Multiple Types of Topological Fermions in Transition Metal Silicides
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 119; číslo 20; s. 206402 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Physical Society (APS)
17.11.2017
|
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements. |
|---|---|
| AbstractList | Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements. Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements. Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements. |
| ArticleNumber | 206402 |
| Author | Zhou, Quan Zhang, Shou-Cheng Tang, Peizhe |
| Author_xml | – sequence: 1 givenname: Peizhe surname: Tang fullname: Tang, Peizhe – sequence: 2 givenname: Quan surname: Zhou fullname: Zhou, Quan – sequence: 3 givenname: Shou-Cheng surname: Zhang fullname: Zhang, Shou-Cheng |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29219362$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1418206$$D View this record in Osti.gov |
| BookMark | eNqFkU1r3DAQhkVJSTYffyGYnHpxMmN7JQtyCWnzARsS2s1ZyNK4UdBarqUt7L-vlk1LyKWnYWaedxje95DtDWEgxk4RzhGhvnh62cTv9HtBKeWBPK-AN1B9YjMEIUuB2OyxGUCNpQQQB-wwxlcAwIq3--ygkhXKmlcz9vVh7ZMbPRXLzUixCH2xDGPw4acz2hc3NK1cGGLhhmI56SG6lNvigVJe_nDeGWcpHrPPvfaRTt7qEXu--ba8visXj7f311eL0jTQpBLz54gksJu3mgvbSSPsXHSco-26qjaSqLbatjWSnfOmA9saLhvR1xp039RH7Gx3N8TkVDQukXkxYRjIJIUNttmFDH3ZQeMUfq0pJrVy0ZD3eqCwjgqlmEMFLWzvnb6h625FVo2TW-lpo_7akwG-A8wUYpyo_4cgqG0O6l0OeSDVLocsvPwgzM_qrXdp0s7_T_4HMy6RlQ |
| CitedBy_id | crossref_primary_10_1002_adma_201908518 crossref_primary_10_1038_s41578_021_00380_2 crossref_primary_10_1039_C9NR09123H crossref_primary_10_1073_pnas_2021203118 crossref_primary_10_1103_PhysRevResearch_5_043165 crossref_primary_10_1088_1361_648X_aafdce crossref_primary_10_1103_PhysRevB_106_224304 crossref_primary_10_1016_j_aop_2025_170010 crossref_primary_10_1103_PhysRevB_105_165132 crossref_primary_10_1088_1361_648X_ac87e5 crossref_primary_10_3389_fchem_2018_00331 crossref_primary_10_1038_s41467_022_34978_z crossref_primary_10_7566_JPSJ_93_094706 crossref_primary_10_1007_s11433_023_2320_7 crossref_primary_10_1103_PhysRevResearch_5_013069 crossref_primary_10_1103_PhysRevB_107_085410 crossref_primary_10_1039_D0NR04284F crossref_primary_10_1103_PhysRevResearch_2_012017 crossref_primary_10_1038_s41467_022_30612_0 crossref_primary_10_1038_s41467_024_50451_5 crossref_primary_10_3390_cryst11020143 crossref_primary_10_1038_s41563_021_00992_7 crossref_primary_10_1038_s41567_020_01104_z crossref_primary_10_1088_0256_307X_36_7_077102 crossref_primary_10_1103_PhysRevLett_129_156401 crossref_primary_10_1140_epjb_s10051_021_00093_z crossref_primary_10_1002_pssr_202200115 crossref_primary_10_1103_PhysRevB_107_155434 crossref_primary_10_1002_adfm_202208023 crossref_primary_10_1103_PhysRevB_110_245137 crossref_primary_10_1088_1361_648X_aae6d1 crossref_primary_10_1016_j_mtquan_2024_100022 crossref_primary_10_1021_acsnano_5c05027 crossref_primary_10_1007_s42864_020_00058_2 crossref_primary_10_1038_s41586_023_06330_y crossref_primary_10_1002_adma_202201058 crossref_primary_10_1038_s41467_020_15825_5 crossref_primary_10_1088_1361_648X_ac8960 crossref_primary_10_1088_1361_648X_aaf040 crossref_primary_10_1103_PhysRevB_107_L180502 crossref_primary_10_1016_j_jssc_2024_125041 crossref_primary_10_1103_PhysRevResearch_3_033101 crossref_primary_10_1007_s11433_020_1558_8 crossref_primary_10_1088_1674_1056_add7ab crossref_primary_10_1038_s41578_021_00301_3 crossref_primary_10_1016_j_cocom_2022_e00686 crossref_primary_10_1103_PhysRevB_111_195110 crossref_primary_10_1103_PhysRevLett_134_166401 crossref_primary_10_3390_ma12172710 crossref_primary_10_1038_s41567_022_01892_6 crossref_primary_10_1038_s41524_022_00954_w crossref_primary_10_1103_PhysRevResearch_4_033008 crossref_primary_10_1134_S1063776121120037 crossref_primary_10_1002_pssa_201800105 crossref_primary_10_1103_5j5p_25ws crossref_primary_10_1103_PhysRevResearch_7_023218 crossref_primary_10_1016_j_carbon_2024_118971 crossref_primary_10_1103_PhysRevB_103_075105 crossref_primary_10_1016_j_ssc_2024_115799 crossref_primary_10_3367_UFNe_2021_11_039104 crossref_primary_10_1021_jacs_0c09442 crossref_primary_10_1038_s41467_024_47976_0 crossref_primary_10_1088_0256_307X_39_9_097303 crossref_primary_10_1088_1361_648X_aab0ba crossref_primary_10_1103_PhysRevApplied_18_034053 crossref_primary_10_1038_s41524_025_01624_3 crossref_primary_10_1016_j_jallcom_2021_162121 crossref_primary_10_1016_j_rinma_2025_100743 crossref_primary_10_1103_PhysRevResearch_2_023018 crossref_primary_10_1038_s41467_018_05054_2 crossref_primary_10_1093_nsr_nwac121 crossref_primary_10_1146_annurev_conmatphys_041720_124134 crossref_primary_10_1038_s41524_020_00354_y crossref_primary_10_1103_PhysRevB_111_165132 crossref_primary_10_1016_j_physb_2025_417136 crossref_primary_10_1103_PhysRevB_111_075119 crossref_primary_10_1140_epjb_e2018_90302_7 crossref_primary_10_1038_s41563_023_01587_0 crossref_primary_10_1088_1402_4896_ad9e48 crossref_primary_10_1038_s41567_019_0502_z crossref_primary_10_1103_PhysRevResearch_6_043135 crossref_primary_10_1103_PhysRevB_107_125145 crossref_primary_10_1137_21M1410464 crossref_primary_10_1063_5_0143436 crossref_primary_10_1134_S0021364021100015 crossref_primary_10_1007_s42864_021_00098_2 crossref_primary_10_1103_PhysRevResearch_2_023142 crossref_primary_10_1002_aelm_202101081 crossref_primary_10_1103_PhysRevResearch_4_043213 crossref_primary_10_1002_sstr_202400175 crossref_primary_10_3390_cryst13030509 crossref_primary_10_1038_s41586_019_1037_2 crossref_primary_10_1103_PhysRevB_103_L220410 crossref_primary_10_1142_S0217984925501623 crossref_primary_10_1088_2053_1583_ac00fb crossref_primary_10_1103_kwgt_cryz crossref_primary_10_1088_1361_648X_ad5e2b crossref_primary_10_1016_j_mtener_2021_100666 crossref_primary_10_1103_PhysRevB_111_125201 crossref_primary_10_1038_s42005_021_00564_w crossref_primary_10_1038_s41535_020_00298_y crossref_primary_10_1103_PhysRevB_105_075127 crossref_primary_10_1103_PhysRevB_108_L201404 crossref_primary_10_1103_PhysRevMaterials_5_L091202 crossref_primary_10_1103_PhysRevB_111_115122 crossref_primary_10_7566_JPSJ_93_014702 crossref_primary_10_1038_s41535_024_00714_7 crossref_primary_10_1016_j_scib_2023_01_001 crossref_primary_10_1038_s41467_021_24289_0 crossref_primary_10_1146_annurev_matsci_070218_010049 crossref_primary_10_1038_s41563_018_0169_3 crossref_primary_10_1002_andp_201900336 crossref_primary_10_1103_PhysRevB_111_165116 crossref_primary_10_1038_s41467_020_14443_5 crossref_primary_10_1103_PhysRevApplied_11_024017 crossref_primary_10_1016_j_commt_2024_100022 crossref_primary_10_1103_PhysRevB_111_045161 crossref_primary_10_1038_s41467_019_13435_4 crossref_primary_10_1016_j_matt_2025_101988 crossref_primary_10_1103_PhysRevLett_131_116603 crossref_primary_10_1016_j_mtcomm_2021_103115 crossref_primary_10_1016_j_pquantelec_2024_100535 crossref_primary_10_1103_81wj_62rc crossref_primary_10_1038_s41467_025_60020_z crossref_primary_10_1038_s41567_017_0021_8 crossref_primary_10_1146_annurev_matsci_070218_121852 crossref_primary_10_1038_s41467_023_40035_0 crossref_primary_10_1039_C9NH00681H crossref_primary_10_1038_s41535_022_00535_6 crossref_primary_10_3367_UFNr_2021_11_039104 crossref_primary_10_1103_PhysRevB_105_165104 crossref_primary_10_1103_PhysRevB_103_L081103 crossref_primary_10_1063_1_5119209 crossref_primary_10_1038_s41467_020_17261_x crossref_primary_10_1038_s41567_024_02655_1 crossref_primary_10_1038_s42005_020_00395_1 crossref_primary_10_1103_RevModPhys_93_025002 crossref_primary_10_1103_PhysRevResearch_4_L022022 crossref_primary_10_1063_5_0278355 crossref_primary_10_1103_lnzg_p4qr crossref_primary_10_3390_nano12040679 crossref_primary_10_1103_PhysRevApplied_20_044035 crossref_primary_10_1016_j_cjph_2024_04_018 crossref_primary_10_1007_s11433_021_1867_y crossref_primary_10_1088_1361_648X_ab73a8 crossref_primary_10_1103_PhysRevB_103_184502 crossref_primary_10_1016_j_commatsci_2024_113149 crossref_primary_10_1088_1367_2630_aca34d crossref_primary_10_1002_zaac_202000084 crossref_primary_10_1134_S0021364021010045 crossref_primary_10_3390_cryst10070605 crossref_primary_10_1103_PhysRevLett_130_066402 crossref_primary_10_1103_PhysRevLett_127_157405 crossref_primary_10_1103_PhysRevB_104_155149 crossref_primary_10_1103_PhysRevMaterials_9_L031201 crossref_primary_10_1146_annurev_conmatphys_031218_013712 crossref_primary_10_1039_D2QI00881E crossref_primary_10_1140_epjb_e2018_90468_x crossref_primary_10_1103_PhysRevB_111_085133 crossref_primary_10_1140_epjb_s10051_021_00091_1 crossref_primary_10_1038_s42005_023_01257_2 crossref_primary_10_3390_cryst11020080 crossref_primary_10_1103_PhysRevResearch_6_013048 crossref_primary_10_1038_s41563_020_0715_7 crossref_primary_10_1140_epjp_s13360_022_03118_3 crossref_primary_10_1016_j_matt_2020_07_007 crossref_primary_10_1002_adma_202511385 crossref_primary_10_1016_j_progsurf_2023_100719 crossref_primary_10_1088_0256_307X_37_8_087101 crossref_primary_10_1038_s41467_020_15865_x crossref_primary_10_1103_PhysRevResearch_3_L012028 crossref_primary_10_1007_s44214_024_00060_6 crossref_primary_10_1103_PhysRevB_101_035133 crossref_primary_10_1126_science_abg9094 crossref_primary_10_1038_s41598_023_36168_3 crossref_primary_10_1073_pnas_2010752117 crossref_primary_10_1038_s41586_019_1031_8 crossref_primary_10_1126_science_aaz3480 crossref_primary_10_1038_s41467_021_22903_9 crossref_primary_10_1088_0256_307X_37_10_107504 crossref_primary_10_1016_j_cocom_2018_e00325 crossref_primary_10_1002_admi_202201332 crossref_primary_10_1038_s41567_019_0511_y crossref_primary_10_1103_PhysRevResearch_7_L012021 crossref_primary_10_1002_adma_202402503 crossref_primary_10_1002_pssb_202000027 crossref_primary_10_1038_s41467_020_20408_5 crossref_primary_10_1038_s41467_021_27158_y |
| Cites_doi | 10.1103/PhysRevB.88.125427 10.1103/PhysRevLett.116.186402 10.1038/nature22390 10.1126/science.1216466 10.1103/PhysRevLett.117.056805 10.1126/science.aaa9297 10.1038/nphys3839 10.1103/PhysRevX.5.031013 10.1103/PhysRevB.59.1758 10.1103/PhysRevX.5.011029 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.92.064520 10.1103/PhysRevLett.115.265304 10.1119/1.3549729 10.1103/PhysRevB.96.045102 10.1038/ncomms10639 10.1038/nmat4457 10.1038/ncomms8373 10.1103/PhysRevB.57.1505 10.1103/PhysRevB.54.11169 10.1126/science.aag2792 10.1103/PhysRevB.93.045113 10.1016/j.cpc.2007.11.016 10.1107/S0365110X54001314 10.1103/PhysRev.60.61 10.1038/nmat4685 10.1103/PhysRevB.94.195205 10.1134/S106377611305021X 10.1103/PhysRevLett.117.146403 10.1103/PhysRevB.92.115428 10.1103/PhysRevLett.117.066402 10.1038/nature23005 10.1038/nmat3990 10.1038/nphys3425 10.1016/0022-5088(82)90040-6 10.1038/nphys3437 10.1103/PhysRevB.92.161107 10.1103/PhysRevB.94.165201 10.1126/science.1259327 10.1103/PhysRevA.94.053619 10.1038/nphys3871 10.1016/0370-2693(81)91026-1 10.1103/PhysRevX.6.031003 10.1103/PhysRevB.85.155118 10.1016/0022-4596(88)90051-5 10.1038/nphys3426 10.1002/pssa.2210110113 10.1126/science.1245085 10.1103/PhysRevB.85.195320 10.1038/s41598-017-07374-7 10.1103/PhysRevLett.119.206401 10.1103/PhysRevLett.108.266802 10.1038/ncomms13142 10.1126/sciadv.1600295 10.1126/science.aaf5037 10.1038/nature15768 10.1103/PhysRevB.93.201101 10.1103/PhysRevB.94.121112 10.1103/PhysRevB.93.241202 10.1126/science.1256742 |
| ContentType | Journal Article |
| CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
| CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
| DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
| DOI | 10.1103/PhysRevLett.119.206402 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 1418206 29219362 10_1103_PhysRevLett_119_206402 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM 7X8 OIOZB OTOTI UCJ VQA |
| ID | FETCH-LOGICAL-c404t-111011e71b58a67db9c7d57b661dbb23c9ee3dad831ed564b0d8c6947f3a0af43 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 363 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415604000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Sun Nov 10 04:57:14 EST 2024 Fri Jul 11 12:16:21 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Nov 18 22:00:03 EST 2025 Sat Nov 29 01:46:41 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | https://link.aps.org/licenses/aps-default-accepted-manuscript-license https://link.aps.org/licenses/aps-default-license |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c404t-111011e71b58a67db9c7d57b661dbb23c9ee3dad831ed564b0d8c6947f3a0af43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-76SF00515 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1418206 |
| PMID | 29219362 |
| PQID | 1975020804 |
| PQPubID | 23479 |
| ParticipantIDs | osti_scitechconnect_1418206 proquest_miscellaneous_1975020804 pubmed_primary_29219362 crossref_primary_10_1103_PhysRevLett_119_206402 crossref_citationtrail_10_1103_PhysRevLett_119_206402 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-17 |
| PublicationDateYYYYMMDD | 2017-11-17 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2017 |
| Publisher | American Physical Society (APS) |
| Publisher_xml | – name: American Physical Society (APS) |
| References | PhysRevLett.119.206402Cc23R1 PhysRevLett.119.206402Cc46R1 PhysRevLett.119.206402Cc21R1 PhysRevLett.119.206402Cc61R1 PhysRevLett.119.206402Cc29R1 PhysRevLett.119.206402Cc40R1 PhysRevLett.119.206402Cc27R1 PhysRevLett.119.206402Cc42R1 PhysRevLett.119.206402Cc65R1 PhysRevLett.119.206402Cc25R1 PhysRevLett.119.206402Cc8R1 PhysRevLett.119.206402Cc5R1 PhysRevLett.119.206402Cc11R1 PhysRevLett.119.206402Cc36R1 PhysRevLett.119.206402Cc57R1 PhysRevLett.119.206402Cc7R1 PhysRevLett.119.206402Cc38R1 PhysRevLett.119.206402Cc59R1 PhysRevLett.119.206402Cc1R1 M. Aroyo (PhysRevLett.119.206402Cc55R1) 2011; 43 PhysRevLett.119.206402Cc3R1 PhysRevLett.119.206402Cc19R1 PhysRevLett.119.206402Cc17R1 PhysRevLett.119.206402Cc30R1 PhysRevLett.119.206402Cc51R1 PhysRevLett.119.206402Cc15R1 PhysRevLett.119.206402Cc32R1 PhysRevLett.119.206402Cc13R1 PhysRevLett.119.206402Cc34R1 PhysRevLett.119.206402Cc22R1 PhysRevLett.119.206402Cc47R1 PhysRevLett.119.206402Cc68R1 PhysRevLett.119.206402Cc20R1 PhysRevLett.119.206402Cc49R1 PhysRevLett.119.206402Cc60R1 PhysRevLett.119.206402Cc28R1 PhysRevLett.119.206402Cc41R1 PhysRevLett.119.206402Cc62R1 PhysRevLett.119.206402Cc26R1 PhysRevLett.119.206402Cc43R1 PhysRevLett.119.206402Cc64R1 PhysRevLett.119.206402Cc24R1 PhysRevLett.119.206402Cc45R1 PhysRevLett.119.206402Cc9R1 PhysRevLett.119.206402Cc12R1 PhysRevLett.119.206402Cc35R1 PhysRevLett.119.206402Cc58R1 C. Bradley (PhysRevLett.119.206402Cc63R1) 2010 PhysRevLett.119.206402Cc4R1 PhysRevLett.119.206402Cc10R1 PhysRevLett.119.206402Cc37R1 PhysRevLett.119.206402Cc6R1 PhysRevLett.119.206402Cc39R1 PhysRevLett.119.206402Cc50R1 PhysRevLett.119.206402Cc18R1 PhysRevLett.119.206402Cc52R1 PhysRevLett.119.206402Cc16R1 PhysRevLett.119.206402Cc31R1 PhysRevLett.119.206402Cc54R1 PhysRevLett.119.206402Cc14R1 PhysRevLett.119.206402Cc33R1 PhysRevLett.119.206402Cc56R1 |
| References_xml | – ident: PhysRevLett.119.206402Cc8R1 doi: 10.1103/PhysRevB.88.125427 – ident: PhysRevLett.119.206402Cc35R1 doi: 10.1103/PhysRevLett.116.186402 – ident: PhysRevLett.119.206402Cc39R1 doi: 10.1038/nature22390 – ident: PhysRevLett.119.206402Cc3R1 doi: 10.1126/science.1216466 – ident: PhysRevLett.119.206402Cc25R1 doi: 10.1103/PhysRevLett.117.056805 – ident: PhysRevLett.119.206402Cc16R1 doi: 10.1126/science.aaa9297 – ident: PhysRevLett.119.206402Cc9R1 doi: 10.1038/nphys3839 – ident: PhysRevLett.119.206402Cc15R1 doi: 10.1103/PhysRevX.5.031013 – ident: PhysRevLett.119.206402Cc50R1 doi: 10.1103/PhysRevB.59.1758 – ident: PhysRevLett.119.206402Cc14R1 doi: 10.1103/PhysRevX.5.011029 – ident: PhysRevLett.119.206402Cc49R1 doi: 10.1103/PhysRevB.50.17953 – ident: PhysRevLett.119.206402Cc5R1 doi: 10.1103/PhysRevB.92.064520 – ident: PhysRevLett.119.206402Cc13R1 doi: 10.1103/PhysRevLett.115.265304 – ident: PhysRevLett.119.206402Cc1R1 doi: 10.1119/1.3549729 – ident: PhysRevLett.119.206402Cc64R1 doi: 10.1103/PhysRevB.96.045102 – ident: PhysRevLett.119.206402Cc29R1 doi: 10.1038/ncomms10639 – ident: PhysRevLett.119.206402Cc18R1 doi: 10.1038/nmat4457 – ident: PhysRevLett.119.206402Cc17R1 doi: 10.1038/ncomms8373 – ident: PhysRevLett.119.206402Cc54R1 doi: 10.1103/PhysRevB.57.1505 – ident: PhysRevLett.119.206402Cc51R1 doi: 10.1103/PhysRevB.54.11169 – ident: PhysRevLett.119.206402Cc6R1 doi: 10.1126/science.aag2792 – ident: PhysRevLett.119.206402Cc42R1 doi: 10.1103/PhysRevB.93.045113 – ident: PhysRevLett.119.206402Cc52R1 doi: 10.1016/j.cpc.2007.11.016 – ident: PhysRevLett.119.206402Cc58R1 doi: 10.1107/S0365110X54001314 – ident: PhysRevLett.119.206402Cc41R1 doi: 10.1103/PhysRev.60.61 – ident: PhysRevLett.119.206402Cc28R1 doi: 10.1038/nmat4685 – ident: PhysRevLett.119.206402Cc43R1 doi: 10.1103/PhysRevB.94.195205 – ident: PhysRevLett.119.206402Cc57R1 doi: 10.1134/S106377611305021X – ident: PhysRevLett.119.206402Cc32R1 doi: 10.1103/PhysRevLett.117.146403 – ident: PhysRevLett.119.206402Cc22R1 doi: 10.1103/PhysRevB.92.115428 – ident: PhysRevLett.119.206402Cc26R1 doi: 10.1103/PhysRevLett.117.066402 – ident: PhysRevLett.119.206402Cc65R1 doi: 10.1038/nature23005 – volume: 43 start-page: 183 issn: 0324-1130 year: 2011 ident: PhysRevLett.119.206402Cc55R1 publication-title: Bulg Chem Commun – ident: PhysRevLett.119.206402Cc10R1 doi: 10.1038/nmat3990 – ident: PhysRevLett.119.206402Cc20R1 doi: 10.1038/nphys3425 – ident: PhysRevLett.119.206402Cc60R1 doi: 10.1016/0022-5088(82)90040-6 – ident: PhysRevLett.119.206402Cc19R1 doi: 10.1038/nphys3437 – ident: PhysRevLett.119.206402Cc24R1 doi: 10.1103/PhysRevB.92.161107 – ident: PhysRevLett.119.206402Cc36R1 doi: 10.1103/PhysRevB.94.165201 – ident: PhysRevLett.119.206402Cc4R1 doi: 10.1126/science.1259327 – ident: PhysRevLett.119.206402Cc47R1 doi: 10.1103/PhysRevA.94.053619 – ident: PhysRevLett.119.206402Cc27R1 doi: 10.1038/nphys3871 – ident: PhysRevLett.119.206402Cc62R1 doi: 10.1016/0370-2693(81)91026-1 – ident: PhysRevLett.119.206402Cc38R1 doi: 10.1103/PhysRevX.6.031003 – ident: PhysRevLett.119.206402Cc40R1 doi: 10.1103/PhysRevB.85.155118 – ident: PhysRevLett.119.206402Cc59R1 doi: 10.1016/0022-4596(88)90051-5 – ident: PhysRevLett.119.206402Cc21R1 doi: 10.1038/nphys3426 – ident: PhysRevLett.119.206402Cc56R1 doi: 10.1002/pssa.2210110113 – ident: PhysRevLett.119.206402Cc11R1 doi: 10.1126/science.1245085 – ident: PhysRevLett.119.206402Cc7R1 doi: 10.1103/PhysRevB.85.195320 – ident: PhysRevLett.119.206402Cc46R1 doi: 10.1038/s41598-017-07374-7 – ident: PhysRevLett.119.206402Cc68R1 doi: 10.1103/PhysRevLett.119.206401 – ident: PhysRevLett.119.206402Cc45R1 doi: 10.1103/PhysRevLett.108.266802 – volume-title: The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups year: 2010 ident: PhysRevLett.119.206402Cc63R1 – ident: PhysRevLett.119.206402Cc33R1 doi: 10.1038/ncomms13142 – ident: PhysRevLett.119.206402Cc31R1 doi: 10.1126/sciadv.1600295 – ident: PhysRevLett.119.206402Cc34R1 doi: 10.1126/science.aaf5037 – ident: PhysRevLett.119.206402Cc23R1 doi: 10.1038/nature15768 – ident: PhysRevLett.119.206402Cc30R1 doi: 10.1103/PhysRevB.93.201101 – ident: PhysRevLett.119.206402Cc61R1 doi: 10.1103/PhysRevB.94.121112 – ident: PhysRevLett.119.206402Cc37R1 doi: 10.1103/PhysRevB.93.241202 – ident: PhysRevLett.119.206402Cc12R1 doi: 10.1126/science.1256742 |
| SSID | ssj0001268 |
| Score | 2.6865747 |
| Snippet | Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the... |
| SourceID | osti proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 206402 |
| SubjectTerms | ATOMIC AND MOLECULAR PHYSICS |
| Title | Multiple Types of Topological Fermions in Transition Metal Silicides |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29219362 https://www.proquest.com/docview/1975020804 https://www.osti.gov/servlets/purl/1418206 |
| Volume | 119 |
| WOSCitedRecordID | wos000415604000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGP2QQcGL-1I3Ingtpk3aJEdRBw-OiI4yt9IshYK0Mp3x9_ulrYOCg3jpITRtyLe9kJcXgIsitV5vUoXUURpyaZJQyYKGsTSIlxNmebtd8HovHh7kZKIeV4D-voMfUXbpmZBP7sOfbsEGf7Yk5Z16pOReLJ-NJovUG8Vpl3qZ5x1Q0R8JXv6ZH9VoUGNULUeabcUZbv5_rFuw0aNLctW5wzasuGoH1lqWp2l24WbU0weJX342pC7IuLskwZuKDD0xBr2QlBVpa1hL5yIjhwCdPJdvpSmta_bgZXg7vr4L-2sUQsMpn4WYzTCInYh0IvNUWK2MsInQWJmt1jEzyjlmcytZ5GySck2tNKniomA5zQvO9mFQ1ZU7BKJFTo0UBlEE5VpLTaXiOdrUMMM41QEkX9OZmV5j3F918Za1aw3Ksm8zhA0q62YogMtFv_dOZePPHsfeWhniBC92azwryOALvBWkD-D8y4gZhovfA8krV8-bLFIIkWKEyTyAg866iz_GCtM3FvSjf4_mGNZjX-49PVCcwGA2nbtTWDUfs7KZnrU-ik8xkZ_RzeM8 |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Types+of+Topological+Fermions+in+Transition+Metal+Silicides&rft.jtitle=Physical+review+letters&rft.au=Tang%2C+Peizhe&rft.au=Zhou%2C+Quan&rft.au=Zhang%2C+Shou+-Cheng&rft.date=2017-11-17&rft.pub=American+Physical+Society+%28APS%29&rft.issn=0031-9007&rft.volume=119&rft.issue=20&rft_id=info:doi/10.1103%2Fphysrevlett.119.206402&rft.externalDocID=1418206 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |