:
| Published in: | The Science of the total environment Vol. 806; no. Pt 1; p. 150280 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.02.2022
|
| Subjects: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized.
[Display omitted]
•System expansion and allocation choices may lead to opposite interpretations.•Environmental benefit caused by replacement of steel slag aggregate is limited.•Mitigation of climate change is easy to be achieved by reducing cement addition.•Carbonation method should be optimized to maximize the carbon capture benefit. |
|---|---|
| AbstractList | The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized. The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized.The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized. The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional landfill disposal, researchers have successfully reused steel slag in the construction, chemical, and agricultural fields. With the large portions of alkaline silicate mineral content, steel slag can also be used as a suitable material for carbon capture to mitigate global warming. This article comprehensively reviews the environmental performance of steel slag utilization, especially emphasizing quantitative evaluation using life cycle assessment. This paper first illustrates the production processes, properties, and applications of steel slag, and then summarizes the key findings of the environmental benefits for steel slag utilization using life cycle assessment from the reviewed literature. This paper also identifies the limitations of quantifying the environmental benefits using life cycle assessment. The results indicate steel slag is largely utilized in pavement concrete and/or block as a substitution for natural aggregates. The associated environmental benefits are mostly attributed to the avoidance of the large amount of cement utilized. The environmental benefits for the substitution of traditional energy-intensive material and carbonation treatment are further discussed in detail. Due to the presence of heavy metals, the potential risks to human and ecological health caused by the manufacturing process and usage stage are examined. Finally, the current challenges and global social implications for steel slag valorization are summarized. [Display omitted] •System expansion and allocation choices may lead to opposite interpretations.•Environmental benefit caused by replacement of steel slag aggregate is limited.•Mitigation of climate change is easy to be achieved by reducing cement addition.•Carbonation method should be optimized to maximize the carbon capture benefit. |
| ArticleNumber | 150280 |
| Author | Ling, Tung-Chai Li, Lufan Pan, Shu-Yuan |
| Author_xml | – sequence: 1 givenname: Lufan surname: Li fullname: Li, Lufan organization: College of Civil Engineering, Hunan University, 410082 Changsha, China – sequence: 2 givenname: Tung-Chai surname: Ling fullname: Ling, Tung-Chai email: tcling@hnu.edu.cn organization: College of Civil Engineering, Hunan University, 410082 Changsha, China – sequence: 3 givenname: Shu-Yuan surname: Pan fullname: Pan, Shu-Yuan organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10673, Taiwan, ROC |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34560457$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtPHDEQhC0EguXxFxIfc5mNPfb4ESmHFQISCYkLnC2Ppwd5NWMT27sR-fXxssAhF9KXVre-qkPVKToMMQBCnylZUkLF1_UyO19igbBdtqSlS9qRVpEDtKBK6oaSVhyiBSFcNVpoeYJOc16TOlLRY3TCeCcI7-QCmauw9SmGGUKxE-4hwOgLtjlDzrsnjiPOBWDCebKPeFP85P_Y4mPANgzY2dTH8HJ_wyucnys719PhBFsPv8_R0WinDBev-ww9XF_dX_5obu9ufl6ubhvHCS8N7bnUUoMDqoFxqwbVA4fBCUGIGqyWEijVWvSWqVa1kkk2cCHbkfWjlSM7Q1_2vk8p_tpALmb22cE02QBxk00rmOCMStJ9jHZSiI53VFf00yu66WcYzFPys03P5i2_Csg94FLMOcH4jlBidk2ZtXlvyuyaMvumqvL7P8qKveRYkvXTf-hXez3UVGvSacdBcDD4BK6YIfoPPf4C80O10Q |
| CitedBy_id | crossref_primary_10_1007_s11595_022_2554_7 crossref_primary_10_1007_s11837_023_05757_y crossref_primary_10_1515_rams_2025_0086 crossref_primary_10_3390_jmse11051054 crossref_primary_10_3390_pr11030783 crossref_primary_10_3390_pr11092590 crossref_primary_10_3390_su14148615 crossref_primary_10_1021_acs_energyfuels_5c00935 crossref_primary_10_1080_21650373_2023_2288620 crossref_primary_10_3390_cryst11121498 crossref_primary_10_3390_ma15031242 crossref_primary_10_1007_s11356_023_27898_y crossref_primary_10_1007_s41062_024_01592_5 crossref_primary_10_1080_15567036_2022_2120933 crossref_primary_10_1088_2631_8695_adf944 crossref_primary_10_1007_s11440_023_01925_1 crossref_primary_10_3390_app15158516 crossref_primary_10_1007_s44290_025_00276_y crossref_primary_10_3390_buildings13112823 crossref_primary_10_3390_su14127288 crossref_primary_10_1080_21650373_2025_2485260 crossref_primary_10_3390_w15040657 crossref_primary_10_1016_j_cej_2024_155379 crossref_primary_10_1016_j_mineng_2023_108374 crossref_primary_10_1016_j_cemconcomp_2021_104385 crossref_primary_10_1002_cnl2_129 crossref_primary_10_1016_j_cej_2022_140552 crossref_primary_10_1007_s42243_025_01534_0 crossref_primary_10_1016_j_conbuildmat_2021_125799 crossref_primary_10_1002_adsu_202300559 crossref_primary_10_1016_j_microc_2025_114482 crossref_primary_10_3390_su151310419 crossref_primary_10_4491_eer_2024_032 crossref_primary_10_1080_19648189_2025_2477059 crossref_primary_10_3390_min12121520 crossref_primary_10_1016_j_ijmst_2022_01_001 crossref_primary_10_3390_ma16114055 crossref_primary_10_1007_s40430_023_04346_z crossref_primary_10_1061_JMCEE7_MTENG_13979 crossref_primary_10_1007_s10098_024_03006_7 crossref_primary_10_1007_s11356_023_26884_8 crossref_primary_10_3390_jmse11071418 crossref_primary_10_1039_D2EW00649A crossref_primary_10_1021_acssuschemeng_4c03193 crossref_primary_10_3390_ma16072930 crossref_primary_10_3390_su142315502 crossref_primary_10_3390_su15107991 crossref_primary_10_3390_su17156979 |
| Cites_doi | 10.1016/j.jcou.2019.06.001 10.1016/j.jclepro.2018.08.163 10.1139/cjce-2017-0603 10.1016/j.envint.2009.07.009 10.1016/j.apgeochem.2008.02.001 10.1016/j.rser.2020.109799 10.1016/j.ijggc.2013.04.004 10.4209/aaqr.2012.06.0149 10.1016/j.conbuildmat.2007.11.001 10.1016/j.jclepro.2020.120678 10.1016/j.matchar.2009.10.004 10.1016/j.proenv.2012.10.108 10.3389/fchem.2020.571504 10.1016/j.conbuildmat.2020.121581 10.1016/j.jcou.2019.12.005 10.1016/j.cemconres.2010.11.018 10.1007/s10163-019-00889-3 10.1016/j.rser.2021.110935 10.1016/j.jcou.2019.11.009 10.1155/2011/463638 10.1021/es050795f 10.1016/j.rser.2015.05.026 10.1016/j.egypro.2009.02.314 10.1016/j.egypro.2011.02.145 10.1016/j.ijggc.2012.01.014 10.1016/j.rser.2020.110553 10.1007/BF02978849 10.1016/j.resconrec.2015.05.009 10.1065/lca2006.02.002 10.1002/cssc.201300436 10.1080/19648189.2014.922505 10.1016/j.conbuildmat.2019.03.078 10.1016/j.wasman.2012.07.008 10.1016/j.resconrec.2011.03.010 10.1016/j.resconrec.2018.04.023 10.1016/j.mineng.2014.01.011 10.1016/j.jclepro.2014.05.064 10.1016/j.heliyon.2020.e03697 10.1016/j.measurement.2016.10.057 10.1016/j.cemconcomp.2009.05.006 10.1007/BF02986351 10.1007/s11367-018-1440-1 10.1021/es304975y 10.1016/j.conbuildmat.2013.06.044 10.1016/j.jclepro.2016.11.110 10.1016/j.jclepro.2021.127867 10.1016/j.proenv.2017.03.138 10.1016/j.cemconcomp.2015.10.002 10.1016/j.cemconres.2016.05.013 10.1016/j.jhazmat.2014.12.046 10.1016/j.conbuildmat.2009.12.028 10.1016/j.cemconcomp.2012.01.004 10.1016/j.conbuildmat.2021.122783 10.1016/j.resconrec.2021.105740 10.1016/j.envpol.2009.06.007 10.1016/j.rser.2014.07.093 10.1016/j.cej.2014.02.051 10.1016/j.conbuildmat.2015.09.028 10.1016/j.cej.2021.128756 10.1016/j.jclepro.2018.10.058 10.1016/j.jclepro.2018.01.007 10.1617/s11527-021-01768-w 10.1038/s41893-020-0486-9 10.1016/j.watres.2006.02.001 10.1016/j.jhazmat.2014.12.059 10.1016/j.jhazmat.2004.04.019 10.1179/1743281211Y.0000000054 10.1016/j.jcou.2017.01.009 10.1016/j.wasman.2020.12.031 10.1016/j.ecolecon.2009.07.006 10.1016/j.cemconcomp.2017.07.018 10.3390/met10101347 10.1038/s41467-018-06886-8 10.1016/j.cemconres.2012.02.016 10.1016/j.powtec.2013.04.016 10.1016/j.conbuildmat.2021.124158 10.1016/j.conbuildmat.2021.123876 10.1007/BF02978472 10.1016/j.jclepro.2014.08.004 10.1016/j.resconrec.2011.03.005 10.1061/(ASCE)0899-1561(2004)16:3(230) 10.1016/j.matdes.2014.06.002 10.1016/j.conbuildmat.2008.10.003 10.1016/j.egypro.2017.03.1675 10.1016/j.jhazmat.2011.02.015 10.1016/j.jclepro.2015.06.006 10.1007/s12649-010-9047-1 10.1016/j.enbuild.2015.04.036 10.1016/j.jcou.2014.12.001 10.1155/2013/198240 10.1016/j.jclepro.2014.10.013 10.1016/S1006-706X(11)60087-3 10.1016/j.cemconcomp.2019.103489 10.4209/aaqr.2013.04.0121 10.1016/j.resconrec.2010.04.001 10.1016/j.tca.2015.02.018 10.1179/174328106X94816 10.1065/lca2005.02.201 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2021.150280 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 34560457 10_1016_j_scitotenv_2021_150280 S0048969721053572 |
| Genre | Systematic Review Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c404t-1b47979ece19e34a8d8be4edc66008da977e11996ba382827373d4672f3bfa7f3 |
| ISICitedReferencesCount | 155 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702844300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Mon Sep 29 04:39:21 EDT 2025 Thu Oct 02 11:07:11 EDT 2025 Mon Jul 21 06:06:22 EDT 2025 Sat Nov 29 07:21:25 EST 2025 Tue Nov 18 22:42:12 EST 2025 Sun Apr 06 06:53:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 1 |
| Keywords | Life cycle assessment Environmental assessment Mineral carbonation Global warming potential Steel slag Construction material |
| Language | English |
| License | Copyright © 2021 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c404t-1b47979ece19e34a8d8be4edc66008da977e11996ba382827373d4672f3bfa7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
| PMID | 34560457 |
| PQID | 2576654519 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636431705 proquest_miscellaneous_2576654519 pubmed_primary_34560457 crossref_primary_10_1016_j_scitotenv_2021_150280 crossref_citationtrail_10_1016_j_scitotenv_2021_150280 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_150280 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 2022-02-00 2022-Feb-01 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Setién, Hernández, González (bb0465) 2009; 23 Zhou, Zhong, Dang, Li (bb0625) 2011 Wang, Peiyu, Jianwei, Bo (bb0530) 2015; 47 Eloneva (bb0140) 2009 Li (bb0340) 2011; 41 Yi, Xu, Cheng, Wang, Wan, Chen (bb0575) 2012; 16 Zhang, Luo, Wang, Wang, Xu, Xiao (bb0605) 2019; 209 Ren (bb0435) 2020; 19 Ukwattage, Ranjith, Li (bb0505) 2017; 97 Jiang, Ling, Shi, Pan (bb0290) 2018; 136 Kim, Chae (bb0300) 2016 Mo, Zhang, Deng, Jin, Al-Tabbaa, Wang (bb0385) 2017; 83 Hischier, Reichart (bb0235) 2003; 8 Baciocchi, Costa, Polettini, Pomi (bb0040) 2015; 286 Pan, Chang, Chiang (bb0395) 2012; 12 Yazoghli-Marzouk, Dauvergne, Chebbi, Jullien (bb0570) 2017 Arribas, Vegas, San-José, Manso (bb0025) 2014; 63 Di Maria, Snellings, Alaerts, Quaghebeur, Van Acker (bb0125) 2019 Birat (bb0045) 2012; 39 Cristina Fernandes Deus, Marques de Almeida Bertani, Constantino Meirelles, Lorena Queiroz Moreira, Theodoro Büll, Maximino Fernandes, de Aquino Vidal Lacerda Soares (bb0110) 2019 Kriskova, Pontikes, Cizer, Mertens, Veulemans, Geysen, Jones, Vandewalle, Van Balen, Blanpain (bb0315) 2012; 42 Goedkoop, Spriensma (bb0200) 2001 Mattila, Hudd, Zevenhoven (bb0365) 2014; 84 Chen, Habert, Bouzidi, Jullien, Ventura (bb0075) 2010; 54 Mahoutian, Chaallal, Shao (bb0355) 2018; 45 Ghouleh, Guthrie, Shao (bb0195) 2017; 18 Anastasiou, Liapis, Papayianni (bb0010) 2015; 101 Khoo, Bu, Wong, Kuan, Sharratt (bb0295) 2011; 4 Leung, Caramanna, Maroto-Valer (bb0335) 2014; 39 Mladenovič, Turk, Kovač, Mauko, Cotič (bb0375) 2015; 87 Chebbi, Yazoghli-Marzouk, Dauvergne, Lumiere, Jullien (bb0065) 2015 Kim, Dale (bb0305) 2006; 11 (bb0560) 2020 Pan, Chen, Fan, Kim, Gao, Ling, Chiang, Pei, Gu (bb0405) 2020; 3 Alcarde, Rodella (bb0005) 2003 Bodor, Santos, Cristea, Salman, Cizer, Iacobescu, Chiang, van Balen, Vlad, van Gerven (bb0060) 2016; 65 Di Maria, Salman, Dubois, Van Acker (bb0120) 2018; 23 Humbert, Castro-Gomes (bb0250) 2019; 208 Herrmann, Moltesen (bb0230) 2015; 86 Wang, Chang, Ansari (bb0535) 2019; 34 (bb0270) 2006 (bb0215) 2002 Santero, Masanet, Horvath (bb0455) 2011; 55 Wang, Chen, Provis, Tsang, Poon (bb0540) 2020; 106 (bb0265) 2006 Polettini (bb0420) 2016; 11 Wang, Yan (bb0520) 2010; 24 Xiao, Wang, Chiang, Pan, Guo, Chang (bb0565) 2014; 14 Wang, Yang, Yan (bb0525) 2013; 245 Gu, Wang, Wu, Wang, Jin (bb0210) 2021; 414 Ghouleh, Guthrie, Shao (bb0190) 2015; 99 Tian, Jiang, Chen, Yan, Li (bb0495) 2013; 6 Zhao, Chu, Mei, Meng, Li, Liu, Saxén, Zevenhoven (bb0615) 2020; 8 Klöpffer (bb0310) 1997; 4 Rađenović, Malina, Sofilić (bb0430) 2013; 2013 Minunno, O’Grady, Morrison, Gruner (bb0370) 2021; 143 Pang (bb0410) 2015; 14 Evangelista, Rosado, Penteado (bb0150) 2018; 178 Jiang, Ling (bb0275) 2020; 36 Zapp, Schreiber, Marx, Haines, Hake, Gale (bb0585) 2012; 8 Fernandezbertos, Simons, Hills, Carey (bb0165) 2004; 112 Han, Zhang, Wang, Yan (bb0220) 2015; 605 Gencel, Karadag, Oren, Bilir (bb0180) 2021; 283 Zhong, Li, Jiang, Ling (bb0620) 2021; 302 Björklund (bb0050) 2002; 7 Salman, Cizer, Pontikes, Santos, Snellings, Vandewalle, Blanpain, Van Balen (bb0445) 2014; 246 Teo, Zakaria, Salleh, Taib, Mohd Sharif, Abu Seman, Mohamed, Yusoff, Yusoff, Mohamad, Masri, Mamat (bb0490) 2020; 10 Kronenberg, Winkler (bb0320) 2009; 68 Quader, Ahmed, Ghazilla, Ahmed, Dahari (bb0425) 2015; 50 Chen, Chen, Dai, Chiang (bb0085) 2021; 121 Baciocchi, Costa, Di Bartolomeo, Polettini, Pomi (bb0035) 2010; 1 Fang, Xuan, Shen, Poon (bb0160) 2021; 313 (bb0145) 2008 Galán-Arboledas, Álvarez de Diego, Dondi, Bueno (bb0175) 2017; 142 Zha, Li, Wang (bb0590) 2021 Cuéllar-Franca, Azapagic (bb0115) 2015; 9 Santos, Van Bouwel, Vandevelde, Mertens, Elsen, Van Gerven (bb0460) 2013; 17 Shen, Forssberg, Nordström (bb0470) 2004; 27 Clavreul, Guyonnet, Christensen (bb0095) 2012; 32 Waligora, Bulteel, Degrugilliers, Damidot, Potdevin, Measson (bb0515) 2010; 61 Harvey (bb0225) 2021; 138 (bb0555) 2020 Li, Jiang, Pan, Ling (bb0345) 2021; 298 Mo, Zhang, Deng (bb0380) 2016; 88 Shen, Wu, Du (bb0475) 2009; 23 Humphreys, Mahasenan (bb0255) 2002 Huijgen, Witkamp, Comans (bb0245) 2005; 39 Song, Guo, Wang, Ling (bb0485) 2021; 173 Lee, Ryu, Ha, Jung, Lee (bb0330) 2020; 37 Chebbi, Dauvergne, Jullien, Yazoghli-Marzouk (bb0070) 2016; 3 Wang, Chen, Tsang, Guo, Yang, Shen, Hou, Ok, Poon (bb0545) 2020; 258 Zhang, Hong (bb0595) 2011; 55 Zhang, Pan, Li, Cai, Olabi, Anthony, Manovic (bb0610) 2020; 125 Cleary (bb0100) 2009; 35 Ma, Garbers-Craig (bb0350) 2006; 33 Palod, Deo, Ramtekkar (bb0390) 2019; 21 Mäkelä, Watkins, Pöykiö, Nurmesniemi, Dahl (bb0360) 2012; 207–208 Shi (bb0480) 2004; 16 Yildirim, Prezzi (bb0580) 2011; 2011 Hou, Yan, Sun, Naguib, Lu, Zhang (bb0240) 2021; 271 Pan, Chiang, Chen, Tan, Chang (bb0400) 2013; 47 Baciocchi, Costa, Polettini, Pomi (bb0030) 2009; 1 Anastasiou, Liapis, Papachristoforou (bb0015) 2017; 38 Faleschini, De Marzi, Pellegrino (bb0155) 2014; 18 Iacobescu, Angelopoulos, Jones, Blanpain, Pontikes (bb0260) 2016; 112 Apithanyasai, Supakata, Papong (bb0020) 2020; 6 Tian, Jiang, Zhang, Manovic (bb0500) 2018; 9 (bb0550) 2018 Jiang, Du, Chen, Zhang (bb0285) 2009; 157 Van den Heede, De Belie (bb0510) 2012; 34 Chiang (bb0090) 2013 Gomes, Mayes, Baxter, Jarvis, Burke, Stewart, Rogerson (bb0205) 2018; 202 Roslan (bb0440) 2016; 9 Salman, Cizer, Pontikes, Snellings, Vandewalle, Blanpain, Balen (bb0450) 2015; 286 Jiang, Ling (bb0280) 2021; 54 Dincer, Abu-Rayash (bb0130) 2020 Bodénan, Bourgeois, Petiot, Augé, Bonfils, Julcour-Lebigue, Guyot, Boukary, Tremosa, Lassin, Gaucher, Chiquet (bb0055) 2014; 59 Kua (bb0325) 2015; 101 Cornelis, Johnson, Gerven, Vandecasteele (bb0105) 2008; 23 Ghasemi, Costa, Zingaretti, Bäbler, Baciocchi (bb0185) 2017; 114 Zhang, Zhang, Zhang, Liu, Sun, Zhang, Marhaba (bb0600) 2018; 2018 Finkbeiner, Inaba, Tan, Christiansen, Klüppel (bb0170) 2006; 11 Chen, Yang, Ouyang (bb0080) 2011; 18 Drizo, Forget, Chapuis, Comeau (bb0135) 2006; 40 Pellegrino, Gaddo (bb0415) 2009; 31 Björklund (10.1016/j.scitotenv.2021.150280_bb0050) 2002; 7 Li (10.1016/j.scitotenv.2021.150280_bb0345) 2021; 298 Baciocchi (10.1016/j.scitotenv.2021.150280_bb0030) 2009; 1 (10.1016/j.scitotenv.2021.150280_bb0265) 2006 Salman (10.1016/j.scitotenv.2021.150280_bb0450) 2015; 286 Anastasiou (10.1016/j.scitotenv.2021.150280_bb0010) 2015; 101 Salman (10.1016/j.scitotenv.2021.150280_bb0445) 2014; 246 Pellegrino (10.1016/j.scitotenv.2021.150280_bb0415) 2009; 31 Evangelista (10.1016/j.scitotenv.2021.150280_bb0150) 2018; 178 Khoo (10.1016/j.scitotenv.2021.150280_bb0295) 2011; 4 Jiang (10.1016/j.scitotenv.2021.150280_bb0275) 2020; 36 Kua (10.1016/j.scitotenv.2021.150280_bb0325) 2015; 101 Alcarde (10.1016/j.scitotenv.2021.150280_bb0005) 2003 Chebbi (10.1016/j.scitotenv.2021.150280_bb0065) 2015 Pan (10.1016/j.scitotenv.2021.150280_bb0405) 2020; 3 Shen (10.1016/j.scitotenv.2021.150280_bb0475) 2009; 23 Li (10.1016/j.scitotenv.2021.150280_bb0340) 2011; 41 Humbert (10.1016/j.scitotenv.2021.150280_bb0250) 2019; 208 Klöpffer (10.1016/j.scitotenv.2021.150280_bb0310) 1997; 4 Santos (10.1016/j.scitotenv.2021.150280_bb0460) 2013; 17 Wang (10.1016/j.scitotenv.2021.150280_bb0540) 2020; 106 (10.1016/j.scitotenv.2021.150280_bb0215) 2002 Setién (10.1016/j.scitotenv.2021.150280_bb0465) 2009; 23 Mattila (10.1016/j.scitotenv.2021.150280_bb0365) 2014; 84 Teo (10.1016/j.scitotenv.2021.150280_bb0490) 2020; 10 Xiao (10.1016/j.scitotenv.2021.150280_bb0565) 2014; 14 Kim (10.1016/j.scitotenv.2021.150280_bb0300) 2016 Yi (10.1016/j.scitotenv.2021.150280_bb0575) 2012; 16 Bodénan (10.1016/j.scitotenv.2021.150280_bb0055) 2014; 59 Chen (10.1016/j.scitotenv.2021.150280_bb0085) 2021; 121 Wang (10.1016/j.scitotenv.2021.150280_bb0525) 2013; 245 Zhao (10.1016/j.scitotenv.2021.150280_bb0615) 2020; 8 Zha (10.1016/j.scitotenv.2021.150280_bb0590) 2021 Pan (10.1016/j.scitotenv.2021.150280_bb0400) 2013; 47 Birat (10.1016/j.scitotenv.2021.150280_bb0045) 2012; 39 Kim (10.1016/j.scitotenv.2021.150280_bb0305) 2006; 11 Lee (10.1016/j.scitotenv.2021.150280_bb0330) 2020; 37 Mo (10.1016/j.scitotenv.2021.150280_bb0380) 2016; 88 Roslan (10.1016/j.scitotenv.2021.150280_bb0440) 2016; 9 Iacobescu (10.1016/j.scitotenv.2021.150280_bb0260) 2016; 112 Chiang (10.1016/j.scitotenv.2021.150280_bb0090) 2013 Huijgen (10.1016/j.scitotenv.2021.150280_bb0245) 2005; 39 Song (10.1016/j.scitotenv.2021.150280_bb0485) 2021; 173 Wang (10.1016/j.scitotenv.2021.150280_bb0535) 2019; 34 Baciocchi (10.1016/j.scitotenv.2021.150280_bb0035) 2010; 1 Gencel (10.1016/j.scitotenv.2021.150280_bb0180) 2021; 283 Arribas (10.1016/j.scitotenv.2021.150280_bb0025) 2014; 63 Chen (10.1016/j.scitotenv.2021.150280_bb0075) 2010; 54 Waligora (10.1016/j.scitotenv.2021.150280_bb0515) 2010; 61 Goedkoop (10.1016/j.scitotenv.2021.150280_bb0200) 2001 Gu (10.1016/j.scitotenv.2021.150280_bb0210) 2021; 414 Zapp (10.1016/j.scitotenv.2021.150280_bb0585) 2012; 8 Chebbi (10.1016/j.scitotenv.2021.150280_bb0070) 2016; 3 Zhang (10.1016/j.scitotenv.2021.150280_bb0610) 2020; 125 Clavreul (10.1016/j.scitotenv.2021.150280_bb0095) 2012; 32 Fang (10.1016/j.scitotenv.2021.150280_bb0160) 2021; 313 Jiang (10.1016/j.scitotenv.2021.150280_bb0290) 2018; 136 Zhang (10.1016/j.scitotenv.2021.150280_bb0600) 2018; 2018 Ghouleh (10.1016/j.scitotenv.2021.150280_bb0195) 2017; 18 Ukwattage (10.1016/j.scitotenv.2021.150280_bb0505) 2017; 97 Finkbeiner (10.1016/j.scitotenv.2021.150280_bb0170) 2006; 11 Mladenovič (10.1016/j.scitotenv.2021.150280_bb0375) 2015; 87 Hou (10.1016/j.scitotenv.2021.150280_bb0240) 2021; 271 Santero (10.1016/j.scitotenv.2021.150280_bb0455) 2011; 55 Zhou (10.1016/j.scitotenv.2021.150280_bb0625) 2011 Leung (10.1016/j.scitotenv.2021.150280_bb0335) 2014; 39 Baciocchi (10.1016/j.scitotenv.2021.150280_bb0040) 2015; 286 Chen (10.1016/j.scitotenv.2021.150280_bb0080) 2011; 18 Galán-Arboledas (10.1016/j.scitotenv.2021.150280_bb0175) 2017; 142 Jiang (10.1016/j.scitotenv.2021.150280_bb0285) 2009; 157 Cornelis (10.1016/j.scitotenv.2021.150280_bb0105) 2008; 23 (10.1016/j.scitotenv.2021.150280_bb0555) 2020 Cristina Fernandes Deus (10.1016/j.scitotenv.2021.150280_bb0110) 2019 Di Maria (10.1016/j.scitotenv.2021.150280_bb0125) 2019 Pang (10.1016/j.scitotenv.2021.150280_bb0410) 2015; 14 Minunno (10.1016/j.scitotenv.2021.150280_bb0370) 2021; 143 Palod (10.1016/j.scitotenv.2021.150280_bb0390) 2019; 21 Zhang (10.1016/j.scitotenv.2021.150280_bb0595) 2011; 55 Faleschini (10.1016/j.scitotenv.2021.150280_bb0155) 2014; 18 Shen (10.1016/j.scitotenv.2021.150280_bb0470) 2004; 27 Han (10.1016/j.scitotenv.2021.150280_bb0220) 2015; 605 Humphreys (10.1016/j.scitotenv.2021.150280_bb0255) 2002 Harvey (10.1016/j.scitotenv.2021.150280_bb0225) 2021; 138 Ren (10.1016/j.scitotenv.2021.150280_bb0435) 2020; 19 Cleary (10.1016/j.scitotenv.2021.150280_bb0100) 2009; 35 Quader (10.1016/j.scitotenv.2021.150280_bb0425) 2015; 50 Van den Heede (10.1016/j.scitotenv.2021.150280_bb0510) 2012; 34 Di Maria (10.1016/j.scitotenv.2021.150280_bb0120) 2018; 23 Apithanyasai (10.1016/j.scitotenv.2021.150280_bb0020) 2020; 6 Mahoutian (10.1016/j.scitotenv.2021.150280_bb0355) 2018; 45 Tian (10.1016/j.scitotenv.2021.150280_bb0495) 2013; 6 (10.1016/j.scitotenv.2021.150280_bb0550) 2018 Polettini (10.1016/j.scitotenv.2021.150280_bb0420) 2016; 11 Anastasiou (10.1016/j.scitotenv.2021.150280_bb0015) 2017; 38 Bodor (10.1016/j.scitotenv.2021.150280_bb0060) 2016; 65 Dincer (10.1016/j.scitotenv.2021.150280_bb0130) 2020 Kronenberg (10.1016/j.scitotenv.2021.150280_bb0320) 2009; 68 Zhong (10.1016/j.scitotenv.2021.150280_bb0620) 2021; 302 Eloneva (10.1016/j.scitotenv.2021.150280_bb0140) 2009 Drizo (10.1016/j.scitotenv.2021.150280_bb0135) 2006; 40 Pan (10.1016/j.scitotenv.2021.150280_bb0395) 2012; 12 Zhang (10.1016/j.scitotenv.2021.150280_bb0605) 2019; 209 Gomes (10.1016/j.scitotenv.2021.150280_bb0205) 2018; 202 Mäkelä (10.1016/j.scitotenv.2021.150280_bb0360) 2012; 207–208 Wang (10.1016/j.scitotenv.2021.150280_bb0530) 2015; 47 (10.1016/j.scitotenv.2021.150280_bb0145) 2008 (10.1016/j.scitotenv.2021.150280_bb0560) 2020 Tian (10.1016/j.scitotenv.2021.150280_bb0500) 2018; 9 Cuéllar-Franca (10.1016/j.scitotenv.2021.150280_bb0115) 2015; 9 Shi (10.1016/j.scitotenv.2021.150280_bb0480) 2004; 16 Ghouleh (10.1016/j.scitotenv.2021.150280_bb0190) 2015; 99 (10.1016/j.scitotenv.2021.150280_bb0270) 2006 Fernandezbertos (10.1016/j.scitotenv.2021.150280_bb0165) 2004; 112 Hischier (10.1016/j.scitotenv.2021.150280_bb0235) 2003; 8 Wang (10.1016/j.scitotenv.2021.150280_bb0520) 2010; 24 Herrmann (10.1016/j.scitotenv.2021.150280_bb0230) 2015; 86 Kriskova (10.1016/j.scitotenv.2021.150280_bb0315) 2012; 42 Ghasemi (10.1016/j.scitotenv.2021.150280_bb0185) 2017; 114 Ma (10.1016/j.scitotenv.2021.150280_bb0350) 2006; 33 Wang (10.1016/j.scitotenv.2021.150280_bb0545) 2020; 258 Yildirim (10.1016/j.scitotenv.2021.150280_bb0580) 2011; 2011 Jiang (10.1016/j.scitotenv.2021.150280_bb0280) 2021; 54 Rađenović (10.1016/j.scitotenv.2021.150280_bb0430) 2013; 2013 Mo (10.1016/j.scitotenv.2021.150280_bb0385) 2017; 83 Yazoghli-Marzouk (10.1016/j.scitotenv.2021.150280_bb0570) 2017 |
| References_xml | – volume: 23 start-page: 453 year: 2009 end-page: 461 ident: bb0475 article-title: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture publication-title: Constr. Build. Mater. – volume: 8 start-page: 12 year: 2012 end-page: 21 ident: bb0585 article-title: Overall environmental impacts of CCS technologies—a life cycle approach publication-title: Int. J. Greenh. Gas Control – volume: 106 year: 2020 ident: bb0540 article-title: Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas publication-title: Cem. Concr. Compos. – volume: 50 start-page: 594 year: 2015 end-page: 614 ident: bb0425 article-title: A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing publication-title: Renew. Sust. Energ. Rev. – volume: 114 start-page: 5393 year: 2017 end-page: 5403 ident: bb0185 article-title: Comparative life-cycle assessment of slurry and wet accelerated carbonation of BOF slag publication-title: Energy Procedia – volume: 33 start-page: 229 year: 2006 end-page: 237 ident: bb0350 article-title: Cr(VI) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant: part 1 – characteristics and microstructure publication-title: Ironmak. Steelmak. – volume: 9 year: 2016 ident: bb0440 article-title: Performance of steel slag and steel sludge in concrete publication-title: Constr. Build. Mater. – volume: 286 start-page: 369 year: 2015 end-page: 378 ident: bb0040 article-title: Effects of thin-film accelerated carbonation on steel slag leaching publication-title: J. Hazard. Mater. – volume: 59 start-page: 52 year: 2014 end-page: 63 ident: bb0055 article-title: Ex situ mineral carbonation for CO2 mitigation: evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project) publication-title: Miner. Eng. – year: 2013 ident: bb0090 article-title: Consequential Life Cycle Assessment of Steel Slag as Building Material in Singapore – year: 2009 ident: bb0140 article-title: Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate publication-title: Steel Res. Int. – volume: 208 start-page: 448 year: 2019 end-page: 457 ident: bb0250 article-title: CO2 activated steel slag-based materials: a review publication-title: J. Clean. Prod. – volume: 42 start-page: 778 year: 2012 end-page: 788 ident: bb0315 article-title: Effect of mechanical activation on the hydraulic properties of stainless steel slags publication-title: Cem. Concr. Res. – volume: 83 start-page: 138 year: 2017 end-page: 145 ident: bb0385 article-title: Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates publication-title: Cem. Concr. Compos. – volume: 2011 start-page: 1 year: 2011 end-page: 13 ident: bb0580 article-title: Chemical, mineralogical, and morphological properties of steel slag publication-title: Adv. Civ. Eng. – volume: 27 year: 2004 ident: bb0470 article-title: Physicochemical and Mineralogical Properties of Stainless Steel Slags Oriented to Metal Recovery – volume: 2013 start-page: 1 year: 2013 end-page: 6 ident: bb0430 article-title: Characterization of ladle furnace slag from carbon steel production as a potential adsorbent publication-title: Adv. Mater. Sci. Eng. – start-page: 167 year: 2017 end-page: 174 ident: bb0570 article-title: Calculation method of stockpiling and use phase in road LCA: case study of steel slag recycling publication-title: Pavement Life-cycle Assessment – volume: 101 start-page: 1 year: 2015 end-page: 8 ident: bb0010 article-title: Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials publication-title: Resour. Conserv. Recycl. – volume: 86 start-page: 163 year: 2015 end-page: 169 ident: bb0230 article-title: Does it matter which life cycle assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi publication-title: J. Clean. Prod. – volume: 112 start-page: 193 year: 2004 end-page: 205 ident: bb0165 article-title: A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2 publication-title: J. Hazard. Mater. – volume: 4 start-page: 223 year: 1997 end-page: 228 ident: bb0310 article-title: Life cycle assessment: from the beginning to the current state publication-title: Environ. Sci. Pollut. Res. Int. – year: 2019 ident: bb0110 article-title: The comprehensive utilization of steel slag in agricultural soils publication-title: Recovery and Utilization of Metallurgical Solid Waste – year: 2002 ident: bb0255 article-title: Towards a Sustainable Cement Industry. Substudy 8: Climate Change – volume: 45 start-page: 537 year: 2018 end-page: 546 ident: bb0355 article-title: Pilot production of steel slag masonry blocks publication-title: Can. J. Civ. Eng. – year: 2016 ident: bb0300 article-title: Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions From the Production of Concrete 20 – volume: 11 year: 2016 ident: bb0420 article-title: CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects publication-title: J. Environ. Manag. – start-page: 2547 year: 2011 end-page: 2550 ident: bb0625 article-title: Experimental investigation of sintering flue gas desulfurization with steel slag using dry CFB method publication-title: Frontiers of Green Building, Materials and Civil Engineering, Applied Mechanics and Materials – volume: 138 year: 2021 ident: bb0225 article-title: Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications publication-title: Renew. Sust. Energ. Rev. – volume: 142 start-page: 1778 year: 2017 end-page: 1788 ident: bb0175 article-title: Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials publication-title: J. Clean. Prod. – volume: 283 year: 2021 ident: bb0180 article-title: Steel slag and its applications in cement and concrete technology: a review publication-title: Constr. Build. Mater. – volume: 2018 start-page: 1 year: 2018 end-page: 7 ident: bb0600 article-title: pH effect on heavy metal release from a polluted sediment publication-title: J. Chem. – volume: 18 start-page: 1009 year: 2014 end-page: 1024 ident: bb0155 article-title: Recycled concrete containing EAF slag: environmental assessment through LCA publication-title: Eur. J. Environ. Civ. Eng. – volume: 54 start-page: 176 year: 2021 ident: bb0280 article-title: Interdependent factors contributing towards carbonation of steel slag compact: consideration of casting pressure, water dosage and carbonation duration publication-title: Mater. Struct. – volume: 7 start-page: 64 year: 2002 end-page: 72 ident: bb0050 article-title: Survey of approaches to improve reliability in LCA.pdf publication-title: Int. J. Life Cycle Assess. – volume: 10 start-page: 1347 year: 2020 ident: bb0490 article-title: Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: a review publication-title: Metals – volume: 61 start-page: 39 year: 2010 end-page: 48 ident: bb0515 article-title: Chemical and mineralogical characterizations of LD converter steel slags: a multi-analytical techniques approach publication-title: Mater. Charact. – volume: 32 start-page: 2482 year: 2012 end-page: 2495 ident: bb0095 article-title: Quantifying uncertainty in LCA-modelling of waste management systems publication-title: Waste Manag. – volume: 6 start-page: 2348 year: 2013 end-page: 2355 ident: bb0495 article-title: Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants publication-title: ChemSusChem – volume: 40 start-page: 1547 year: 2006 end-page: 1554 ident: bb0135 article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite publication-title: Water Res. – volume: 3 year: 2016 ident: bb0070 article-title: Efficiency assessment of EAF-S processing for recycling purpose by LCA method publication-title: Int. J. Res. Chem. Metall. Civ. Eng. – start-page: 6 year: 2015 ident: bb0065 article-title: Environmental assessment of EAF slag in different “end of 2nd life” publication-title: Proceedings of 2nd Research World International Conference – volume: 1 start-page: 467 year: 2010 end-page: 477 ident: bb0035 article-title: Carbonation of stainless steel slag as a process for CO2 storage and slag valorization publication-title: Waste Biomass Valoriz. – volume: 11 start-page: 80 year: 2006 end-page: 85 ident: bb0170 article-title: The new international standards for life cycle assessment: ISO 14040 and ISO 14044 publication-title: Int. J. Life Cycle Assess. – volume: 47 start-page: 1414 year: 2015 end-page: 1420 ident: bb0530 article-title: Influence of steel slag on mechanical properties and durability of concrete publication-title: Constr. Build. Mater. – volume: 63 start-page: 168 year: 2014 end-page: 176 ident: bb0025 article-title: Durability studies on steelmaking slag concretes publication-title: Mater. Des. – volume: 99 start-page: 175 year: 2015 end-page: 183 ident: bb0190 article-title: High-strength KOBM steel slag binder activated by carbonation publication-title: Constr. Build. Mater. – volume: 39 start-page: 270 year: 2012 end-page: 277 ident: bb0045 article-title: Sustainability footprint of steelmaking byproducts publication-title: Ironmak. Steelmak. – volume: 207–208 start-page: 21 year: 2012 end-page: 27 ident: bb0360 article-title: Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability publication-title: J. Hazard. Mater. – year: 2003 ident: bb0005 article-title: Qualidade e legislação de fertilizantes e corretivos publication-title: Tópicos Em Ciência Do Solo – volume: 18 start-page: 33 year: 2011 end-page: 40 ident: bb0080 article-title: Life cycle assessment of internal recycling options of steel slag in Chinese iron and steel industry publication-title: J. Iron Steel Res. Int. – volume: 16 start-page: 461 year: 2004 end-page: 468 ident: bb0480 article-title: Steel Slag—Its production, processing, characteristics, and cementitious properties publication-title: J. Mater. Civ. Eng. – volume: 178 start-page: 176 year: 2018 end-page: 185 ident: bb0150 article-title: Life cycle assessment of concrete paving blocks using electric arc furnace slag as natural coarse aggregate substitute publication-title: J. Clean. Prod. – volume: 68 start-page: 3026 year: 2009 end-page: 3033 ident: bb0320 article-title: Wasted waste: an evolutionary perspective on industrial by-products publication-title: Ecol. Econ. – year: 2006 ident: bb0270 article-title: ISO14044 LCA Requirement and Guidelines – volume: 143 year: 2021 ident: bb0370 article-title: Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments publication-title: Renew. Sust. Energ. Rev. – volume: 18 start-page: 125 year: 2017 end-page: 138 ident: bb0195 article-title: Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete publication-title: J. CO2 Util. – volume: 35 start-page: 1256 year: 2009 end-page: 1266 ident: bb0100 article-title: Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature publication-title: Environ. Int. – year: 2019 ident: bb0125 article-title: CO2 Mineralisation for Sustainable Construction Materials – year: 2006 ident: bb0265 article-title: ISO14040 LCA Principles and Framework – volume: 271 year: 2021 ident: bb0240 article-title: Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale publication-title: Constr. Build. Mater. – volume: 14 year: 2015 ident: bb0410 article-title: Utilization of carbonated and granulated steel slag aggregate in concrete publication-title: Constr. Build. Mater. – volume: 38 start-page: 469 year: 2017 end-page: 476 ident: bb0015 article-title: Life cycle assessment of concrete products for special applications containing EAF slag publication-title: Procedia Environ. Sci. – volume: 41 start-page: 324 year: 2011 end-page: 329 ident: bb0340 article-title: Structural characteristics and hydration kinetics of modified steel slag publication-title: Cem. Concr. Res. – year: 2020 ident: bb0560 article-title: PRESS RELEASE – September 2020 Crude Steel Production. Belgium, Brussel – volume: 9 start-page: 82 year: 2015 end-page: 102 ident: bb0115 article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts publication-title: J. CO2 Util. – volume: 112 start-page: 872 year: 2016 end-page: 881 ident: bb0260 article-title: Ladle metallurgy stainless steel slag as a raw material in ordinary Portland cement production: a possibility for industrial symbiosis publication-title: J. Clean. Prod. – volume: 1 start-page: 4859 year: 2009 end-page: 4866 ident: bb0030 article-title: Influence of particle size on the carbonation of stainless steel slag for CO2 storage publication-title: Energy Procedia – volume: 39 start-page: 9676 year: 2005 end-page: 9682 ident: bb0245 article-title: Mineral CO2 sequestration by steel slag carbonation publication-title: Environ. Sci. Technol. – volume: 313 year: 2021 ident: bb0160 article-title: Fast enhancement of recycled fine aggregates properties by wet carbonation publication-title: J. Clean. Prod. – volume: 6 year: 2020 ident: bb0020 article-title: The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production publication-title: Heliyon – volume: 12 start-page: 770 year: 2012 end-page: 791 ident: bb0395 article-title: CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications publication-title: Aerosol Air Qual. Res. – volume: 36 start-page: 135 year: 2020 end-page: 144 ident: bb0275 article-title: Production of artificial aggregates from steel-making slag: influences of accelerated carbonation during granulation and/or post-curing publication-title: J. CO2 Util. – volume: 24 start-page: 1134 year: 2010 end-page: 1140 ident: bb0520 article-title: Hydration properties of basic oxygen furnace steel slag publication-title: Constr. Build. Mater. – volume: 136 start-page: 187 year: 2018 end-page: 197 ident: bb0290 article-title: Characteristics of steel slags and their use in cement and concrete—a review publication-title: Resour. Conserv. Recycl. – volume: 125 year: 2020 ident: bb0610 article-title: Recent advances in carbon dioxide utilization publication-title: Renew. Sust. Energ. Rev. – volume: 121 start-page: 412 year: 2021 end-page: 421 ident: bb0085 article-title: Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed publication-title: Waste Manag. – volume: 23 start-page: 1788 year: 2009 end-page: 1794 ident: bb0465 article-title: Characterization of ladle furnace basic slag for use as a construction material publication-title: Constr. Build. Mater. – volume: 47 start-page: 3308 year: 2013 end-page: 3315 ident: bb0400 article-title: Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed publication-title: Environ. Sci. Technol. – year: 2002 ident: bb0215 publication-title: Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards, Eco-efficiency in Industry and Science – volume: 17 start-page: 32 year: 2013 end-page: 45 ident: bb0460 article-title: Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties publication-title: Int. J. Greenh. Gas Control – volume: 245 start-page: 35 year: 2013 end-page: 39 ident: bb0525 article-title: Cementitious properties of super-fine steel slag publication-title: Powder Technol. – volume: 55 start-page: 745 year: 2011 end-page: 754 ident: bb0595 article-title: An overview for the utilization of wastes from stainless steel industries publication-title: Resour. Conserv. Recycl. – volume: 88 start-page: 217 year: 2016 end-page: 226 ident: bb0380 article-title: Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing publication-title: Cem. Concr. Res. – volume: 11 start-page: 117 year: 2006 end-page: 121 ident: bb0305 article-title: Ethanol fuels: E10 or E85 – life cycle perspectives (5 pp) publication-title: Int. J. Life Cycle Assess. – volume: 4 start-page: 2494 year: 2011 end-page: 2501 ident: bb0295 article-title: Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation publication-title: Energy Procedia – volume: 84 start-page: 611 year: 2014 end-page: 618 ident: bb0365 article-title: Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag publication-title: J. Clean. Prod. – volume: 21 start-page: 1361 year: 2019 end-page: 1375 ident: bb0390 article-title: Utilization of waste from steel and iron industry as replacement of cement in mortars publication-title: J. Mater. Cycles Waste Manag. – volume: 3 start-page: 399 year: 2020 end-page: 405 ident: bb0405 article-title: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction publication-title: Nat. Sustain. – volume: 34 start-page: 431 year: 2012 end-page: 442 ident: bb0510 article-title: Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations publication-title: Cem. Concr. Compos. – volume: 298 year: 2021 ident: bb0345 article-title: Comparative life cycle assessment to maximize CO2 sequestration of steel slag products publication-title: Constr. Build. Mater. – volume: 37 start-page: 113 year: 2020 end-page: 121 ident: bb0330 article-title: Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag publication-title: J. CO2 Util. – volume: 414 year: 2021 ident: bb0210 article-title: Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures publication-title: Chem. Eng. J. – volume: 54 start-page: 1231 year: 2010 end-page: 1240 ident: bb0075 article-title: LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete publication-title: Resour. Conserv. Recycl. – volume: 65 start-page: 55 year: 2016 end-page: 66 ident: bb0060 article-title: Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars publication-title: Cem. Concr. Compos. – year: 2018 ident: bb0550 article-title: A Collection of Amazing Facts About Steel. Belgium, Brussel – year: 2008 ident: bb0145 article-title: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text With EEA Relevance) – volume: 286 start-page: 211 year: 2015 end-page: 219 ident: bb0450 article-title: Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions publication-title: J. Hazard. Mater. – volume: 209 start-page: 115 year: 2019 end-page: 125 ident: bb0605 article-title: A review of life cycle assessment of recycled aggregate concrete publication-title: Constr. Build. Mater. – start-page: 165 year: 2021 end-page: 175 ident: bb0590 article-title: Research progress on application of steel slag in agriculture publication-title: Characterization of Minerals, Metals, and Materials 2021 – year: 2001 ident: bb0200 article-title: The Eco-indicator 99: A Damage Oriented Method for Life Cycle Assessment, Methodology Report 87 – volume: 19 year: 2020 ident: bb0435 article-title: Recent advances in artificial aggregate production publication-title: J. Clean. Prod. – volume: 173 year: 2021 ident: bb0485 article-title: Use of steel slag as sustainable construction materials: a review of accelerated carbonation treatment publication-title: Resour. Conserv. Recycl. – start-page: 119 year: 2020 end-page: 164 ident: bb0130 article-title: Sustainability modeling publication-title: Energy Sustainability – volume: 258 year: 2020 ident: bb0545 article-title: Biochar as green additives in cement-based composites with carbon dioxide curing publication-title: J. Clean. Prod. – volume: 8 year: 2020 ident: bb0615 article-title: Co-treatment of waste from steelmaking processes: steel slag-based carbon capture and storage by mineralization publication-title: Front. Chem. – volume: 23 start-page: 2091 year: 2018 end-page: 2109 ident: bb0120 article-title: Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag publication-title: Int. J. Life Cycle Assess. – volume: 31 start-page: 663 year: 2009 end-page: 671 ident: bb0415 article-title: Mechanical and durability characteristics of concrete containing EAF slag as aggregate publication-title: Cem. Concr. Compos. – volume: 9 start-page: 4422 year: 2018 ident: bb0500 article-title: Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage publication-title: Nat. Commun. – volume: 97 start-page: 15 year: 2017 end-page: 22 ident: bb0505 article-title: Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation publication-title: Measurement – volume: 16 start-page: 791 year: 2012 end-page: 801 ident: bb0575 article-title: An overview of utilization of steel slag publication-title: Procedia Environ. Sci. – year: 2020 ident: bb0555 article-title: 2020 World Steel in Figures. Belgium, Brussel – volume: 605 start-page: 43 year: 2015 end-page: 51 ident: bb0220 article-title: Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures publication-title: Thermochim. Acta – volume: 39 start-page: 426 year: 2014 end-page: 443 ident: bb0335 article-title: An overview of current status of carbon dioxide capture and storage technologies publication-title: Renew. Sust. Energ. Rev. – volume: 101 start-page: 133 year: 2015 end-page: 143 ident: bb0325 article-title: Integrated policies to promote sustainable use of steel slag for construction—A consequential life cycle embodied energy and greenhouse gas emission perspective publication-title: Energy Build. – volume: 202 start-page: 401 year: 2018 end-page: 412 ident: bb0205 article-title: Options for managing alkaline steel slag leachate: a life cycle assessment publication-title: J. Clean. Prod. – volume: 23 start-page: 955 year: 2008 end-page: 976 ident: bb0105 article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review publication-title: Appl. Geochem. – volume: 34 start-page: 87 year: 2019 end-page: 98 ident: bb0535 article-title: The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products publication-title: J. CO2 Util. – volume: 302 year: 2021 ident: bb0620 article-title: Elucidating the dominant and interaction effects of temperature, CO2 pressure and carbonation time in carbonating steel slag blocks publication-title: Constr. Build. Mater. – volume: 14 start-page: 892 year: 2014 end-page: 904 ident: bb0565 article-title: Comparative life cycle assessment (LCA) of accelerated carbonation processes using steelmaking slag for CO2 fixation publication-title: Aerosol Air Qual. Res. – volume: 87 start-page: 683 year: 2015 end-page: 691 ident: bb0375 article-title: Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses publication-title: J. Clean. Prod. – volume: 8 start-page: 201 year: 2003 end-page: 208 ident: bb0235 article-title: Multifunctional electronic media-traditional media: the problem of an adequate functional unit a case study of a printed newspaper, an internet newspaper and a TV broadcast publication-title: Int. J. Life Cycle Assess. – volume: 157 start-page: 2933 year: 2009 end-page: 2938 ident: bb0285 article-title: Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment publication-title: Environ. Pollut. – volume: 55 start-page: 801 year: 2011 end-page: 809 ident: bb0455 article-title: Life-cycle assessment of pavements. Part I: critical review publication-title: Resour. Conserv. Recycl. – volume: 246 start-page: 39 year: 2014 end-page: 52 ident: bb0445 article-title: Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material publication-title: Chem. Eng. J. – year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0550 – volume: 34 start-page: 87 year: 2019 ident: 10.1016/j.scitotenv.2021.150280_bb0535 article-title: The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.06.001 – year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0555 – year: 2006 ident: 10.1016/j.scitotenv.2021.150280_bb0265 – volume: 202 start-page: 401 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0205 article-title: Options for managing alkaline steel slag leachate: a life cycle assessment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.163 – volume: 45 start-page: 537 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0355 article-title: Pilot production of steel slag masonry blocks publication-title: Can. J. Civ. Eng. doi: 10.1139/cjce-2017-0603 – volume: 35 start-page: 1256 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0100 article-title: Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature publication-title: Environ. Int. doi: 10.1016/j.envint.2009.07.009 – volume: 23 start-page: 955 year: 2008 ident: 10.1016/j.scitotenv.2021.150280_bb0105 article-title: Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2008.02.001 – volume: 125 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0610 article-title: Recent advances in carbon dioxide utilization publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.109799 – volume: 17 start-page: 32 year: 2013 ident: 10.1016/j.scitotenv.2021.150280_bb0460 article-title: Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2013.04.004 – volume: 12 start-page: 770 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0395 article-title: CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2012.06.0149 – volume: 23 start-page: 453 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0475 article-title: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2007.11.001 – volume: 258 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0545 article-title: Biochar as green additives in cement-based composites with carbon dioxide curing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120678 – volume: 61 start-page: 39 year: 2010 ident: 10.1016/j.scitotenv.2021.150280_bb0515 article-title: Chemical and mineralogical characterizations of LD converter steel slags: a multi-analytical techniques approach publication-title: Mater. Charact. doi: 10.1016/j.matchar.2009.10.004 – volume: 16 start-page: 791 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0575 article-title: An overview of utilization of steel slag publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2012.10.108 – volume: 8 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0615 article-title: Co-treatment of waste from steelmaking processes: steel slag-based carbon capture and storage by mineralization publication-title: Front. Chem. doi: 10.3389/fchem.2020.571504 – volume: 14 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0410 article-title: Utilization of carbonated and granulated steel slag aggregate in concrete publication-title: Constr. Build. Mater. – volume: 271 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0240 article-title: Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121581 – volume: 37 start-page: 113 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0330 article-title: Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.12.005 – year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0560 – volume: 41 start-page: 324 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0340 article-title: Structural characteristics and hydration kinetics of modified steel slag publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.11.018 – volume: 21 start-page: 1361 year: 2019 ident: 10.1016/j.scitotenv.2021.150280_bb0390 article-title: Utilization of waste from steel and iron industry as replacement of cement in mortars publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-019-00889-3 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0600 article-title: pH effect on heavy metal release from a polluted sediment publication-title: J. Chem. – volume: 143 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0370 article-title: Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.110935 – volume: 36 start-page: 135 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0275 article-title: Production of artificial aggregates from steel-making slag: influences of accelerated carbonation during granulation and/or post-curing publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.11.009 – year: 2019 ident: 10.1016/j.scitotenv.2021.150280_bb0110 article-title: The comprehensive utilization of steel slag in agricultural soils – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0580 article-title: Chemical, mineralogical, and morphological properties of steel slag publication-title: Adv. Civ. Eng. doi: 10.1155/2011/463638 – volume: 39 start-page: 9676 year: 2005 ident: 10.1016/j.scitotenv.2021.150280_bb0245 article-title: Mineral CO2 sequestration by steel slag carbonation publication-title: Environ. Sci. Technol. doi: 10.1021/es050795f – volume: 50 start-page: 594 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0425 article-title: A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.05.026 – volume: 1 start-page: 4859 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0030 article-title: Influence of particle size on the carbonation of stainless steel slag for CO2 storage publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.02.314 – volume: 4 start-page: 2494 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0295 article-title: Carbon capture and utilization: preliminary life cycle CO2, energy, and cost results of potential mineral carbonation publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.145 – volume: 8 start-page: 12 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0585 article-title: Overall environmental impacts of CCS technologies—a life cycle approach publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2012.01.014 – volume: 138 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0225 article-title: Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2020.110553 – volume: 7 start-page: 64 year: 2002 ident: 10.1016/j.scitotenv.2021.150280_bb0050 article-title: Survey of approaches to improve reliability in LCA.pdf publication-title: Int. J. Life Cycle Assess. doi: 10.1007/BF02978849 – volume: 101 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0010 article-title: Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2015.05.009 – volume: 11 start-page: 80 year: 2006 ident: 10.1016/j.scitotenv.2021.150280_bb0170 article-title: The new international standards for life cycle assessment: ISO 14040 and ISO 14044 publication-title: Int. J. Life Cycle Assess. doi: 10.1065/lca2006.02.002 – volume: 6 start-page: 2348 year: 2013 ident: 10.1016/j.scitotenv.2021.150280_bb0495 article-title: Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants publication-title: ChemSusChem doi: 10.1002/cssc.201300436 – volume: 18 start-page: 1009 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0155 article-title: Recycled concrete containing EAF slag: environmental assessment through LCA publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2014.922505 – volume: 209 start-page: 115 year: 2019 ident: 10.1016/j.scitotenv.2021.150280_bb0605 article-title: A review of life cycle assessment of recycled aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.078 – volume: 32 start-page: 2482 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0095 article-title: Quantifying uncertainty in LCA-modelling of waste management systems publication-title: Waste Manag. doi: 10.1016/j.wasman.2012.07.008 – volume: 55 start-page: 801 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0455 article-title: Life-cycle assessment of pavements. Part I: critical review publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2011.03.010 – volume: 136 start-page: 187 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0290 article-title: Characteristics of steel slags and their use in cement and concrete—a review publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2018.04.023 – year: 2006 ident: 10.1016/j.scitotenv.2021.150280_bb0270 – volume: 59 start-page: 52 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0055 article-title: Ex situ mineral carbonation for CO2 mitigation: evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project) publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.01.011 – year: 2001 ident: 10.1016/j.scitotenv.2021.150280_bb0200 – volume: 84 start-page: 611 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0365 article-title: Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.05.064 – volume: 6 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0020 article-title: The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e03697 – year: 2013 ident: 10.1016/j.scitotenv.2021.150280_bb0090 – volume: 97 start-page: 15 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0505 article-title: Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation publication-title: Measurement doi: 10.1016/j.measurement.2016.10.057 – volume: 31 start-page: 663 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0415 article-title: Mechanical and durability characteristics of concrete containing EAF slag as aggregate publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.05.006 – volume: 3 year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0070 article-title: Efficiency assessment of EAF-S processing for recycling purpose by LCA method publication-title: Int. J. Res. Chem. Metall. Civ. Eng. – volume: 4 start-page: 223 year: 1997 ident: 10.1016/j.scitotenv.2021.150280_bb0310 article-title: Life cycle assessment: from the beginning to the current state publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/BF02986351 – volume: 23 start-page: 2091 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0120 article-title: Life cycle assessment to evaluate the environmental performance of new construction material from stainless steel slag publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-018-1440-1 – volume: 47 start-page: 3308 year: 2013 ident: 10.1016/j.scitotenv.2021.150280_bb0400 article-title: Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed publication-title: Environ. Sci. Technol. doi: 10.1021/es304975y – volume: 47 start-page: 1414 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0530 article-title: Influence of steel slag on mechanical properties and durability of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.06.044 – volume: 142 start-page: 1778 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0175 article-title: Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.110 – volume: 313 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0160 article-title: Fast enhancement of recycled fine aggregates properties by wet carbonation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127867 – volume: 38 start-page: 469 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0015 article-title: Life cycle assessment of concrete products for special applications containing EAF slag publication-title: Procedia Environ. Sci. doi: 10.1016/j.proenv.2017.03.138 – volume: 65 start-page: 55 year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0060 article-title: Laboratory investigation of carbonated BOF slag used as partial replacement of natural aggregate in cement mortars publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.10.002 – volume: 88 start-page: 217 year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0380 article-title: Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2016.05.013 – volume: 286 start-page: 211 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0450 article-title: Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.12.046 – volume: 24 start-page: 1134 year: 2010 ident: 10.1016/j.scitotenv.2021.150280_bb0520 article-title: Hydration properties of basic oxygen furnace steel slag publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.12.028 – volume: 34 start-page: 431 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0510 article-title: Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2012.01.004 – volume: 283 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0180 article-title: Steel slag and its applications in cement and concrete technology: a review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122783 – volume: 173 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0485 article-title: Use of steel slag as sustainable construction materials: a review of accelerated carbonation treatment publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.105740 – volume: 19 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0435 article-title: Recent advances in artificial aggregate production publication-title: J. Clean. Prod. – volume: 157 start-page: 2933 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0285 article-title: Continuous CO2 capture and MSWI fly ash stabilization, utilizing novel dynamic equipment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.06.007 – volume: 39 start-page: 426 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0335 article-title: An overview of current status of carbon dioxide capture and storage technologies publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2014.07.093 – volume: 246 start-page: 39 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0445 article-title: Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.02.051 – volume: 99 start-page: 175 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0190 article-title: High-strength KOBM steel slag binder activated by carbonation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.09.028 – year: 2008 ident: 10.1016/j.scitotenv.2021.150280_bb0145 – volume: 414 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0210 article-title: Influence of pretreatments on accelerated dry carbonation of MSWI fly ash under medium temperatures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128756 – start-page: 167 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0570 article-title: Calculation method of stockpiling and use phase in road LCA: case study of steel slag recycling – volume: 208 start-page: 448 year: 2019 ident: 10.1016/j.scitotenv.2021.150280_bb0250 article-title: CO2 activated steel slag-based materials: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.058 – volume: 178 start-page: 176 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0150 article-title: Life cycle assessment of concrete paving blocks using electric arc furnace slag as natural coarse aggregate substitute publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.007 – volume: 11 year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0420 article-title: CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects publication-title: J. Environ. Manag. – volume: 54 start-page: 176 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0280 article-title: Interdependent factors contributing towards carbonation of steel slag compact: consideration of casting pressure, water dosage and carbonation duration publication-title: Mater. Struct. doi: 10.1617/s11527-021-01768-w – volume: 3 start-page: 399 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0405 article-title: CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0486-9 – volume: 40 start-page: 1547 year: 2006 ident: 10.1016/j.scitotenv.2021.150280_bb0135 article-title: Phosphorus removal by electric arc furnace steel slag and serpentinite publication-title: Water Res. doi: 10.1016/j.watres.2006.02.001 – volume: 286 start-page: 369 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0040 article-title: Effects of thin-film accelerated carbonation on steel slag leaching publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.12.059 – volume: 112 start-page: 193 year: 2004 ident: 10.1016/j.scitotenv.2021.150280_bb0165 article-title: A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.04.019 – volume: 39 start-page: 270 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0045 article-title: Sustainability footprint of steelmaking byproducts publication-title: Ironmak. Steelmak. doi: 10.1179/1743281211Y.0000000054 – volume: 9 year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0440 article-title: Performance of steel slag and steel sludge in concrete publication-title: Constr. Build. Mater. – volume: 18 start-page: 125 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0195 article-title: Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2017.01.009 – year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0300 – volume: 121 start-page: 412 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0085 article-title: Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.12.031 – volume: 68 start-page: 3026 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0320 article-title: Wasted waste: an evolutionary perspective on industrial by-products publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2009.07.006 – start-page: 6 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0065 article-title: Environmental assessment of EAF slag in different “end of 2nd life” – volume: 83 start-page: 138 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0385 article-title: Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.07.018 – volume: 10 start-page: 1347 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0490 article-title: Assessment of electric arc furnace (EAF) steel slag waste’s recycling options into value added green products: a review publication-title: Metals doi: 10.3390/met10101347 – volume: 9 start-page: 4422 year: 2018 ident: 10.1016/j.scitotenv.2021.150280_bb0500 article-title: Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage publication-title: Nat. Commun. doi: 10.1038/s41467-018-06886-8 – volume: 42 start-page: 778 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0315 article-title: Effect of mechanical activation on the hydraulic properties of stainless steel slags publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2012.02.016 – volume: 245 start-page: 35 year: 2013 ident: 10.1016/j.scitotenv.2021.150280_bb0525 article-title: Cementitious properties of super-fine steel slag publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.04.016 – volume: 302 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0620 article-title: Elucidating the dominant and interaction effects of temperature, CO2 pressure and carbonation time in carbonating steel slag blocks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124158 – year: 2019 ident: 10.1016/j.scitotenv.2021.150280_bb0125 – volume: 298 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0345 article-title: Comparative life cycle assessment to maximize CO2 sequestration of steel slag products publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123876 – year: 2002 ident: 10.1016/j.scitotenv.2021.150280_bb0255 – year: 2003 ident: 10.1016/j.scitotenv.2021.150280_bb0005 article-title: Qualidade e legislação de fertilizantes e corretivos – volume: 8 start-page: 201 year: 2003 ident: 10.1016/j.scitotenv.2021.150280_bb0235 article-title: Multifunctional electronic media-traditional media: the problem of an adequate functional unit a case study of a printed newspaper, an internet newspaper and a TV broadcast publication-title: Int. J. Life Cycle Assess. doi: 10.1007/BF02978472 – volume: 86 start-page: 163 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0230 article-title: Does it matter which life cycle assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.08.004 – volume: 55 start-page: 745 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0595 article-title: An overview for the utilization of wastes from stainless steel industries publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2011.03.005 – volume: 16 start-page: 461 year: 2004 ident: 10.1016/j.scitotenv.2021.150280_bb0480 article-title: Steel Slag—Its production, processing, characteristics, and cementitious properties publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2004)16:3(230) – year: 2002 ident: 10.1016/j.scitotenv.2021.150280_bb0215 – volume: 63 start-page: 168 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0025 article-title: Durability studies on steelmaking slag concretes publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.06.002 – volume: 23 start-page: 1788 year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0465 article-title: Characterization of ladle furnace basic slag for use as a construction material publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.10.003 – start-page: 119 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0130 article-title: Sustainability modeling – volume: 114 start-page: 5393 year: 2017 ident: 10.1016/j.scitotenv.2021.150280_bb0185 article-title: Comparative life-cycle assessment of slurry and wet accelerated carbonation of BOF slag publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1675 – volume: 207–208 start-page: 21 year: 2012 ident: 10.1016/j.scitotenv.2021.150280_bb0360 article-title: Utilization of steel, pulp and paper industry solid residues in forest soil amendment: relevant physicochemical properties and heavy metal availability publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.02.015 – volume: 112 start-page: 872 year: 2016 ident: 10.1016/j.scitotenv.2021.150280_bb0260 article-title: Ladle metallurgy stainless steel slag as a raw material in ordinary Portland cement production: a possibility for industrial symbiosis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.06.006 – volume: 1 start-page: 467 year: 2010 ident: 10.1016/j.scitotenv.2021.150280_bb0035 article-title: Carbonation of stainless steel slag as a process for CO2 storage and slag valorization publication-title: Waste Biomass Valoriz. doi: 10.1007/s12649-010-9047-1 – volume: 27 year: 2004 ident: 10.1016/j.scitotenv.2021.150280_bb0470 – start-page: 165 year: 2021 ident: 10.1016/j.scitotenv.2021.150280_bb0590 article-title: Research progress on application of steel slag in agriculture – volume: 101 start-page: 133 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0325 article-title: Integrated policies to promote sustainable use of steel slag for construction—A consequential life cycle embodied energy and greenhouse gas emission perspective publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.04.036 – volume: 9 start-page: 82 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0115 article-title: Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2014.12.001 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.scitotenv.2021.150280_bb0430 article-title: Characterization of ladle furnace slag from carbon steel production as a potential adsorbent publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2013/198240 – start-page: 2547 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0625 article-title: Experimental investigation of sintering flue gas desulfurization with steel slag using dry CFB method – volume: 87 start-page: 683 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0375 article-title: Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.10.013 – volume: 18 start-page: 33 year: 2011 ident: 10.1016/j.scitotenv.2021.150280_bb0080 article-title: Life cycle assessment of internal recycling options of steel slag in Chinese iron and steel industry publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(11)60087-3 – volume: 106 year: 2020 ident: 10.1016/j.scitotenv.2021.150280_bb0540 article-title: Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.103489 – volume: 14 start-page: 892 year: 2014 ident: 10.1016/j.scitotenv.2021.150280_bb0565 article-title: Comparative life cycle assessment (LCA) of accelerated carbonation processes using steelmaking slag for CO2 fixation publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2013.04.0121 – volume: 54 start-page: 1231 year: 2010 ident: 10.1016/j.scitotenv.2021.150280_bb0075 article-title: LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2010.04.001 – volume: 605 start-page: 43 year: 2015 ident: 10.1016/j.scitotenv.2021.150280_bb0220 article-title: Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.02.018 – year: 2009 ident: 10.1016/j.scitotenv.2021.150280_bb0140 article-title: Reduction of CO2 emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate publication-title: Steel Res. Int. – volume: 33 start-page: 229 year: 2006 ident: 10.1016/j.scitotenv.2021.150280_bb0350 article-title: Cr(VI) containing electric furnace dusts and filter cake from a stainless steel waste treatment plant: part 1 – characteristics and microstructure publication-title: Ironmak. Steelmak. doi: 10.1179/174328106X94816 – volume: 11 start-page: 117 year: 2006 ident: 10.1016/j.scitotenv.2021.150280_bb0305 article-title: Ethanol fuels: E10 or E85 – life cycle perspectives (5 pp) publication-title: Int. J. Life Cycle Assess. doi: 10.1065/lca2005.02.201 |
| SSID | ssj0000781 |
| Score | 2.6851635 |
| SecondaryResourceType | review_article |
| Snippet | The rapid increase in steel slag generation globally highlights the urgent need to manage the disposal or utilization processes. In addition to conventional... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 150280 |
| SubjectTerms | Carbon Carbon Dioxide carbonation cement concrete Construction material environment Environmental assessment environmental health environmental performance Global warming potential Humans Industrial Waste - analysis landfills Life cycle assessment Metals, Heavy Mineral carbonation mineral content pavements quantitative analysis silicates slags Steel Steel slag systematic review |
| Title | Environmental benefit assessment of steel slag utilization and carbonation: A systematic review |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2021.150280 https://www.ncbi.nlm.nih.gov/pubmed/34560457 https://www.proquest.com/docview/2576654519 https://www.proquest.com/docview/2636431705 |
| Volume | 806 |
| WOSCitedRecordID | wos000702844300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7oVkEooqvV9VJG8K1EsplJZtK3payoSBFcZX0acplptyxJ2d3U9t97JjNJdl1rFfElhJDLkO_Lme9MzgXgNWeKo9VjHk1F5KGVjD2RBNpDMaBpHGkd1sV0vn7kx8diOo0_uSD2Zd1OgBeFuLyMz_8r1HgMwTaps38Bd3tTPID7CDpuEXbc_hHw4y51DV9_irZMz0w7maYCp5GHCK2aHyAbTg5wJHOXi2lz3JJFWhZtzMdoq9bz93U9a1jWmAcXbbAqzXPXEujamB-biF3ptTAg11FlgibHOzpNZt0fLbsue1p53yp3vlubQLfW34jz2E6asUaYoY2NbFhuY4RFXXdg26DbtYUzdPXRwKEXcYEufTB8gzI2sB2gfqqW_dnc3dwcXdmQhhxn552Ah7Howc7o_Xj6oZumubDtFN1oNoL_fvm466TLda5JLVEmD-C-8y3IyHLiIdxSRR_u2m6jV33Y22AGcbAt-7Br126JTUl7BHLzREch0lGIlJrUFCKGQmSNQgQpRNYodEhGpCMQsQR6DF_ejidH7zzXiMPLmM9W3jBlPOaxytQwVpQlIhepYirPIpTLIk_Qh1BDE86eJhQ9eFTEnOY4Aweapjrhmu5BrygL9RRIGAqhOct0HgZMaV_EOGH4eY5o1Hp_AFHzjmXmqtSbZilz2YQjnskWHGnAkRacAfjthee2UMvNlxw2IEqnN62OlMi-my9-1cAu0SKb32xJocpqKY0LH4WmbNNvzoloZKS7Hw7gieVMO2qKPg06WvzZvwzvOdzrPsgX0FstKvUS7mQXq9lysQ-3-VTsuy_iBxS5zN8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+benefit+assessment+of+steel+slag+utilization+and+carbonation%3A+A+systematic+review&rft.jtitle=The+Science+of+the+total+environment&rft.au=Li%2C+Lufan&rft.au=Ling%2C+Tung-Chai&rft.au=Pan%2C+Shu-Yuan&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=806&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.150280&rft.externalDocID=S0048969721053572 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |