Multiple Types of Topological Fermions in Transition Metal Silicides

Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 119; číslo 20; s. 206402
Hlavní autoři: Tang, Peizhe, Zhou, Quan, Zhang, Shou-Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society (APS) 17.11.2017
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.
AbstractList Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, which is confirmed by (001) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.
ArticleNumber 206402
Author Zhou, Quan
Zhang, Shou-Cheng
Tang, Peizhe
Author_xml – sequence: 1
  givenname: Peizhe
  surname: Tang
  fullname: Tang, Peizhe
– sequence: 2
  givenname: Quan
  surname: Zhou
  fullname: Zhou, Quan
– sequence: 3
  givenname: Shou-Cheng
  surname: Zhang
  fullname: Zhang, Shou-Cheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29219362$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1418206$$D View this record in Osti.gov
BookMark eNqFkU1r3DAQhkVJSTYffyGYnHpxMmN7JQtyCWnzARsS2s1ZyNK4UdBarqUt7L-vlk1LyKWnYWaedxje95DtDWEgxk4RzhGhvnh62cTv9HtBKeWBPK-AN1B9YjMEIUuB2OyxGUCNpQQQB-wwxlcAwIq3--ygkhXKmlcz9vVh7ZMbPRXLzUixCH2xDGPw4acz2hc3NK1cGGLhhmI56SG6lNvigVJe_nDeGWcpHrPPvfaRTt7qEXu--ba8visXj7f311eL0jTQpBLz54gksJu3mgvbSSPsXHSco-26qjaSqLbatjWSnfOmA9saLhvR1xp039RH7Gx3N8TkVDQukXkxYRjIJIUNttmFDH3ZQeMUfq0pJrVy0ZD3eqCwjgqlmEMFLWzvnb6h625FVo2TW-lpo_7akwG-A8wUYpyo_4cgqG0O6l0OeSDVLocsvPwgzM_qrXdp0s7_T_4HMy6RlQ
CitedBy_id crossref_primary_10_1002_adma_201908518
crossref_primary_10_1038_s41578_021_00380_2
crossref_primary_10_1039_C9NR09123H
crossref_primary_10_1073_pnas_2021203118
crossref_primary_10_1103_PhysRevResearch_5_043165
crossref_primary_10_1088_1361_648X_aafdce
crossref_primary_10_1103_PhysRevB_106_224304
crossref_primary_10_1016_j_aop_2025_170010
crossref_primary_10_1103_PhysRevB_105_165132
crossref_primary_10_1088_1361_648X_ac87e5
crossref_primary_10_3389_fchem_2018_00331
crossref_primary_10_1038_s41467_022_34978_z
crossref_primary_10_7566_JPSJ_93_094706
crossref_primary_10_1007_s11433_023_2320_7
crossref_primary_10_1103_PhysRevResearch_5_013069
crossref_primary_10_1103_PhysRevB_107_085410
crossref_primary_10_1039_D0NR04284F
crossref_primary_10_1103_PhysRevResearch_2_012017
crossref_primary_10_1038_s41467_022_30612_0
crossref_primary_10_1038_s41467_024_50451_5
crossref_primary_10_3390_cryst11020143
crossref_primary_10_1038_s41563_021_00992_7
crossref_primary_10_1038_s41567_020_01104_z
crossref_primary_10_1088_0256_307X_36_7_077102
crossref_primary_10_1103_PhysRevLett_129_156401
crossref_primary_10_1140_epjb_s10051_021_00093_z
crossref_primary_10_1002_pssr_202200115
crossref_primary_10_1103_PhysRevB_107_155434
crossref_primary_10_1002_adfm_202208023
crossref_primary_10_1103_PhysRevB_110_245137
crossref_primary_10_1088_1361_648X_aae6d1
crossref_primary_10_1016_j_mtquan_2024_100022
crossref_primary_10_1021_acsnano_5c05027
crossref_primary_10_1007_s42864_020_00058_2
crossref_primary_10_1038_s41586_023_06330_y
crossref_primary_10_1002_adma_202201058
crossref_primary_10_1038_s41467_020_15825_5
crossref_primary_10_1088_1361_648X_ac8960
crossref_primary_10_1088_1361_648X_aaf040
crossref_primary_10_1103_PhysRevB_107_L180502
crossref_primary_10_1016_j_jssc_2024_125041
crossref_primary_10_1103_PhysRevResearch_3_033101
crossref_primary_10_1007_s11433_020_1558_8
crossref_primary_10_1088_1674_1056_add7ab
crossref_primary_10_1038_s41578_021_00301_3
crossref_primary_10_1016_j_cocom_2022_e00686
crossref_primary_10_1103_PhysRevB_111_195110
crossref_primary_10_1103_PhysRevLett_134_166401
crossref_primary_10_3390_ma12172710
crossref_primary_10_1038_s41567_022_01892_6
crossref_primary_10_1038_s41524_022_00954_w
crossref_primary_10_1103_PhysRevResearch_4_033008
crossref_primary_10_1134_S1063776121120037
crossref_primary_10_1002_pssa_201800105
crossref_primary_10_1103_5j5p_25ws
crossref_primary_10_1103_PhysRevResearch_7_023218
crossref_primary_10_1016_j_carbon_2024_118971
crossref_primary_10_1103_PhysRevB_103_075105
crossref_primary_10_1016_j_ssc_2024_115799
crossref_primary_10_3367_UFNe_2021_11_039104
crossref_primary_10_1021_jacs_0c09442
crossref_primary_10_1038_s41467_024_47976_0
crossref_primary_10_1088_0256_307X_39_9_097303
crossref_primary_10_1088_1361_648X_aab0ba
crossref_primary_10_1103_PhysRevApplied_18_034053
crossref_primary_10_1038_s41524_025_01624_3
crossref_primary_10_1016_j_jallcom_2021_162121
crossref_primary_10_1016_j_rinma_2025_100743
crossref_primary_10_1103_PhysRevResearch_2_023018
crossref_primary_10_1038_s41467_018_05054_2
crossref_primary_10_1093_nsr_nwac121
crossref_primary_10_1146_annurev_conmatphys_041720_124134
crossref_primary_10_1038_s41524_020_00354_y
crossref_primary_10_1103_PhysRevB_111_165132
crossref_primary_10_1016_j_physb_2025_417136
crossref_primary_10_1103_PhysRevB_111_075119
crossref_primary_10_1140_epjb_e2018_90302_7
crossref_primary_10_1038_s41563_023_01587_0
crossref_primary_10_1088_1402_4896_ad9e48
crossref_primary_10_1038_s41567_019_0502_z
crossref_primary_10_1103_PhysRevResearch_6_043135
crossref_primary_10_1103_PhysRevB_107_125145
crossref_primary_10_1137_21M1410464
crossref_primary_10_1063_5_0143436
crossref_primary_10_1134_S0021364021100015
crossref_primary_10_1007_s42864_021_00098_2
crossref_primary_10_1103_PhysRevResearch_2_023142
crossref_primary_10_1002_aelm_202101081
crossref_primary_10_1103_PhysRevResearch_4_043213
crossref_primary_10_1002_sstr_202400175
crossref_primary_10_3390_cryst13030509
crossref_primary_10_1038_s41586_019_1037_2
crossref_primary_10_1103_PhysRevB_103_L220410
crossref_primary_10_1142_S0217984925501623
crossref_primary_10_1088_2053_1583_ac00fb
crossref_primary_10_1103_kwgt_cryz
crossref_primary_10_1088_1361_648X_ad5e2b
crossref_primary_10_1016_j_mtener_2021_100666
crossref_primary_10_1103_PhysRevB_111_125201
crossref_primary_10_1038_s42005_021_00564_w
crossref_primary_10_1038_s41535_020_00298_y
crossref_primary_10_1103_PhysRevB_105_075127
crossref_primary_10_1103_PhysRevB_108_L201404
crossref_primary_10_1103_PhysRevMaterials_5_L091202
crossref_primary_10_1103_PhysRevB_111_115122
crossref_primary_10_7566_JPSJ_93_014702
crossref_primary_10_1038_s41535_024_00714_7
crossref_primary_10_1016_j_scib_2023_01_001
crossref_primary_10_1038_s41467_021_24289_0
crossref_primary_10_1146_annurev_matsci_070218_010049
crossref_primary_10_1038_s41563_018_0169_3
crossref_primary_10_1002_andp_201900336
crossref_primary_10_1103_PhysRevB_111_165116
crossref_primary_10_1038_s41467_020_14443_5
crossref_primary_10_1103_PhysRevApplied_11_024017
crossref_primary_10_1016_j_commt_2024_100022
crossref_primary_10_1103_PhysRevB_111_045161
crossref_primary_10_1038_s41467_019_13435_4
crossref_primary_10_1016_j_matt_2025_101988
crossref_primary_10_1103_PhysRevLett_131_116603
crossref_primary_10_1016_j_mtcomm_2021_103115
crossref_primary_10_1016_j_pquantelec_2024_100535
crossref_primary_10_1103_81wj_62rc
crossref_primary_10_1038_s41467_025_60020_z
crossref_primary_10_1038_s41567_017_0021_8
crossref_primary_10_1146_annurev_matsci_070218_121852
crossref_primary_10_1038_s41467_023_40035_0
crossref_primary_10_1039_C9NH00681H
crossref_primary_10_1038_s41535_022_00535_6
crossref_primary_10_3367_UFNr_2021_11_039104
crossref_primary_10_1103_PhysRevB_105_165104
crossref_primary_10_1103_PhysRevB_103_L081103
crossref_primary_10_1063_1_5119209
crossref_primary_10_1038_s41467_020_17261_x
crossref_primary_10_1038_s41567_024_02655_1
crossref_primary_10_1038_s42005_020_00395_1
crossref_primary_10_1103_RevModPhys_93_025002
crossref_primary_10_1103_PhysRevResearch_4_L022022
crossref_primary_10_1063_5_0278355
crossref_primary_10_1103_lnzg_p4qr
crossref_primary_10_3390_nano12040679
crossref_primary_10_1103_PhysRevApplied_20_044035
crossref_primary_10_1016_j_cjph_2024_04_018
crossref_primary_10_1007_s11433_021_1867_y
crossref_primary_10_1088_1361_648X_ab73a8
crossref_primary_10_1103_PhysRevB_103_184502
crossref_primary_10_1016_j_commatsci_2024_113149
crossref_primary_10_1088_1367_2630_aca34d
crossref_primary_10_1002_zaac_202000084
crossref_primary_10_1134_S0021364021010045
crossref_primary_10_3390_cryst10070605
crossref_primary_10_1103_PhysRevLett_130_066402
crossref_primary_10_1103_PhysRevLett_127_157405
crossref_primary_10_1103_PhysRevB_104_155149
crossref_primary_10_1103_PhysRevMaterials_9_L031201
crossref_primary_10_1146_annurev_conmatphys_031218_013712
crossref_primary_10_1039_D2QI00881E
crossref_primary_10_1140_epjb_e2018_90468_x
crossref_primary_10_1103_PhysRevB_111_085133
crossref_primary_10_1140_epjb_s10051_021_00091_1
crossref_primary_10_1038_s42005_023_01257_2
crossref_primary_10_3390_cryst11020080
crossref_primary_10_1103_PhysRevResearch_6_013048
crossref_primary_10_1038_s41563_020_0715_7
crossref_primary_10_1140_epjp_s13360_022_03118_3
crossref_primary_10_1016_j_matt_2020_07_007
crossref_primary_10_1002_adma_202511385
crossref_primary_10_1016_j_progsurf_2023_100719
crossref_primary_10_1088_0256_307X_37_8_087101
crossref_primary_10_1038_s41467_020_15865_x
crossref_primary_10_1103_PhysRevResearch_3_L012028
crossref_primary_10_1007_s44214_024_00060_6
crossref_primary_10_1103_PhysRevB_101_035133
crossref_primary_10_1126_science_abg9094
crossref_primary_10_1038_s41598_023_36168_3
crossref_primary_10_1073_pnas_2010752117
crossref_primary_10_1038_s41586_019_1031_8
crossref_primary_10_1126_science_aaz3480
crossref_primary_10_1038_s41467_021_22903_9
crossref_primary_10_1088_0256_307X_37_10_107504
crossref_primary_10_1016_j_cocom_2018_e00325
crossref_primary_10_1002_admi_202201332
crossref_primary_10_1038_s41567_019_0511_y
crossref_primary_10_1103_PhysRevResearch_7_L012021
crossref_primary_10_1002_adma_202402503
crossref_primary_10_1002_pssb_202000027
crossref_primary_10_1038_s41467_020_20408_5
crossref_primary_10_1038_s41467_021_27158_y
Cites_doi 10.1103/PhysRevB.88.125427
10.1103/PhysRevLett.116.186402
10.1038/nature22390
10.1126/science.1216466
10.1103/PhysRevLett.117.056805
10.1126/science.aaa9297
10.1038/nphys3839
10.1103/PhysRevX.5.031013
10.1103/PhysRevB.59.1758
10.1103/PhysRevX.5.011029
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.92.064520
10.1103/PhysRevLett.115.265304
10.1119/1.3549729
10.1103/PhysRevB.96.045102
10.1038/ncomms10639
10.1038/nmat4457
10.1038/ncomms8373
10.1103/PhysRevB.57.1505
10.1103/PhysRevB.54.11169
10.1126/science.aag2792
10.1103/PhysRevB.93.045113
10.1016/j.cpc.2007.11.016
10.1107/S0365110X54001314
10.1103/PhysRev.60.61
10.1038/nmat4685
10.1103/PhysRevB.94.195205
10.1134/S106377611305021X
10.1103/PhysRevLett.117.146403
10.1103/PhysRevB.92.115428
10.1103/PhysRevLett.117.066402
10.1038/nature23005
10.1038/nmat3990
10.1038/nphys3425
10.1016/0022-5088(82)90040-6
10.1038/nphys3437
10.1103/PhysRevB.92.161107
10.1103/PhysRevB.94.165201
10.1126/science.1259327
10.1103/PhysRevA.94.053619
10.1038/nphys3871
10.1016/0370-2693(81)91026-1
10.1103/PhysRevX.6.031003
10.1103/PhysRevB.85.155118
10.1016/0022-4596(88)90051-5
10.1038/nphys3426
10.1002/pssa.2210110113
10.1126/science.1245085
10.1103/PhysRevB.85.195320
10.1038/s41598-017-07374-7
10.1103/PhysRevLett.119.206401
10.1103/PhysRevLett.108.266802
10.1038/ncomms13142
10.1126/sciadv.1600295
10.1126/science.aaf5037
10.1038/nature15768
10.1103/PhysRevB.93.201101
10.1103/PhysRevB.94.121112
10.1103/PhysRevB.93.241202
10.1126/science.1256742
ContentType Journal Article
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1103/PhysRevLett.119.206402
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 1418206
29219362
10_1103_PhysRevLett_119_206402
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
7X8
OIOZB
OTOTI
UCJ
VQA
ID FETCH-LOGICAL-c404t-111011e71b58a67db9c7d57b661dbb23c9ee3dad831ed564b0d8c6947f3a0af43
IEDL.DBID 3MX
ISICitedReferencesCount 363
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415604000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Sun Nov 10 04:57:14 EST 2024
Fri Jul 11 12:16:21 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Tue Nov 18 22:00:03 EST 2025
Sat Nov 29 01:46:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://link.aps.org/licenses/aps-default-accepted-manuscript-license
https://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c404t-111011e71b58a67db9c7d57b661dbb23c9ee3dad831ed564b0d8c6947f3a0af43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515
OpenAccessLink https://www.osti.gov/servlets/purl/1418206
PMID 29219362
PQID 1975020804
PQPubID 23479
ParticipantIDs osti_scitechconnect_1418206
proquest_miscellaneous_1975020804
pubmed_primary_29219362
crossref_primary_10_1103_PhysRevLett_119_206402
crossref_citationtrail_10_1103_PhysRevLett_119_206402
PublicationCentury 2000
PublicationDate 2017-11-17
PublicationDateYYYYMMDD 2017-11-17
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2017
Publisher American Physical Society (APS)
Publisher_xml – name: American Physical Society (APS)
References PhysRevLett.119.206402Cc23R1
PhysRevLett.119.206402Cc46R1
PhysRevLett.119.206402Cc21R1
PhysRevLett.119.206402Cc61R1
PhysRevLett.119.206402Cc29R1
PhysRevLett.119.206402Cc40R1
PhysRevLett.119.206402Cc27R1
PhysRevLett.119.206402Cc42R1
PhysRevLett.119.206402Cc65R1
PhysRevLett.119.206402Cc25R1
PhysRevLett.119.206402Cc8R1
PhysRevLett.119.206402Cc5R1
PhysRevLett.119.206402Cc11R1
PhysRevLett.119.206402Cc36R1
PhysRevLett.119.206402Cc57R1
PhysRevLett.119.206402Cc7R1
PhysRevLett.119.206402Cc38R1
PhysRevLett.119.206402Cc59R1
PhysRevLett.119.206402Cc1R1
M. Aroyo (PhysRevLett.119.206402Cc55R1) 2011; 43
PhysRevLett.119.206402Cc3R1
PhysRevLett.119.206402Cc19R1
PhysRevLett.119.206402Cc17R1
PhysRevLett.119.206402Cc30R1
PhysRevLett.119.206402Cc51R1
PhysRevLett.119.206402Cc15R1
PhysRevLett.119.206402Cc32R1
PhysRevLett.119.206402Cc13R1
PhysRevLett.119.206402Cc34R1
PhysRevLett.119.206402Cc22R1
PhysRevLett.119.206402Cc47R1
PhysRevLett.119.206402Cc68R1
PhysRevLett.119.206402Cc20R1
PhysRevLett.119.206402Cc49R1
PhysRevLett.119.206402Cc60R1
PhysRevLett.119.206402Cc28R1
PhysRevLett.119.206402Cc41R1
PhysRevLett.119.206402Cc62R1
PhysRevLett.119.206402Cc26R1
PhysRevLett.119.206402Cc43R1
PhysRevLett.119.206402Cc64R1
PhysRevLett.119.206402Cc24R1
PhysRevLett.119.206402Cc45R1
PhysRevLett.119.206402Cc9R1
PhysRevLett.119.206402Cc12R1
PhysRevLett.119.206402Cc35R1
PhysRevLett.119.206402Cc58R1
C. Bradley (PhysRevLett.119.206402Cc63R1) 2010
PhysRevLett.119.206402Cc4R1
PhysRevLett.119.206402Cc10R1
PhysRevLett.119.206402Cc37R1
PhysRevLett.119.206402Cc6R1
PhysRevLett.119.206402Cc39R1
PhysRevLett.119.206402Cc50R1
PhysRevLett.119.206402Cc18R1
PhysRevLett.119.206402Cc52R1
PhysRevLett.119.206402Cc16R1
PhysRevLett.119.206402Cc31R1
PhysRevLett.119.206402Cc54R1
PhysRevLett.119.206402Cc14R1
PhysRevLett.119.206402Cc33R1
PhysRevLett.119.206402Cc56R1
References_xml – ident: PhysRevLett.119.206402Cc8R1
  doi: 10.1103/PhysRevB.88.125427
– ident: PhysRevLett.119.206402Cc35R1
  doi: 10.1103/PhysRevLett.116.186402
– ident: PhysRevLett.119.206402Cc39R1
  doi: 10.1038/nature22390
– ident: PhysRevLett.119.206402Cc3R1
  doi: 10.1126/science.1216466
– ident: PhysRevLett.119.206402Cc25R1
  doi: 10.1103/PhysRevLett.117.056805
– ident: PhysRevLett.119.206402Cc16R1
  doi: 10.1126/science.aaa9297
– ident: PhysRevLett.119.206402Cc9R1
  doi: 10.1038/nphys3839
– ident: PhysRevLett.119.206402Cc15R1
  doi: 10.1103/PhysRevX.5.031013
– ident: PhysRevLett.119.206402Cc50R1
  doi: 10.1103/PhysRevB.59.1758
– ident: PhysRevLett.119.206402Cc14R1
  doi: 10.1103/PhysRevX.5.011029
– ident: PhysRevLett.119.206402Cc49R1
  doi: 10.1103/PhysRevB.50.17953
– ident: PhysRevLett.119.206402Cc5R1
  doi: 10.1103/PhysRevB.92.064520
– ident: PhysRevLett.119.206402Cc13R1
  doi: 10.1103/PhysRevLett.115.265304
– ident: PhysRevLett.119.206402Cc1R1
  doi: 10.1119/1.3549729
– ident: PhysRevLett.119.206402Cc64R1
  doi: 10.1103/PhysRevB.96.045102
– ident: PhysRevLett.119.206402Cc29R1
  doi: 10.1038/ncomms10639
– ident: PhysRevLett.119.206402Cc18R1
  doi: 10.1038/nmat4457
– ident: PhysRevLett.119.206402Cc17R1
  doi: 10.1038/ncomms8373
– ident: PhysRevLett.119.206402Cc54R1
  doi: 10.1103/PhysRevB.57.1505
– ident: PhysRevLett.119.206402Cc51R1
  doi: 10.1103/PhysRevB.54.11169
– ident: PhysRevLett.119.206402Cc6R1
  doi: 10.1126/science.aag2792
– ident: PhysRevLett.119.206402Cc42R1
  doi: 10.1103/PhysRevB.93.045113
– ident: PhysRevLett.119.206402Cc52R1
  doi: 10.1016/j.cpc.2007.11.016
– ident: PhysRevLett.119.206402Cc58R1
  doi: 10.1107/S0365110X54001314
– ident: PhysRevLett.119.206402Cc41R1
  doi: 10.1103/PhysRev.60.61
– ident: PhysRevLett.119.206402Cc28R1
  doi: 10.1038/nmat4685
– ident: PhysRevLett.119.206402Cc43R1
  doi: 10.1103/PhysRevB.94.195205
– ident: PhysRevLett.119.206402Cc57R1
  doi: 10.1134/S106377611305021X
– ident: PhysRevLett.119.206402Cc32R1
  doi: 10.1103/PhysRevLett.117.146403
– ident: PhysRevLett.119.206402Cc22R1
  doi: 10.1103/PhysRevB.92.115428
– ident: PhysRevLett.119.206402Cc26R1
  doi: 10.1103/PhysRevLett.117.066402
– ident: PhysRevLett.119.206402Cc65R1
  doi: 10.1038/nature23005
– volume: 43
  start-page: 183
  issn: 0324-1130
  year: 2011
  ident: PhysRevLett.119.206402Cc55R1
  publication-title: Bulg Chem Commun
– ident: PhysRevLett.119.206402Cc10R1
  doi: 10.1038/nmat3990
– ident: PhysRevLett.119.206402Cc20R1
  doi: 10.1038/nphys3425
– ident: PhysRevLett.119.206402Cc60R1
  doi: 10.1016/0022-5088(82)90040-6
– ident: PhysRevLett.119.206402Cc19R1
  doi: 10.1038/nphys3437
– ident: PhysRevLett.119.206402Cc24R1
  doi: 10.1103/PhysRevB.92.161107
– ident: PhysRevLett.119.206402Cc36R1
  doi: 10.1103/PhysRevB.94.165201
– ident: PhysRevLett.119.206402Cc4R1
  doi: 10.1126/science.1259327
– ident: PhysRevLett.119.206402Cc47R1
  doi: 10.1103/PhysRevA.94.053619
– ident: PhysRevLett.119.206402Cc27R1
  doi: 10.1038/nphys3871
– ident: PhysRevLett.119.206402Cc62R1
  doi: 10.1016/0370-2693(81)91026-1
– ident: PhysRevLett.119.206402Cc38R1
  doi: 10.1103/PhysRevX.6.031003
– ident: PhysRevLett.119.206402Cc40R1
  doi: 10.1103/PhysRevB.85.155118
– ident: PhysRevLett.119.206402Cc59R1
  doi: 10.1016/0022-4596(88)90051-5
– ident: PhysRevLett.119.206402Cc21R1
  doi: 10.1038/nphys3426
– ident: PhysRevLett.119.206402Cc56R1
  doi: 10.1002/pssa.2210110113
– ident: PhysRevLett.119.206402Cc11R1
  doi: 10.1126/science.1245085
– ident: PhysRevLett.119.206402Cc7R1
  doi: 10.1103/PhysRevB.85.195320
– ident: PhysRevLett.119.206402Cc46R1
  doi: 10.1038/s41598-017-07374-7
– ident: PhysRevLett.119.206402Cc68R1
  doi: 10.1103/PhysRevLett.119.206401
– ident: PhysRevLett.119.206402Cc45R1
  doi: 10.1103/PhysRevLett.108.266802
– volume-title: The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups
  year: 2010
  ident: PhysRevLett.119.206402Cc63R1
– ident: PhysRevLett.119.206402Cc33R1
  doi: 10.1038/ncomms13142
– ident: PhysRevLett.119.206402Cc31R1
  doi: 10.1126/sciadv.1600295
– ident: PhysRevLett.119.206402Cc34R1
  doi: 10.1126/science.aaf5037
– ident: PhysRevLett.119.206402Cc23R1
  doi: 10.1038/nature15768
– ident: PhysRevLett.119.206402Cc30R1
  doi: 10.1103/PhysRevB.93.201101
– ident: PhysRevLett.119.206402Cc61R1
  doi: 10.1103/PhysRevB.94.121112
– ident: PhysRevLett.119.206402Cc37R1
  doi: 10.1103/PhysRevB.93.241202
– ident: PhysRevLett.119.206402Cc12R1
  doi: 10.1126/science.1256742
SSID ssj0001268
Score 2.6865747
Snippet Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 206402
SubjectTerms ATOMIC AND MOLECULAR PHYSICS
Title Multiple Types of Topological Fermions in Transition Metal Silicides
URI https://www.ncbi.nlm.nih.gov/pubmed/29219362
https://www.proquest.com/docview/1975020804
https://www.osti.gov/servlets/purl/1418206
Volume 119
WOSCitedRecordID wos000415604000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwGP2QQcGL-1I3Ingtpk3aJEdRBw-OiI4yt9IshYK0Mp3x9_ulrYOCg3jpITRtyLe9kJcXgIsitV5vUoXUURpyaZJQyYKGsTSIlxNmebtd8HovHh7kZKIeV4D-voMfUXbpmZBP7sOfbsEGf7Yk5Z16pOReLJ-NJovUG8Vpl3qZ5x1Q0R8JXv6ZH9VoUGNULUeabcUZbv5_rFuw0aNLctW5wzasuGoH1lqWp2l24WbU0weJX342pC7IuLskwZuKDD0xBr2QlBVpa1hL5yIjhwCdPJdvpSmta_bgZXg7vr4L-2sUQsMpn4WYzTCInYh0IvNUWK2MsInQWJmt1jEzyjlmcytZ5GySck2tNKniomA5zQvO9mFQ1ZU7BKJFTo0UBlEE5VpLTaXiOdrUMMM41QEkX9OZmV5j3F918Za1aw3Ksm8zhA0q62YogMtFv_dOZePPHsfeWhniBC92azwryOALvBWkD-D8y4gZhovfA8krV8-bLFIIkWKEyTyAg866iz_GCtM3FvSjf4_mGNZjX-49PVCcwGA2nbtTWDUfs7KZnrU-ik8xkZ_RzeM8
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Types+of+Topological+Fermions+in+Transition+Metal+Silicides&rft.jtitle=Physical+review+letters&rft.au=Tang%2C+Peizhe&rft.au=Zhou%2C+Quan&rft.au=Zhang%2C+Shou+-Cheng&rft.date=2017-11-17&rft.pub=American+Physical+Society+%28APS%29&rft.issn=0031-9007&rft.volume=119&rft.issue=20&rft_id=info:doi/10.1103%2Fphysrevlett.119.206402&rft.externalDocID=1418206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon